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Primordial non-Gaussianity: two “shapes” to look for

In “vanilla” models of inflation, the initial fluctuations are Gaussian
The 3-point correlation function function is zero:

(C(k1)C(k2)C(k3)) =0

However, more exotic models can predict nonzero three-point functions
“Local” shape: e.g. curvaton model

((z) = (e(z) + fNT Ca(z)
(C(k1)C(k2)C(K3)) ~ fFRE™ (“1“ + b‘mm) 6 (Zk )

“Equilateral” shape: higher-derivative interactions, DBI inflation

Sk + ko + ks — 2k |
(C(k1)C(k2)C(ks)) ~ Far™ (H A H—}:g : )OJ(Z ki)

— i
=1
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Three-point function in the observed CMB

Non-gaussian initial conditions from inflation
+ linear transfer functions = non-Gaussian CMB

local __
NL =0

Michele Liguori
Optimal estimator: sum over triples (I11,12,13) with inverse signal-to-noise weighting
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Three-point function in the observed CMB

“Local fnl”: signal is in squeezed triangles (11 << 12,13),
sign of bispectrum is always negative (in squeezed triangles)

reyr—— -

ntuition: normalization A of small-scale power spectrum is no longer isotropic,
but a weak function of position on the sky (A -> A(n))

lorrelate A(n) back to CMB temperature T(n) on large scales: bispectrum
lorrelate A(n) with itself (“power spectrum of the power spectrum”): trispectrum
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Three-point function in the observed CMB

“Local fnl”: signal is in squeezed triangles (11 << 12,13),
sign of bispectrum is always negative (in squeezed triangles)

ryr—— -l

ntuition: normalization A of small-scale power spectrum is no longer isotropic,
but a weak function of position on the sky (A -> A(n))

lorrelate A(n) back to CMB temperature T(n) on large scales: bispectrum
lorrelate A(n) with itself (“power spectrum of the power spectrum”): trispectrum
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Estimates of “primordial non-Gaussianity” from CMB data:

local — 32 = 34 Creminelli et al (WMAP3)

local
NE — 87 £+ 30 Yadav & Wandelt (WMAP3!!)

Il\?ial T 30 Komatsu et al (WMAPS5)

A robust detection would rule out most models of inflation! (e.g. slow-roll)
Which analysis should be believed?
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Reason for the discrepancy: “step” at =450

Q-band
(40 GHz)

V-band
(60 GHz)

W-band
(90 GHz)

Yadav & Wandelt

Must be careful to avoid making a posteriori choices.... !

Use of V+W is motivated a priori
Use of Imax=750 is not
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Reason for the discrepancy: “step” at |1=450

Q-band
(40 GHz)

V-band
(60 GHz)

W-band
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Yadav & Wandelt

Must be careful to avoid making a posteriori choices.... !

Use of V+W is motivated a priori
Use of Imax=750 is not

Pirsa: 08030053

Page 12/48




Our analysis of the WMAP3 “step”
- Yadav-Handelt, HMAP3 Ved ——
SSZ suboptimal, HMAP3 Vel ——
108 - | | p
[ I - 2.9 sigma
[ LT | 1l 2.1 sigma
=8 r > T = & i J
s eF X ]
=58 i -
-.-l- -
-158
2868 jaa <88 588 608 788 naa
Lmax
Twednbanalyses can differ because several arbitrary choices are made Page 13/48
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Systematics: general picture

Question: is the “step” at I=450 evidence of systematic contamination?

Looking for contaminants which correlate level of small-scale power
to large-scale modes

Positive correlation = negative fnl

fnl = O(100) corresponds to a correlation of order 107(-3) !

Pirsa: 08030053 Page 14/48




2.9 sigma

2.1 sigma
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Systematics: galactic foregrounds

Galactic foregrounds: bias to local fnl is always negative?

Heuristic argument: foregrounds are emissive,
more small-scale “blobs” in regions of high emission

Empirical evidence: compare foreground masks

- VW Q QVW
| Kpl2 Kp2 Kp0 KpO+ |Kp0|Kpl2 Kp2 Kp0 Kp0+
350| -1290 -27 35 19 1 |-2384 -75 25 8
450| -1425 -16 68 65 | -6 |-2792 -80 55 65
550 | -1510 -13 80 84 |-11}-3136 -94 66 80
650| -1560 22 79 81 |-14|-3307 -94 63 77
750 | -1575 -23 87 87 |-20|-3368-108 65 78
750" |-1105+13 -42+2 -6+; -0.3+3 -13+3 143
e Yadav & Wandelt, ...

From templates. foreground bias in a conservative mask seems to be small (order 1) |
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Systematics: galactic foregrounds

Galactic foregrounds: bias to local fnl is always negative?

Heuristic argument: foregrounds are emissive,

more small-scale “blobs” in regions of high emission

Empirical evidence: compare foreground masks

fmu

VW

Kpl2 Kp2 Kp0 KpO+

450
350
650
750

350

-1290 27 35 19
-1425 -16 68 65
-1510 -13 80 84
-1560 22 79 81
-1575 -23 87 87

700™

-1105+19 -42+2 -6+ -0.3+3

Q | QVW
Kp0|Kp12 Kp2 Kp0 KpO+
1 |-2384 -75 25 8
6 |-2792 -80 55 65
-11|-3136 -94 66 80
-14|-3307 -94 63 77
-20 |-3368 -108 65 78

1343 143
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Systematics: extragalactic contaminants

Compute (X,Y,Z) bispectrum,
where X.Y,Z = ISW, lensing, point sources, SZ, kSZ, Rees-Sciama, ....

To overlap with local fnl, need X=ISW, expect fnl bias to be positive

ISW-lensing:
Delta(fnl) ~5 (Smith & Zaldarriaga 2006, Serra & Cooray 2008)

ISW-(PS+SZ,PS+SZ):
Delta(fnl) < 1 (Babich & Pierpaoli, today)
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Systematics: extragalactic contaminants

Compute (X,Y,Z) bispectrum,
where X,Y,Z = ISW, lensing, point sources, SZ, kSZ, Rees-Sciama, ....

To overlap with local fnl, need X=ISW, expect fnl bias to be positive

ISW-lensing:
Delta(fnl) 5 (Smith & Zaldarriaga 2006, Serra & Cooray 2008)

ISW-(PS+SZ,PS+SZ):
Delta(fnl) < 1 (Babich & Pierpaoli, today)
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Systematics: point sources

Only get overlap with local fnl if point source density has gradients on large scales:
point source clustering

unresolved galactic sources

Expect bias to be negative

In simulations, we find that Delta(fnl) is of order 1, for realistic point source models

Possible instrumental systematics also appear to be small

Conclusion: expected level of systematic contamination is small,
this is a “pure statistics” problem.....
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Statistical significance of WMAP3 “step”

Second question: is the “step” at |=450 within statistics?

o mz cubopt imal . URRPY Vel
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-Answer: yes, but only because estimator is suboptimal S

(assigns too much statistical weight to high |)




Optimal estimator: motivation

The WMAP3 “step” is 1.8-2.8 sigma in simulations, depending on endpoints chosen
With optimal estimator: such a jump would be >4 sigma

Motivation for constructing optimal estimator:

1. smaller error bar! (WMAPS V+W: Delta(fnl)=21)
2. no arbitrary choices, two implementations should agree,

result is completely a priori
3. unlikely to get large “jumps”, result should be insensitive to choice of Imax
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Statistical significance of WMAP3 “step”
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Optimal estimator: construction

1. filter WMAP map m by inverse signal + noise: m -> (S+N)*{-1} m
combines optimal channel weighting, pixel weighting and | weighting

2. estimate fnl from the filtered map (intuition: estimate small-scale power
in degree-scale patches, correlate back to CMB)

Suboptimal estimator:
1. apply some heuristic filter intended to approximate (S+N)"{-1}
2. estimate fnl from filtered map in same way

Implementational challenge: (S+N)*{-1}
Use multigrid conjugate gradient inversion, ~20 CPU-min per (S+N)”{-1} multiplication
(Pen 2003, Smith et al 2007)
Our noise model (“N”) includes:
WMAP detector noise
KQ75 sky cut
s i@NOPole/dipole marginaliation page 26/48
foreeround template marginalization




WMAPS: suboptimal estimator
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WMAPS: optimal estimator
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WMAPS: suboptimal estimator
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WMAPS: optimal estimator
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WMAPS: optimal estimator

SSZ optimal, HMAPS Vel ——

fnl
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WMAPS: optimal estimator

S5Z optimal, HMAPS Vel ——

fnl

Pirsa: 08030053

fnl =22 +/- 21

Page 42/48




Mo Sigresl
WG




Mo Sigral
G4




Mo Signal

Gh-1




Mo Signal
WiGA-




Mo Signed
WD




Mo Signal
WD




