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Outcome

e Holographic duality beyond field theory in flat space

e For D3/ D7 system we have solved the problem of
D7 -brane backreaction (terms of order ,\¥j}
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Line and Surface Operators

Phase structure of gauge theories
e confining

e deconfining

e Coulomb

e Higgs

e free electric

e free magnetic

A possible way to characterize is to insert an infinitely heavy
probe. For example, a heavy particle (electrically or
magnetically charged) = The concept of line operator
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Wilson line operator

Wgr = Trge 4 A s I is the worldline of a particle, R is
the representation.

Labeled by representations

This is an example of an operator of order type

Constructed out of the fields in the Lagrangian

Order parameter

If L is aloop then for large L
1‘L - ¢ —Pperimeter HIQQS phase

W ~ g—area confining phase

Charged particle can be thought as a source — df ~ ¢or
This motivates introduction of another type of line operators.
Disorder type line operators

| s Desfined by postulating singular behavior of the gauge field (or Page 6/69
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't Hooft operator
[DAe™ S]]
T = vt (%)

F has a singularity of a magnetic monopole near = = 0.

m is an element of the Cartan subalgebra of the gauge group
(. Due to Dirac quantization condition 1 is defined up to an
action of the Weyl group and can be identified with the highest
weight of some representation of G*.

Labeled by representations of &

For sy =4I|V
GE=U(N), = diag(m;.. ... my), m; >0
Z' % —perimeter :
- ¢ confining phase
‘.7' o i —Aalea nggs phase
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't Hooft operator

{DAe™ |4

F=m=x3d (%)

F has a singularity of a magnetic monopole near = = 0.

7 1S an elemerng

Automatic Updates

(7 Due to Diral| uedsting your computer is simast complete. vou must restart your computer for Up to an

the updates to take effect.

aCtICJﬂ Df the W Do wou wank bo reskark your computer now? e hlghESt

[ Restart Now | | Restart Later |

weight of somé—epreoerreroror—or—
Labeled by representations of (JL
ForG =U(N)

GL=U(N). m= diag(m;.. ... my), m; >0

| T ~ e~penmeter  oonfining phase

| T e g oren Higgs phase
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Wilson line operator

Wr = Trge ¢ ], 445 T s the worldline of a particle, R is
the representation.

Labeled by representations

This is an example of an operator of order type

Constructed out of the fields in the Lagrangian

Order parameter

If L is aloop then for large L
}‘L ~ _1:”."'1‘11'1'1r'_-‘s'+f—1‘ nggs phase

| W ~ g 2rea confining phase

| Charged particle can be thought as a source — dF ~ ¢or
This mativates introduction of another type of line operators.
Disorder type line operators

| rsaosozoors DEfINEd by postulating singular behavior of the gauge field (or Page 9/69
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Wilson line operator

Wr = Trge 4 |, Ax#ds T s the worldline of a particle, R is
the representation.

Labeled by representations

This is an example of an operator of order type

Constructed out of the fields in the Lagrangian

Order parameter

If L is aloop then for large L
‘i\L ~ p —Pperimeter HIQQS phase

W ~ g—area confining phase

Charged particle can be thought as a source — dF ~ ¢or
This mativates introduction of another type of line operators.
Disorder type line operators

Defined by postulating singular behavior of the gauge field (or
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't Hooft operator
[ DAe S
F=m#sd (é)

1
F has a singularity of a magnetic monopole near = = 0.

m Is an element of the Cartan subalgebra of the gauge group
(. Due to Dirac quantization condition 12 is defined up to an
action of the Weyl group and can be identified with the highest
weight of some representation of ol

Labeled by representations of ="

FariG: = {7 ¥)

"= U(N). m=diag(m,.... my)., m; >0

Z- ~, p—Pperimeter anﬂniﬂg phase

2 mwg N Higgs phase
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Line operators are NOT enough to distinguish all the phases
EXAMPLE:

N = 1 SUSY gauge theory with adjoint matter and polynomial

superpotential (Cachazo, Seiberg, Witten'02)

More order parameters are needed!!

Insert a probe string-like object — surface operator

Currently it is not known whether surface operators are

order parameters
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We consider \" = 4. ["( ') gauge theory. The bosonic fields

are A,,. !

We define Gukov-Witten surface operator (Gukov, Witten'06)

by postulating that .4 has a singularity of a cosmic string
A~ df. F ~ 27wd(22)

near the surface

2=7=0, z=re"

- -

- A

e \We specify the group element 7 = U (N ). U = Pé’ pA_

Aharonov-Bohm phase. Diagonalize | —
[ oy ®1n, 0 0
“ X 2 1%} N U

e | '_ o _ | db

\ 0 0 e NN B i )
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e (V) is broken to the Levi group
= 1‘[_—_l LN ) N = ‘T“._ N,

\; are a part of the definition of the operator.

e J-angles 1); for each unbroken [ (1)

Xp *\_‘,- ni s 5=

(a;.m;) transform under S-duality

e Usethescalarfields o!. [ = 4....9.
A

QOQww — Q@ L 10>
Near - = 0 |
/ :jl —|— I- *-'1 v, 1-\_l s {} \
r__'r“_ — )—l‘_
\ 0 e Ot ryM R 1Ny, )
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We consider \" = 4. [7( \) gauge theory. The bosonic fields

are A,,. !
We define Gukov-Witten surface operator (Gukov, Witten'06)

by postulating that .4 has a singularity of a cosmic string
A~ db, F ~ 2w (22)

near the surface

2=z =41 2 = pe'®
e We specify the group element [/ = U(N ). U = P¢’ pA_
Aharonov-Bohm phase. Diagonalize ' —
[ oy ®1n, 0 0 \
0 ke 1__-\,.-‘-, i 0
A= | - | db
\ 0 0 e AT 28 1_\.‘_” /
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e [/( V) is broken to the Levi group
L= H._1 EALN L N = \_“. - N

\; are a part of the definition of the operator.

B H-angies 1; for each unbroken (' (1)

xp (S i s &)

(a;.m;) transform under S-duality

e Use the scalarfields o/ . I = 4....9.
1 E— o + i¢°
Near - = | |
[ Bi+im @1y, ... 0 :

)

gr == ]
han — 3.

\ () o S -f_u -+ f'*,- M 1_\-'_” /
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Parameters
e The Levi group L = Hfil U(N;)

W Ll T Lk, e )

A~db, A, ~ — Doy ™~ l
Bosonic symmetries
e Poincare symmetry along the surface /SO(1. 1)

e Scale invariance =— S(J(2. 2) conformal group in two
dimensions

e SO(4) rotating 0”. 0'. 0". &'

o UU(1 Jog X r.*{.lhf, —= 1M1)
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Supersymmetries

Poincare supersymmetry

O\ = (%FMIW + [T#r;}f}r’“rf + %[r_‘.q. r_':J]l—”) £=1{
€isa [D = 10 Majorana-Weyl spinor. From the [) = - point of
view

F Ff: R
=

_ ‘L_-J_:Q(E.
We have [ = 0. o7, 03] =0. D=0, = ) —
]~—'.”_'i'_|'_"r._- — {} —¥ ]‘_‘25—11"_ —t e

% of Poincare SUSY'’s are preserved
Similarly %, of superconformal SUSY's are preserved

e \We have a family of half-BPS operators

-

e They have the same symmetries as the )3 /)3 branes (in

the near-horizon limit) intersecting along a surface

Page 18/69
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Line and Surface Operators as [J-branes

It is useful to think of line and surface operators as of a system
of D-branes (especially to study the supergavity duals)

e The Gukov-Witten surface operators can be represented by
(the near-horizon limit of) the system
g 1 2 5 4 o9 06 ¢ 8 Y
D3 % % % ¥
D3 »x = X X

e The Wilson line operator in the A-symmeteric
(antisymmetric) representation can be represented as the
D3/D3(D5) system intersecting along a line with
additinal A units of the fundamental string charge




Line and Surface Operators as [)-branes

It is useful to think of line and surface operators as of a system
of D-branes (especially to study the supergavity duals)

e The Gukov-Witten surface operators can be represented by

(the near-h@

Automatic Updates

[" |Jpdating wour computer is almost complete, You must restart your computer For
} the updates to tzke affect.
Do wou wank bo restark your computer now?
D3 x | Restarthow | | Restart Laker |
IS
’ T
D 3 X X < 4

e The Wilson line operator in the A-symmeteric
(antisymmetric) representation can be represented as the

D3/ D3(D5) system intersecting along a line with
additinal A units of the fundamental string charge
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Line and Surface Operators as [)-branes

It is useful to think of line and surface operators as of a system
of D-branes (especially to study the supergavity duals)

e The Gukov-Witten surface operators can be represented by

(the near-horizon limit of) the system

g 1 2 3 4 5§ &8 ¥ 8 9
D3 x X X X
DY x x < X

e The Wilson line operator in the A-symmeteric
(antisymmetric) representation can be represented as the
D3/D3(D5) system intersecting along a line with
additinal A units of the fundamental string charge
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Addition of D 7-branes restricts €. The restriction is

geves =0 br -gel="0 — € = €3

Qutcome: we are dealing with a gauge theory in ) = 4 with
a [D = 2 defect which preserves 8 Poincare supercharges
with e = €5

We are interested in &" — () limit to decouple closed strings
and massive open string states

S=Svoy+ [daTdr™ (0 + AL+ A
\ is a chiral fermionin (N, 1/) of U/(N') x U"(M). Under

Poincare sypersymmtery

5 o : = MY Ak \ S il i 5 o i -
04, = —1X50,77¢" .6, ox =0, 04, =0=

f L

S is invariant under S Poincare supercharges
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Addition of D7-branes restricts €. The restriction is

ok % o i =t 1 & i * Y
ogi%€, =V o1 o-% . =1 = éf- =&

Qutcome: we are dealing with a gauge theory in ) = 4 with
a [D = 2 defect which preserves 8 Poincare supercharges
with e = €,

We are interested in &' — 0 limit to decouple closed strings
and massive open string states

S=Sv=u+J detdx— V(04 + Ay + {T ) X

\ is a chiral fermionin (N, M) of /(N') x U"(M). Under
Poincare sypersymmtery

N ST e e o S
0y =—450,7%6," 6. oy =0 0A,; ==

S is invariant under S Poincare supercharges
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Quantum-mechanically the theory is anomalous. It is
convenient to split ' (V) into SU(N ) x U'(1). Denote the
gauge fields by A. 4. a.a. Consider SU(N) =< SU(M)

gauge transformations

a8 = \_\l,,, fdxrdz __\[Tr_g,r- il LdA) 4+ NTvsirasil Ld A ﬁ!_.
Consider [/(1) x U(1) transformations

0S = & [datde" NM(l = 1)(f4— — f+-)

There is a difference between the Abelian and non-Abelian
cases.

The anomalies are cancelled by the inflow mechanism (Green,
Harvey, Moore 96). We have to take into account the

Chern-Simons terms in the [J-brane action

Scs(A) = —)_ﬂ+ JG1 AT (‘—l dA+

| Pirsa: 08030073 E’{’_H[ ‘_1 ], — _¢ ’ ( T ( _l i f _1 -

VAN 4)
_l A —l) Page 24/69
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Addition of [)7-branes restricts ¢ '. The restriction is

Q-3 __ : i A % e Gy
(T_|_ {_.{_..1 — {} OT -"T_: 'r_‘r__‘t = [} E— f—l = f_‘l

Qutcome: we are dealing with a gauge theory in ) = 4 with
a [D = 2 defect which preserves 8 Poincare supercharges
with € = €5

We are interested in &" — 0 limit to decouple closed strings
and massive open string states

8= Sppn+ [ datde %0, + Ay + A)x
\ is a chiral fermionin (N, A/) of U/(N') x U"(M). Under

Poincare sypersymmtery

N i : ~ oo 1 G e g - L .
'[.} ‘_}‘j_I — —f/\{_:kl?i"j-j_! {_I'_-:_ _|_ ': -'1. S r‘ l\x Sm— {}... 'r}___l}:_.{ m— {} _—

S is invariant under S Poincare supercharges
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Quantum-mechanically the theory is anomalous. It is
convenient to split U’ (V) into SU(N) x U'(1). Denote the
gauge fields by A. 4. a.a. Consider SU(N) =< SU(M)

gauge transformations

05 = — ] drdxr~ __\[Tl';_.;,r' n(LdA) + NTrsproan! LdA }_:

Consider ['(1) x U(1) transformations
65 =L fdzrde~NM( —D(f1— — f1)

There is a difference between the Abelian and non-Abelian
cases.

The anomalies are cancelled by the inflow mechanism (Green.
Harvey. Moore 96). We have to take into account the

Chern-Simons terms in the [)-brane action
Scs(A) = . 2”;: X f Gi AT ( AAndA -+ %4 A AN _4)
Pirsa: 08030073 E’{’_H[ ‘_i } — _Llir# | ’ (:‘Tr_. Tr ( ‘_1 f-]f‘__i _i_ %‘—1 ‘—i A _—1)

2
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In performing gauge transformations we integrate by part
producing the terms like /G| and d (5. In the presence of the

SOources
;f(rrl — _-\[(:-T‘]J:. .-I-r\;2 | = z — 13 J _[rif | = z ::

(/(-T' = ~\T(:-7‘1|'_| _;_e_f‘;[ _1 {l " s K r:"!j ,J"!"
As the result,

_*%.— j drtdr {J[Tﬁ,r'\ l Lr/‘—l} " *\*Tr:?{'r M) ( ir/*—iﬂ

This is the mechanism to cancel the SU (N ) and SU (M)
anomalies.

The CS terms containing the [ (1) fields @ and @ are more
complicated (ltzhaki, Kutasov, Seiberg 09)

—

=4 (27’ V213 AT [ o . % i (2wa’ )2 e RN -
Scs(a.a) = —E2LBN Gy Aan f— TN [GsNaA f

| o=
s

[ J'.-"I_ / ey " i = _J‘T ¢ :j"—- et N ——
S S “,c.j _5\ ‘ (_T]_ AW WA f o ke “;_' jl[ I (_T; £ Pagll?_27/69




Quantum-mechanically the theory is anomalous. It is
convenient to split L' (V) into SU (N ) x [U'(1). Denote the
gauge fields by A. 4. a.a. Consider SU(N) =< SU(M)

gauge transformations

0S5 = — j 1k ) __Wl[Tl'_g;,r' A LdA)+ ﬁ\_Ti'_f;'.r_' AN Lﬁ'-Jl |

Consider ['(1) x U(1) transformations
0S = L fdetde~ NM( —)(fr— — fi)

There is a difference between the Abelian and non-Abelian
cases.

The anomalies are cancelled by the inflow mechanism (Green.
Harvey, Moore 96). We have to take into account the

Chern-Simons terms in the [)-brane action

(2o’ )T

Scs(A) = ——= 5 J ’ Gi AT (4-} A dA + %*_l NAN ‘_l)

Pirsa: 08030073 'LJ {_,5,[' ‘_i} — _Llqu f C _T' = A Tr ( __1 ,"'f _—i = g‘—i _—i A\ ‘—1 )

2 3
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In performing gauge transformations we integrate by part
producing the terms like /G| and d 5. In the presence of the
sources

{f('rrl — _-\[(:-?:]_'_'. _-I-rigl_ = (. j_[rigl = T.

I/(_T' — _:\F(:-T.l,'_, _:_J,fi!: ,J"_l ;i J':l R |\;! ,J"I'J

As the result,

—& [ datda™ [ MTrsyv)(LdA) + NTespap (LdA)|

This is the mechanism to cancel the ST (N') and SU (M)
anomalies.

The CS terms containing the [ (1) fields @ and @ are more
complicated (ltizhaki, Kutasov, Seiberg 05)

L e ’:3._,_. s e . ﬁ ’ '2','1'_"'.3’:"" o & agoa -
Sos(a.d) = —Z BN 1Q AaAf— PN LEAGA ]

g e b Yy £

X (2T : 3 -h\“’ I ('.rl J. a j:: _!_ _""r: = jl[ I (,-T_r ll’ﬁf ‘Pag.1<?_29/69
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The third termis [ a / F3. F, =Gy A f(zX =0)
The lasttermis [ a A Fr, Fr=Gx A f(z =0)

0Scs(a,a) = —= [datde " NM(I —1)(feo — fo_)

iy

This cancels the {'( 1) anomalies. We have to consider the

theory

O = ON—4 + Ddefea + el A) +S¢csl ) +O¢sla;a)

Supersymmetry 7?77

We are taking into account (-'; which is of order g, \/ — the
backreaction of the /) 7-branes — we also have to take

iInto account the metric and the dilaton.

—_—,

E—

We have to consider \ = 4 Yang-Mills theory in the

rrsasoz007s 1) T =brane background !!!
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The [)7-brane background

de® = 1-_1";2" —{(dx?)? <+ (de' V¥ +-de'd’) + H—l 2dzdz
e~® = H, = =0

This background is supersymmetric and preserves 16
supercharges

P H-_lhf—u - :_.f__” s {}

The simplest solution with rotational { (1) symmetry is given

g\
T =it +%L—=1In- > = re'
D ] 1.3- "y L’._‘I,'.'r i
= H- = ' e lnr. '=<L—+¢
_ub

This solution has a problem: « 'S not positive definite —

one should view this solution as a local solution near the brane.
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The third termis [ a /A Fj. F=G A f(z =0)

The lasttermis [ a A Fr, F-=Gs A f(z=0)

0Scs(a,a) = —& fdxtde " NM(I —1)(fio — fi_)

This cancels the [’ (1) anomalies. We have to consider the

theory

H’ — -h:;l_'\,':_l == -\::"I{_-I',h_a_f,h_-i_--f == H{*- _—l = H‘.“-\ | _.—i' = = H(H \ (1. I‘} |
Supersymmetry 7?77

We are taking into account (&'; which is of order ¢, \/ — the

backreaction of the /) 7-branes — we also have to take

iInto account the metric and the dilaton.
—%

We have to consider \" = 4 Yang-Mills theory in the

| esuosoos 1) T-brane background !!! Page 32169
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The [)7-brane background

d s> H— /2, —l dxP)? — [r/; ('/,_I'Irf,!'f ) + H—l ..zrf.:r.f.i_'
— J-. =0 G —'I’_ 07 =0

This background is supersymmetric and preserves 16

supercharges

e H.‘_l'iﬁﬂin Yz€0 =V

The simplest solution with rotational { (1) symmetry is given

— 4

This solution has a problem: ¢ 'S not positive definite —

one should view this solution as a local solution near the brane.
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Global description (Greene, Shapere, Vafa, Yau'90):

switch to Einstein frame and use SL(2. Z) duality
Tisdefineduptoan SL(2.Z) actionand Im(7) > 0= 7
takes values in the fundamental domain F = H™/SL(2. Z)
To find a global solution we consider the one-to-one map

FrF—L

N (02(T)B403(T)3+04(T)3)3

j{ ) }I — IH'-"_]'E_L

The D7-brane solutionis j(7(z)) = ¢g( =) for any

meromorphic function ¢|( = |
Different choices of ¢( =) define different 1) 7-brane solutions
For a stack of A/ D7-branes at = = 0 we have

b
= A

i P

g(z) =a+

a sets the value of the dilaton at infinity and # is related to 7.
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The [)7-brane background

ds?2 = H-"?(—(dz°)? + (dx!)? + dolde!) + HY ?d=d=
e~® = H-. re e, d:7 =0

This background is supersymmetric and preserves 16
supercharges

&= H;-_l':.t‘:f—'l:,‘ V=€p = 0

The simplest solution with rotational { (1) symmetry is given
by

T=1iTo+%<L—1In:z. z=re
f l = H.- = I —r— lnr. TE— —"'._EL ¥4

a— FaRr ] |

g

This solution has a problem: ¢ ¥ is not positive definite =

one should view this solution as a local solution near the brane.
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Global description (Greene, Shapere, Vafa, Yau'90):

switch to Einstein frame and use SL(2. Z) duality
Tisdefineduptoan SL(2.Z) actionand Im(7) > 0= 1
takes values in the fundamental domain F = H™/SL(2. Z)
To find a global solution we consider the one-to-one map

1: F—=C

N (O2(T)B403(T)3+04(T)P)3

T} = n(T)*+

The D7-brane solutionis j(7(z)) = g( =) for any

meromorphic function ¢|( = |
Different choices of ¢( =) define different 1) 7-brane solutions

For a stack of \/ [D7-branes at - = 0 we have
g(z) = a+ =

a sets the value of the dilaton at infinity and & is related to 7.
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Global description (Greene, Shapere, Vafa, Yau 90):

switch to Einstein frame and use SL(2. Z) duality
risdefineduptoan SL(2. Z) actionand Im(7) > 0= 7
takes values in the fundamental domain F = H™/SL(2. Z)
To find a global solution we consider the one-to-one map

. . -
j . "F B (: * Automatic Updates
. \ [ H-‘r (T} 3 Updating wour computer is almost complete. You must restart your computer For
)? ( T }I = = the updates to take effect.
Do wou wank bo reskark your computer now?
The D7-brane ey ey

meromorphic function ¢( =)

Different choices of ¢( = ) define different 1) 7-brane solutions
For a stack of \/ D7-branes at = = 0 we have

g(z) =a+ %

. sets the value of the dilaton at infinity and 4 is related to 7.
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Global description (Greene, Shapere, Vafa, Yau 90):

switch to Einstein frame and use SL(2. Z) duality
Tisdefineduptoan SL(2.Z) actionand Im(7) > 0= 1
takes values in the fundamental domain F = H™/SL(2. Z)
To find a global solution we consider the one-to-one map

j: F—=C

N (O2(T)B403(T)34H04(T)P)3

IT) = n(T)%4

The D7-brane solutionis j(7(z)) = g(z) for any

meromorphic function ¢|( = |
Different choices of ¢( =) define different 1) 7-brane solutions

For a stack of \/ D7-branes at - = () we have

........

. sets the value of the dilaton at infinity and # is related to 7.

Page 38/69




Pirsa: 08030073

The [)7-brane background
ds? = H-2(—(dz°)? + (d2!)? + dxldz!) + HY?d=d=

i = — H.-‘ T = { -+ 1€ _.I}‘ r_f.?..- —c! |

This background is supersymmetric and preserves 16
supercharges

&= Hr-_l':ﬁ""[j:‘ =€) = U

The simplest solution with rotational { (1) symmetry is given

— D 1,1r il _'.-'.__11 )
£ E:_HI-:'{_,—",]—'__[“;', ( :%H

— FARF] |

"

This solution has a problem: ¢~ * is not positive definite =

one should view this solution as a local solution near the brane.
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Global description (Greene, Shapere, Vafa, Yau'90):

switch to Einstein frame and use SL(2. Z) duality

T isdefineduptoan SL(2. Z) actionand Im(7) > 0 = 7
takes values in the fundamental domain F = H™/SL(2. Z)
To find a global solution we consider the one-to-one map

) F —C

N (02(T) 403 (T)3+04(T)P)3

IT)= n(T)24

The D7-brane solutionis j(7(z)) = g( =) for any

meromorphic function ¢( =)
Different choices of ¢( = ) define different 1) 7-brane solutions
For a stack of A/ D7-branes at = = 0 we have

g(z) = a+ =

a sets the value of the dilaton at infinity and 4 is related to 7.
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The metric in Einstein frame Is
ds? = —(dz%)? + (dxr1)? + dzldr! + H-*f_ff#rr’_

H,-_}“_}*_' has to be modular invariant

Locally, one can choose a coordinate system where

Fdz =d2’
The global modular invariant solution is
I F =S I il e —g Y

z;'s are the poles of gl = ).

Singularities:

& e s =% g T ow—In|2 — 2l
e conical singularity at infinity with deficit angle 0 = '{—”
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Summary of what we want

The theory on '\ D 3-branes in the background:
it = Guptiitde” = —HJ—_I *drtdr = H‘-""'Ijr/:r/.‘__'. T=7{2)

The supersymmetry parameter ¢ has to satisfy
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The metitric in Einstein frame is
ds? =—(de?)2 =+ (de) 2+ dzldz! + K ffdudz

H;}”_f_’ has to be modular invariant

Locally, one can choose a coordinate system where
Fda =d>’
The global modular invariant solution is

L E . A eM L \—1/12|2
Il =e g il ilz—&)

=;'s are the poles of gl = ).

Singularities:

® zrw gy =>e P ew—Inlz—z]
e conical singularity at infinity with deficit angle 0 = "'{—”
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Summary of what we want

The theory on '\ D 3-branes in the background:
ds" =g, deide” = —HT_l *datdr— + H‘-";jr/:r/f.

The supersymmetry parameter 'L'.-_-L. has to satisfy

D et = —2%9 Co¥ .6 %Py
Ld Lk S —~ 1 - S T8 ; y

18 B

Page 44/69




Pirsa: 08030073

The action of the vector field 4,
LJI o _% ’ d*a '\,"‘;__H'L-'_ib Eu.r e % J d _l?x—_"}'f)’;: C'et “’j‘r‘w-_l;,e F, po

Consider the scalars describing [)3-brane fluctuations

Introduce vielbeins (¢ . ¢!

| and fix the static gauge
e The pullback of (¢, ) vanishes
e The pullback of (¢ ) = vielbein on the worldvolume

We parameterize the fluctuations by

T:I —. {rri,?‘j
The index [ is flat = ! transform under ST (4) ~ SO(6)

while 6. transform under diffeomorphisms
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Holographic gauge theory in background fields

There is a systematic procedure of constructing the action of a
single [D-brane in an arbitrary supersymmetric background

e Start with the [D-brane action in a curved superspace
background

e Fix diffeomorphisms by choosing a static gauge

e Fix x-supersymmetry — 16 fermions. |dentify them with
gluinos
e Since we are interested in the decoupling limit " — 0 we

truncate the theory at the quadratic level
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The action of the vector field 4,

Sy = —2% | d*z./~qge *F,, F*" — % [ d*x\/—q08,Ce*P? A F,,

1 iy

' e PN T | |
_zq_'-’.: _}-'1'rl! | .I'.: T —— — —

Consider the scalars describing [)3-brane fluctuations
Introduce vielbeins (¢, ¢! ) and fix the static gauge

e The pullback of (¢, ) vanishes

e The pullback of (¢ ) = vielbein on the worldvolume

We parameterize the fluctuations by

T:I — ﬁgri,!‘j
The index [ is flat = ' transform under ST/ (4) ~ SO(6)

while 0. transform under diffeomorphisms
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Summary of what we want

The theory on '\ D 3-branes in the background:
de” =g, detds” = —H- “detdr + Hl-";jr/.:'rff. T=%{z)

The supersymmetry parameter F has to satisfy

& =l il } &  =Aq]

e b= 2ot g o e
4= O

= ! ek
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The action of the vector field 4,

HI = _% I 'r‘H"r\v";_.'_r-f't-'_fp ‘F;w e % J ”Ll"?'k-"';._yah CFE}“-TW*_L’ELW

iy= jm?!-:_:j. = — = —

Consider the scalars describing [)3-brane fluctuations

o

Introduce vielbeins (¢*. ¢! ) and fix the static gauge

e The pullback of (¢, ) vanishes
e The pullback of (¢ ) = vielbein on the worldvolume
We parameterize the fluctuations by

B I

The index I is flat = .,:f transform under ST (4) ~ SO(6)

while 0. transform under diffeomorphisms
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- b " —L h —*I) —
Sppr = —13 | d*re "/ —G
of

(_TJI._”/ — fj’;”/ —|_ (-TIJL},L,!‘,}._I'If.).'.*r-‘!"r-_ ) (_TIJ — 7 “H'IJ = f P, f}f._f

The action of the scalars is

— 5 ' .r'! D g ) = Ilr.-... - _I'T
N Il .r,-'T.J"\'._ —(J€ i(T I.rliu!’_)‘ﬂ ar r_“*r‘:'_;"'

e T

I ;.-l."“'l

¢ ‘I'Ir__:i V| ’-‘f. J

R P O el Vo B
e —TI {/ .4"\' _Ir,l'r"" (-T}_'r,_;"f"f;i : !f: ; 5 Jr

We have to differentiate not only T,*f but also ¢ r

— L rKJ‘.r\__..--"—gf'_{p (D™ ?*pij + %'ﬁ R + 99, P)

&g
|r J’ b}

L“} — J rfl_l.-"' \ — ik T‘a gt [)u '\"‘ = TI‘J \" ot 'I\'
L3 ]I Irn'lll—L.:'. \'* __'lf'l'r.. 'Fﬂ-_j- (_-‘/\:'-..‘-‘i ,\;

L -

T’
]

¥ij)
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— b = -—l:--. __l_I) J.' =
Sppr = —T13 | d*xe vV —G
—1 4 'l') 3

(Tlufx — (j'-j'_.gf_; —|_ CTIJL) F"I E')p{‘?! (_-Trlrj e - ""IJ = £ {}IJT

The action of the scalars is

7 —_— F - N = =
Ss. = —2f d'z/—ge P (G1:0,0x 06z’
s

— Dy et el

* Automatic Updates

[Jpdating wour computer is almost complete. Yiou must restart vour computer For

We have to difff e updates to take eifect.

Do wou wank bo reskark your computer mow?

o | T & = -~
.L) 5';_1 — — _ﬁ f Riestart Bow I | Restarf, Later I ),H f_) D ] EJ = i'j
4 L
1 = L i [ B
r 2 figT
R =—30%0,® — L1o#0,®

The action of the fermions

HF — Z—:a_ ] d*r vV — g€ _fI}{ ji:}ﬁ“ D.u A* EDJ /_\!-rf"“ \

16 Fo3 . 5 —r) ¥R =N
—F l (L 2 v —Ifji'{_;"u(_ ,\_,r__- X
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SDBI — —T3 i f/_J‘J_‘F_ E \(—(Tf

(—-T:uf/ — Yuv i (-;rfj":-)p ‘-g'frff{}m»'{i"‘!ﬂrt

The action of the scalars is

Sg, = _‘_—_,"'4.";.,-'4';\ — (¢ _'i}(_;;’,rf_/ﬂ; dxrt o*ox”
— L4y —ge 2G40, (el o (el o)
<L ; = Lol A VA

We have to differentiate not only gf but also ¢

L f l’!_l.!_’\_.-"'._ff"ﬁ'_(p{ f-_-),u' )t o '] + —1 R -+ Hﬂuf) b)) ‘U‘:-*EJ.

'bﬁ.‘:;{ S _)
/ JEE Y A
r e a'd;n"i"

N == :i'f D¢ ’}u b — %'{!},u f:)x.: i

The action of the fermions
e/ —ge 2 (N ;6* D )\t — 1D, X8\

Hf-q == 3 | d” \ VA 5 o L
—— *T I.r,-’I—L_;"R.—r H’ f \ \
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The non-Abelian extension:
e Replace D - D=D+ A

e Replace the Chern-Simons term by its non-Abelian version

_%- J (/—LJ_ \' _U{JH (_“r{;y .’.’fjf_"‘l'r[ ‘_L’»’ [:;_--r,;;r — %_—L/ -—L{_}-_l,.-r '.

e Add the familiar non-Abelian couplings of \" = 4 SYMin
flat space
-Snr_arb o T*’. ‘ ‘r-[_l"*-- \ __fﬁ _‘I}Tr{. Rf:'ké :’_\{ij ’ ‘r:éj] ol i”\r.'tj~ “,:'j]

_%:“r:é‘j~ :JM] [‘r:*fj‘ 2ki)

Pirsa: 08030073 Page 53/69




Pirsa: 08030073

Supersymmetry transformations are the same as in flat space
except for one term in the gluino variation

1)/\{_'{ — -!I'T a6 l'_{u [}"." & 9

This is term Is consistent with the curvature dependent “mass
term’.
Symmetries:

e 3 Poincare supersymmteries f‘f — F._j
e [SO(1.1) x SO(6) bosonic symmetry

e The conformal symmetry is broken because

HT — Hfi_ i TW'
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The surface operator

To obtain a surface operator, we integrate out the localized
degrees of freedom

Rescale 4 — _-_fg,-_{ andseta’ — 0

We will eliminate - from the defect action

7 —¢'S [ Dy DyeiSeere
Sdefec = [dxTdxx(04 + Ay)x

The integral over \ gives the WZW model at level \/
7 =e0y = e exp (iMTwzw(A))

We parameterize

A =TT A =VWBV
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Twow(4) = —== [datdeT (U0, U) (U 1o U)

e N

_# ._|'- A2 eI Ty {l ('_15_),.-(' - .’__'_lr{»‘_' U) | ['_15___};,[ Bl
_‘_\_l* [ dz"dzTr| (F_ifﬂ):_[_' Y0 ¥)
The last term is a local counterterm

= [daetde T [(U'0.U) (VTIOV)] = = [daTde TrAL A

MNwzw(A) = »«% [dxtdxTr [L (0+A_ —O_A, |}
which is the correct anomaly of the Dirac operator
e (Os is an operator of order type

e 'Oy is gauge invariant

e Under supersymmetry 0 4 % 0 =— Ox is not

supersymmetric. However, ¢*” Os is supersymmetric

saomaors @ Boundary eq. of motionis £, =0




Holographic duality

In the absence of [)7-branes the theory on [D3-branes <—
IB on AdSs x S°

Introduce [)7-branes and ignore the backreacktion — probe
D7-branes in AdS5 < S°

e = MGyorr = g.M = &M
g* [ — 0 is the probe approximation
e DT-branes wrap AdS; x S°

e 3 Poincare supersymmetries and S superconformal

supersymmetries
e SO(2.2) x SO(6) x U(1)

e |f the [D7-branes are separate we have
rsaosooors [ S()(1,1) x SO(6), 8 Poincare supersymmetries Page 57169
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Take the probe limit ;;3_1[ on the field theory side
I/"'-} — l’l:lT £ © — ]_., (_1:1 s L]

S =Sn—y+ [datdx™ (9 + Ay)x

What happens to the anomaly?

A, — gA, —

1S = L [ drtdeTry vy (LdA) =
subleading in the probe approximation

e SO(2.2) x SO(6) x U(1)

e 8 Poincare supersymmtries 7% ' = (

e 3 superconformal supersymmteries supersymmtries

i |
¥

e SU(1,1|4) x SL(2. R)
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Take the probe limit ;;'-']J[ on the field theory side
f/‘"z — ﬂdi’ f © —> ]_., (-T']_ s i

S =Sv_y+ [datdr™ Y(0y + AL )\

What happens to the anomaly?

s I e

' Automatic Updates

'y
Yy 20T
4"} ('? — L IJpdating wour computer is almost complete. Yiou must restart your computer For
¥ L 3 y
o the updates to take effect.

Do wou wank bo restark your compater mow?

subleading in ti

| Restarthow | | Restarf Laker |
L

e S0O(2.2) x SO(6) x U(1)

| e 8 Poincare supersymmtries 5% ' = ()

e 3 superconformal supersymmteries supersymmtries

e SU(1,1/4) x SL(2, R)
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Take the probe limit ;;QJI on the field theory side
ds® — flat. T Gi1— 0
S=5v=ua—+J drvdz ¥(04 + AL)xX

What happens to the anomaly?

A, e ga, —

-

oS = L2 rdetdr Ty vy (LdA) =

—
A

subleading in the probe approximation
e SO(2.2) x SO(6) xU(1)
e 3 Poincare supersymmtries *_P =

e 3 superconformal supersymmteries supersymmtries

e SU(1,1]4) x SL(2. R)

Page 60/69




The backreacktion of the D7-branes (4~ V[ carrections) breaks
these symmetries to /SO(1.1) x SO(6), 8 Poincare
supercharges

(Super)conformal symmetry is broken by quantum

(6> M = ,\%) effects

Dual supergravity solution

Start with the )3/ D 7-solution and take the near-horizon limit

ds? = —H; V2 H7 " detde— + Hy Y HY *dzdz + Hy *H: *dal da!
e~® = H- r=C +ie 2, =10

F{h'lﬁ.‘;;f = H.‘f-’*;'Hrﬁ_l

The preserved supersymmetry is

(— Hj ' H._ ' FU ﬁ:-_!_fﬂ] — [} ﬁ:-qr_'l"_‘_g:p — } ——

- esaossoors 1/4 BPS solution (3 supercharges) Page 61/69
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Take the near-horizon limit

ds® = Hy '/? (dshas, + [?dQs) + fzH;*d=dz

o S i S e e 2ap
r_fh‘ L, = f—L;.r/,I dr— -+ L e

This is the gravity dual solution!

e (o to the conformal boundary
r'.'fl,L-c: — —H: ¢ :u‘}_.-"_f'f,f'_ & HI-' :r,-;_'_'f'/'__'
Exactly the field theory background! —

holographic field theory in curved background!!

e /SO(1.1) x SO(6)
Super(conformal) symmetry is broken by the backreaction
(g° M = \Tf) effects

e 1/4 BPS solution (X supercharges)

e = hH; )%y,  ype=0, yze=0
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Conclusion

e Construction of 1/4 BPS WZW surface operators of order
type from D3/ D7-system

e Construction of the field theory on the [)3-branes in the
presence of [)7-branes (the backreaction is taken into
account)

e Dual gravity description

e Holographic duality beyond field theory in flat space
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