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Minimal Kinetic Term Models

» Choose scalar field to avoid worrying about generating
too much anisotropies.
» Choose 1 real field for minimality, simplicity, and its

ability to capture the flavor more complex dynamics.

| : )
£ — 3[{)1’_}]3 — V(o)

3 I |
A model is 1D real manifold parameterized by o

Solution to the homogeneous classical EOM is a
parametric curve on this 1D manifold. (Most of the
likely observables are controlled by this.)

« Likely observables traditionally consist of the following:
*Amplitude of the curvature as a function of k

*Amplitude of the tensors as a function of k




Slow-Roll Inflationary Models

» Can map 1,(k)—1 to the shape of the potential

Caricature: V(¢ V'(6) ——
o l’_}} oy, (] oy
Jk)—1=2M:— — M3 (— 1“1
%) P Vo) p\ V(o) 3 Gonties
d 111[1[.'__.’ kilTre.g.(Tre)! r.},_:}: B 1 V(o) -\fp V(o)
rfi'r_'_:.-’f'.f_[.] B .U;_,‘.-’{r_'.ﬁ'l 2 V(o)

» Potential has to have small slope and curvature.

« Can map the amplitude of the gravity waves to the height
of the potential

V=AM
5 2V _ _
A = — - Not a particularly compelling
3= M p argument against efforts to

Measure B-modes.

« Solution to the diff egs depend on initial conds which
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In turm depend on reheating.
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» Choose scalar field to avoid worrying about generating
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L =—(00)"— V(o)
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A model is 1D real manifold parameterized by o
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Slow-Roll Inflationary Models

» Can map 7,(k)—1 to the shape of the potential

Caricature: E -”[ 5y l '_f{ 1}] F ]
9 Q) 9 C P
(k) —1=2M°= —3M- 1< 1
"s(%) P V(o) 3 V(o) L |
d LHU:. killre.g.(1ra )\ f,'),_: }: B 1 V(o) .Urp V’( )
d(o -"JJ’-[p ) . _‘tff_, V(o) 2 V(o)

« Potential has to have small slope and curvature.

« Can map the amplitude of the gravity waves to the height
of the potential

V=M
> 2V
A = 3200 Not a particularly compelling
STEM, argument against efforts to

Measure B-modes.

» Solution to the diff egs depend on initial conds which

Pirsa: 08030059 _ Page 11/42

In turm depend on reheating.







Slow-Roll Inflationary Models

» Can map n,(k)—1 to the shape of the potential

Caricature: ‘-u[ £y 1'PI- 5) T
o iy 3 ) 35
(k) —1=2M: — 3N k1
al%) P V(o) P V(o) | | |
d Lll[ﬁ.'_-" killre.g.! TRH s f.'},_:}: 0 1 V(o) -‘tfp V(o)
d(o/M,) — \M,V'(¢) 2 V(o)

« Potential has to have small slope and curvature.

« Can map the amplitude of the gravity waves to the height
of the potential

V=M
5 2V _ _
Ay = — - Not a particularly compelling
3= M p argument against efforts to

Measure B-modes.

» Solution to the diff egs depend on initial conds which
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In turn depend on reheating.




Hopeful but Limited Potential
Information

Bottom line: Ideal measurements may yield viok))

over arange of ¢ if we assume single field minimal
kinetic term models <

Since slow-roll, tiny field range maps to largely varying
Fourier scale range

d lu:ﬁ'; killTpg.g9.(1Re). 0 h] 1 V(o) _‘l.fp V(o) ) s
.- ; S——— it
dlo/M p)

‘1IP 1.![{'}] 2 1.{0"

When not strongly running, the potential well captured by
a Taylor expansion to quartic order. (Analytic form.)

1 D manifold constrained by 1D manifold of data (ideal).

Well known consistency relationship can still rule out

w=oglow roll even with limited knowledge. &¢

'




Some “Well Motivated” Models Exist

Almost nobody doubts something like slow-roll inflation
could have happened:

» Global U(1) neglecting natural Planck-scale violations

i) i

V(é) = Vo(1 — cos(=)) + eu® exp(—Srt) cos(= + ¥)

Typically Planckian
» D-term inflation can evade the » problem

l r : 2 L. = . 3 - 2 = =
U = =R(f;'1Da Dy + */Merg7*(D;W)(D;W)* — —-™/ MW N

2

.38 e
! H— P (%Z ffn;"-:*rr|- 5 = E)
- Still, most of these fall under vio)=a+bo+ Jme* + 246* + Jo* + T

-+ one terribly compelling in terms of staggering beauty........

o4




More Controversial Models Exist

Large tensor perturbations typically require large
field variations (near Planckian or larger)

A-} . i vk F “Fr-.} l . :-_‘_r . i:,
% — 16e AN _-] o G P {.J‘_?___”-l:'i ey ok
S 0. Mp \/2e " T 2

People often quibble over whether large field
variations are natural, but that is not really the

Issue. Itis simply

* the dynamics may not be reliably captured by a simple
potential

Qx Can no longer integrate out.

.

* we have no confidence about physics above the Planck scale

What is O ?

%=y two-cents: Calculability should not be takesn .-

~e A fiindamantal racniiramant nf nhveircre




Slow-Roll Predicts Gaussianity

Slow roll parameters - flat potential 2> weak interaction -
almost quadratic theory for /o - energy density is linear in do

;_‘]‘Jr_} ~ lﬂ.,'rf__.l[”f_if_')
i'ﬂ"f}

% f_'; i)

—> almost Gaussian field <~ —
Non-gravitational short distance contribution:

‘f:mr — _." -f”{ ) ]if_i{_):'{

O '
: q 1 dn .
ST - = ;13 3 2
(LG) X | (0g ) (0000)"( — )" — X | ETE— -
o H dln A S

This would contribute o) to fy: .
Gravitational contribution dominates., however, as we now
review.
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General Slick Argument

Maldacena’s slick argument for gravitationally induced NG
In the squeezed limit.

Key: Suppose a field theory is a decoupling theory.
If olz) = O then

5 1) XN — & L dib e - Lo )
: olx)oly)o(z)) = ( (ola }:,:-:y;smﬂmnm % )long distance

in the presence
of do

. (C(K1)C(Ra)C(R3))
E: _Ei - I":2 — 0 exp(2(:(0))|dE|*
C(k1)C(k2)C(—k1 — ko)) ~ (CeCe(e™CDNky — k2|)Ce(0))
CcCele %' YEk)(c(0)) ~ (Celelk — Ca(0)k)(c(0))

—

—nk(Cele) (k) (Cc(0)Cc(0)) x (ng — 1) [P (k)

fNe 7 ~1(ns—1)  Much smaller than order unity.

squeezZe

Hence, If |/vL > 1, we must violate decoupling and/or
perturbative expansion and/or standard metric/gravity ansatz-or




Easy to Obtain Non-Gaussian
Isocurvature

In passing, one should note that Gaussianity is as much of the
feature of slow roll as it is the feature of a purely the quadratic theory:

2N £0

A 2/,
0Py ) ~ M~(- X

0P\ 0Py OPy) ~ m®(: x2 = 2 X2 D) ~mPOo)?: x2 ) #0

even for a pure quadratic theory without gravitational constraint equation
induced couplings. However, note that interaction coupling still played an
important role to produce the isocurvature particles.

Hence, Such isocurvatures can also contaminate curvature perturbations:

1 . dP  __dp
R = —O¢ P _%
b 3(p+ P)? 1=op dt dt’
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_ (C(K1)C(Ra)C(k3),

ks = —ky — ko — 0 exp(2¢c(0))|dF|>
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,_.—Cccm;‘.“\-

(Celel c(0)) ~ (CeCelk — Ce(0)k)Ce(0),

—ni(Cele) (k) (Ce(0)Ce(0)) x (ny — 1) [Py (k)]

INe 7 ~(n.—1) Much smaller than order unity.

squeezZe

Hence, If |/vL > 1, we must violate decoupling and/or
perturbative expansion and/or standard metric/gravity ansatz-or




Easy to Obtain Non-Gaussian
Isocurvature

In passing, one should note that Gaussianity is as much of the
feature of slow roll as it is the feature of a purely the quadratic theory:

) -
- == ()

- ¥
AP, ) ~ m-(: X

9

OP 0Py OPy) ~ m®(: \2 = \2 = | & \2 Y ~ mS X X i X

== ()

even for a pure quadratic theory without gravitational constraint equation
induced couplings. However, note that interaction coupling still played an
important role to produce the isocurvature particles.

Hence, Such isocurvatures can also contaminate curvature perturbations:

1 H'P . Eff)

—— —I"_i )
* 3(p+ P)? { ’ dt dt
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Non-minimal Kinetic Term Models
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Large Interactions & Derivative
Coupling

* Large derivative interactions can exist without ruining
negative pressure

r Ty g = P 5 0
: e —= DY, O) 21 -l
Lmtmtu_:u f[[“-)‘-’-' .0 00) m=o

9
i
(do )" — '

‘Linmit ion 7

 To have a calculable EFT description, for point-like
fields, one must have

Z ~ O(1)

» However, DBI can in principle get around this because of
the extended object nature

. =3 e | i, (o) X ., (o) .
i ‘\‘I_ —j_ri_f_'-’:-_k —H Ry — .—Ir—;”'i"!j; L f__ -'; (D) + f_[l r —Ji=0

its) : (o)’ : ; L PLAY A 2 .
irsa: 08036(559 ' e a> dt jlo) I Page 23/42




How Well Motivated are
Non-minimal Kinetic terms?

 Minimal kinetic term is a symptom of a linear wave
description of a particle:

9

9
= m"

ll-_)f_'ﬁl! = I.'er_}j — € —p= p
» Integrating out momentum shells to derive Wilsonian

EFT generate higher powers ., ,(90)*"
[ dO \in

* “Non-particle” description for dynamics corresponds to
non-m[nlmal klﬂEtIC termS e g. membrane-like object coupled to gauge fields

5= H f tﬁfﬁln‘,‘-; det{G.5 + 'I'*-'Ef- 3)

5 = 17 [FI’U L T’J"'l‘11Ir det( Nas + JI-‘-.[J, ,“E"”J,'E’" - LF‘ 3
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What does a general single field Lagrangian of the
form <(X.o) look like to be consistent with
inflationary phenomenology?

» The general action is simply a 2-D manifold
parameterized by (x.o) . P~

e —
— —

* The question is to find the general torm that sati’ﬁes the
constraints from the data.

« Ease of constructing inflationary models numerically for fitting
» Parameterizing objects that encode data in a transparent way

N » See if there are general theoretical restrictions I




Gauge Ambiguity

(6. X,)
Q = _fi T"ﬁ

{L}- ‘\rm} s Jl‘.l':‘ X = ‘\":}:. {‘)"f:i}

T

dolo) . 1

;)f.}: I')}.. f._)'_ — = h‘_.'i._)'_
; doO - 3 | -

Along a particular trajectory, {o(N,). X, (V,)}

Gauge fix: adjust f(#(2(V.))) to obtain desired Jx_£ or X_(V,)

|

€.9. Ix. Lliew).x (¥ = - Ny OF X(V,)=

| -
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A Canonical Transformation

» |t is interesting to note that as far as the D=0+1 classical
dynamics are concerned, minimal and non-minimal
kinetic terms for a single scalar field can simply be a
difference of field redefinition generated by a canonical
transformation mixing field momentum and coordinate.

« Example:
- 1 12 1 . 4 describes the same dynamics as IE — i : '—'}f;r?‘;:';{’;:g — (—1133 — 1(;4
3 = — —AQ 233 7T dt 2"
7. o o PRSP - =2
o+ Ao” =0 o6 —3(2-V3N\/338/35 T _ 4 =0
olt =0) =0 .r:j{f = =24 '_-__,“;” — Vj rj;{[-]} =
N : : . i
o(t) = At[l — %A-‘# + O(N2A*®)] o(t)=VA
X I -. \ - I - N3 - = 4/3
ﬂ_ﬂ] — -_;r_')'.} - -I;_'} EH] = Ef,'} == 1;\[_’5“ —200)
.- _1-1
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Constructing Analytic Form

+

« Gotothe x.v)-3r gauge.

* As Rachel will explain, suppose our observables can be
described up to an overall constant by

A 3 e XA L\ equil : I 1 .
e(N,) = — AINL) = X fer = -0Bll1-=]+0|{1+—=]):
Mo rhe o= (14 25E) (1-2) oo (1+ 1) 2
—— Boundary conditions onlv deoend on . (For 3-point
L M funct., _
{£(N,).X(N.)=—5) - Info. possible)
Ix L |
Xe [{;i-\l ). X (N, i='1.ig } s
2
Ix L] v

¥ {e(N.).X(N. ==}

I.e. Higher derivatives with respect to V. can be derived
Pirsa; 08030059fr0m F( «\*..- ] and f_':,__-: { ‘\.'__.,, ] Page 28/42




Analytic Form

N ol E —_ ry e "1’; . _1[;
Answer L(e.X) = q(6.X)+ L% (4, } — qlo. )

2 % /

M; M3 7
+ [‘{"’.\f -{:ab!r.*:-“- —}F r— qu! o, _}F1 (X — ij

4 T Mo, M3 M2
= [f]}ﬁm’ir.‘i, —:f-l — dyqlo. _,‘P W (X - =F)°

¥

You want an action consistent with
| data?

1) ExtraC'l {@(N_)LX(N, rzi_;;.} [See RaCherS
T ” talk to see
: [N )X (N, J=—}
how.]

[ 3=
oy L -
v |11-‘$ N.)XIN, .:1,&;.

2) Choose an “arbitrary” function 4(¢. X)

Pirsa: 08030059

Page 29/42

)




Suppose ) £ ~ L_ <& l Csg = 1 == t’_'lh' {i << 1
measurements give 2N,
Ne dN
H = Hyexg — | = H;NY/?
1 €Xp (j; I\ ) L2
1 . s
L (E.o) = Hi(1— H;0%)
f:_\; (—EU) — Hf
- (l}_@) ~ 2H?6 g=0 — Li(X,0)~ Hj —I{Hlml“ + X+ 4\"]
q = AXS — L‘:g{ X.0) = [.:,1_{ X, 0)
I - ,
-3 = 2! 9
+ A X —;—I{.\—E]—E(.\—E}]
Note that these Lagrangians do not give the same «. unless
equation of motion is used to evaluate the background.
AL.this level (2 X derivatives), the two are observationally......
lindictincaniichahla




More Explicitly

- Before puttlng backgd fields “on shell™:
« With £i(X.9) , . ( 1X0 )—1 -

e With £»(X.9),

1 8X[\6X —3) +2H25] \/?
Eg — LB — T )
| 3A(1—-2X )"+ (4+8X0)H7

- After putting backgd fields “on shell”, both
cases give: ( = )
=353

~1/2
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Simple Example

Suppose ) € = — A 1 Ceg = = (_'i O << 1
measurements give 2N,
Ne dN o
H:Hlt‘}[p / _}—\_ :Hl*\', i
, 2
- 1 ; 2 2,2
L s.f_J —_= HI{I_HIL} ]
1 X
f:_\; (3.{‘.)) = Hi’
- el 3 o L O
_ (l) <2H2%  q=0 — Li(X.0)~ H} |—S(Hi0)* + X +9 _\-]
xx{ -

s —— LA — B
- ]. :; = l : :; . . I_ -

= 4 2

Note that these Lagrangians do not give the same «. unless
equation of motion is used to evaluate the background.

AL.this level (2 X derivatives), the two are observationally.......
lindictincaniichahla




More Explicitly

- Before puttlng backgd fields “on shell™:
« With £i(X.9) , . ( 1X5 )‘1 ]

e With £»(X.9),

1 SX[M6X —3) +2H235] \ V2
e — 5 —— =T )
| 3A(1 —2X)=+ (4+8X9)H;

» After putting backgd fields “on shell”, both
cases give: ( - )
=
_ 1 +0

=
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Simple Example
Suppose . I L X T
measurements give 2N, "

N. dN 1/92
= H[P}[p / e — H[“’hr B
: 2N
L‘ (
ex (

b | —

;) — HZ(1 - H?¢°)

.t_TJ) = Hf

i e . 3, + o UREne
.r_'J) ~ 2H?6 gq=0 — Li(X.0)~ H7 —E{HUJ]E +AX +0 *\"]

| —

£

| -

XX

q = f\.Y:j = ‘C‘:l{ -\r. I"_j] — L:’I.{ ‘\" {]J

+oalxs-t

S

& 3 S R
-l By

e

Note that these Lagrangians do not give the same «. unless
equation of motion is used to evaluate the background.

AtL.this level (2 X derivatives), the two are observationally.......
lindictinaniichahla




More Explicitly

» Before puttlng backgd fields “on shell™:

o With £;(X , N 1X46 —1/2
= 1 +2X4d

e With £:(X.9),

=" X -_;\i'”-"[ —3) + —)H{:fi —1/9
Cs = 3M\(1—2X)2 + (4 +8X4)H?

- After putting backgd fields “on shell”, both
cases give: ( - )
=i

—3
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Do They Give Different Predictions
for Something?

 Of course: e.g. 3 = 3 scattering in Minkowski

J_ Y :j S ) 'j
Ly =—(0®)" — —H;P" + - (0®)*
I S Y
: oy H 2 3A
) 2 ) ‘] B : —
:3 — l[i.'r_'xlhi)llr.-_i H[ A - {I)-}_ i - EIJ \/ ['I'.;J{I}l E B : ) - l A\ t‘){b}b
- 1+ IMF2) 1+ 3M2)?P SHYME 1+ 3A(72)2)
£ c,
=

No )\ dependence _ o _
Effectively sensitive to 6-pt function.
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Lesson: Need more observables!

_ .
In retrospect obvious once one fixes the gauge (¢.g. X = —~)

The determination of all .
ﬁ?'" JC{ (. .\'H :l‘i

from measurement is equivalent to specifying all Taylor
expansion coefficients inthe X direction.

o —1
& = BEE (1 _2‘\ L’-‘l)

- S /* Possibilities:

e, . 1) Other tree-lev terms in 3-point func.
1) Higher order correlation functions.
2) Loop corrections (probably too small)
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3 derivative from other tree level

terms in 3-point Functions
In the nice papers of (Chen et al. 06) and (Seery and Lidsey 05)

w =2 1
((ki)C(ka)C(ks)) = (27)76°(ky +ka +k:;}-'P}1-.“W
< (A +AH+HA+A+A+A)
leading

-) :
= -Y')i:_\; -+ %.\"5{:_\;_\;3{

Equilateral:
1 \ 3kTA3A3 5 £1 2\ I\
A . _ ™ -\
4, = ( == (eF)\. + nFy, + sF),) In. = Y 5o
i >

= [) (eF., +:I;-F.” +sF_,) .
K
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Higher Order Correlation Functions

d n o

e \OD. A M
'f)_\' N=—=

n=2 contribution to 3-point function

_ . +  gravity effects
(D) — IEFJIPH

L

n=3 contribution to 5-point function

+ gravity effects

[Mapping under investigation,
but there should be a direct 1-1 corresp.

age 39/42

However, note n=3 contributes to 3-pt ]
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Sound Speed and Unitarity

Scattering amplitudes can restrict the sign
and magnitudes of the sign of the non-
renormalizable kinetic terms (similar to the
arguments of Adams et al.):

Im(forward scattering amplitude)=cross section

[iImplications for non-Gaussianity under investigation]
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Summary

 One part of our work 0801.0742 examined the analytic structure of
actions that can be consistent with ideal data including information
coming from non-Gaussianities induced by non-minimal kinetic term
interactions.

* As long as gauge transformations are non-singular, general single
field actions (a 2D manifold parameterized by (¢. X) ) can be written
as Taylor expansion in the X direction which is orthogonal to the 1D
manifold (parameterized by ¢+ ) encoding the information from the
data. (A surprisingly simple result for general parameterization. )

* Unlike in the case of minimal kinetic terms. even with ideal data for
3-point functions for “all” N-efolds and fixed reheating scenarios, the
set of models which are consistent with data forms an infinite set.
Good news is that the infinite set organize themselves in a simple
manner.

« Higher order correlation function measurements should have a one-
to-one correspondence with the leading dimensions of non-
renormalizable kinetic operator ambiguity.

 Rachel Bean will give (or has given) a presentation regarding the
other aspect of our work.
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