Title: Predictions for Nonlocal Inflation

Date: Mar 07, 2008 05:00 PM

URL: http://pirsa.org/08030047

Abstract:

Pirsa: 08030047 Page 1/48

### **Outline**

- 1. Nonlocal QFT Motivations & Examples
- 2. Ghosts, Instabilities and IVP
- 3. Nonlocal Inflation
- 4. Predictions for Nongaussianity

Pirsa: 08030047 Page 2/48

#### Nonlocal Fundamental Theories

Nonlocal theories of the form

$$\mathcal{L} = \frac{1}{2} \phi \mathbf{F}(\square) \phi - V(\phi)$$

with nontrivial F(z) arise in:

- String field theory.
- p-adic strings, strings quantized on a random lattice.<sup>a</sup>
- Unparticle effective actions.
- Brane-world constructions.<sup>b</sup>
- Similar nonlocal theories arise in:
  - QFT with a minimal length scale<sup>c</sup> (eg LQG, DSR).
  - Noncommutative geometry.

CHossanfalder (2007)

de Rham (2007).

<sup>&</sup>lt;sup>a</sup>Biswas, Grisaru & Siegel (2005).

# **Example:** *p*-adic String Theory

- Toy model of the bosonic string tachyon.<sup>a</sup>
- World-sheet coordinates of the string are restricted to the field of p-adic numbers.
- \* All amplitudes of the lowest state can be computed exactly and one can determine a simple field-theoretic Lagrangian which reproduces them:

$$\mathcal{L} = \frac{m_s^4 p^2}{g_s^2 (p-1)} \left[ -\frac{1}{2} \phi p^{-\frac{\Box}{2m_s^2}} \phi + \frac{1}{p+1} \phi^{p+1} \right]$$

- \* Contains infinitely many derivatives:  $e^{-\Box} = 1 \Box + \cdots$
- Derived for p a prime number but the theory can be sensibly continued to other values.

Pirsa: 08030047 <sup>a</sup> Brekke, Freund, Olson & Witten (1987).

### (Non)Local Limit

★ The field equation for the p-adic scalar is:

$$p^{-\frac{\square}{2m_s^2}}\phi = \phi^p$$

- Infinite order in derivatives, can be re-cast as an integral equation.<sup>a</sup>
- ★ In the limit p → 1 this equation becomes local:<sup>b</sup>

$$\Box \phi = 2m_s^2 \phi \ln \phi$$

- ★ For p ≫ 1 the nonlocal structure plays an important role in the dynamics.
  - Limit  $p \gg 1$  will be most intesting for cosmology...

<sup>&</sup>lt;sup>a</sup>Zwiebach (2002).

Gerasimov & Shatashvili (2000).

# **Applications of Nonlocal QFT**

#### Interesting applications of nonlocal theories:

- Improved UV behaviour:
  - finite QFT,
  - solution to the hierarchy problem, ···
- Novel cosmologies:<sup>a</sup>
  - self-inflation,
  - bouncing cosmologies,
  - \* quintessence with  $\omega < -1, \cdots$
- Implications for cosmological constant problem.<sup>b</sup>
- 4. Inflation.c

NB, Biswas, Cline.

Akhoury (2006); Biswas et al. (2006); Aref'eva, Calcagni, Joukovskaya, Koshelev, Vernov, Vladimirov, Volovich....

b Dvali et al. (2007); de Rham et al. (2007).

#### **Nonlocal Inflation**

- \* Can we embed inflation into nonlocal theories?
- Motivation: flat potentials surprisingly hard to obtain in realistic settings. (KKLMMT; Baumann et al. (2007); Burgess, Cline, Firouzjahi, Leblond, Shandera, Tye...)



- \* Perhaps inflation doesn't require flat potentials...
- ★ Nonlocal structure gives a way to realize inflation with very steep potential which is also predictive, gives f<sub>NL</sub> ≫ 1.

Pirsa: 08030047 Page 7/48

# **Problems/Complications**

- Difficulties of working with higher derivative theories are well known:<sup>a</sup>
  - Instabilities, ghosts, · · ·
  - Difficulties in setting up IVP.
- \* Any application to physics must address fundamental issues:
  - When can nonlocal theories be ghost-free?<sup>b</sup>
  - Can one make rigorous sense of the IVP in infinite order theories?<sup>c</sup>
- Before discussing cosmology need to make a detour to discuss formalism...

<sup>&</sup>lt;sup>a</sup>Woodard (1989).

bNB, Biswas, Cline, Prokushkin (2008).

<sup>&</sup>lt;sup>C</sup>NB, Kamran (2007).

#### **Outline**

- Nonlocal QFT Motivations & Examples
- 2. Ghosts, Instabilities and IVP
- 3. Nonlocal Inflation
- 4. Predictions for Nongaussianity

Pirsa: 08030047 Page 9/48

# **Finite High Derivative Corrections**

- Addition of finite higher derivative terms always leads to trouble...
- \* Example: Lee & Wick (1969) model

$$\mathcal{L}_{LW} = \frac{1}{2}\phi\Box\phi - \frac{1}{2M^2}\phi\Box^2\phi - \frac{1}{2}m^2\phi^2 + \cdots$$

assume  $M^2 \gg m^2$ .

Classical EOM

$$\left(\Box - \frac{1}{M^2}\Box^2 - m^2\right)\phi = 0$$

requires four initial data.

Pirsa: 08030047 Page 10/48

### Lee-Wick Theory

⋆ Propagator has two poles ⇒ two physical states!

$$G(p^2) \propto rac{1}{-p^2-p^4/M^2-m^2} \sim rac{1}{\frac{-p^2-m^2}{reg, ext{ mass } m}} - rac{1}{\frac{-p^2-M^2}{ghost, ext{ mass } M}}$$



\* Ghost = excitation with wrong-sign kinetic term

# **Finite High Derivative Corrections**

- Addition of finite higher derivative terms always leads to trouble...
- \* Example: Lee & Wick (1969) model

$$\mathcal{L}_{LW} = \frac{1}{2}\phi\Box\phi - \frac{1}{2M^2}\phi\Box^2\phi - \frac{1}{2}m^2\phi^2 + \cdots$$

assume  $M^2 \gg m^2$ .

\* Classical EOM

$$\left(\Box - \frac{1}{M^2}\Box^2 - m^2\right)\phi = 0$$

requires four initial data.

Pirsa: 08030047 Page 12/48

### Lee-Wick Theory

★ Propagator has two poles ⇒ two physical states!

$$G(p^2) \propto rac{1}{-p^2-p^4/M^2-m^2} \sim rac{1}{\frac{-p^2-m^2}{reg, ext{ mass } m}} - rac{1}{\frac{-p^2-M^2}{ghost, ext{ mass } M}}$$



\* Ghost = excitation with wrong-sign kinetic term

### **Multi-Particle Decomposition**

\* Can see explicitly by introducing auxiliary fields  $\chi_{1,2}$ :

$$\chi_1 = \left(\frac{\square}{M^2} - 1\right)\phi$$

$$\chi_2 = \left(\frac{\square}{m^2} - 1\right)\phi$$

Lagrangian decomposes as

$$\mathcal{L}_{LW} \cong -\left[\frac{1}{2}(\partial \chi_1)^2 + \frac{m^2}{2}\chi_1^2\right] + \left[\frac{1}{2}(\partial \chi_2)^2 + \frac{M^2}{2}\chi_2^2\right] + \mathcal{L}_{int}$$

\* Wrong sign kinetic term. So what?

### Lee-Wick Theory

★ Propagator has two poles ⇒ two physical states!

$$G(p^2) \propto rac{1}{-p^2-p^4/M^2-m^2} \sim rac{1}{-p^2-m^2} - rac{1}{-p^2-M^2}$$
 reg, mass  $m$  ghost, mass  $M$ 



\* Ghost = excitation with wrong-sign kinetic term

# **Finite High Derivative Corrections**

- Addition of finite higher derivative terms always leads to trouble...
- \* Example: Lee & Wick (1969) model

$$\mathcal{L}_{LW} = \frac{1}{2}\phi\Box\phi - \frac{1}{2M^2}\phi\Box^2\phi - \frac{1}{2}m^2\phi^2 + \cdots$$

assume  $M^2 \gg m^2$ .

Classical EOM

$$\left(\Box - \frac{1}{M^2}\Box^2 - m^2\right)\phi = 0$$

requires four initial data.

### **Multi-Particle Decomposition**

\* Can see explicitly by introducing auxiliary fields  $\chi_{1,2}$ :

$$\chi_1 = \left(\frac{\square}{M^2} - 1\right)\phi$$

$$\chi_2 = \left(\frac{\square}{m^2} - 1\right)\phi$$

Lagrangian decomposes as

$$\mathcal{L}_{LW} \cong -\left[\frac{1}{2}(\partial \chi_1)^2 + \frac{m^2}{2}\chi_1^2\right] + \left[\frac{1}{2}(\partial \chi_2)^2 + \frac{M^2}{2}\chi_2^2\right] + \mathcal{L}_{int}$$

\* Wrong sign kinetic term. So what?

# What's Wrong with Ghosts?

\* Hamiltonian is unbounded from below!

$$\mathcal{H}_{LW} = + \left[ \frac{1}{2} \dot{\chi}_1^2 + \frac{m^2}{2} \chi_1^2 \right] - \left[ \frac{1}{2} \dot{\chi}_2^2 + \frac{M^2}{2} \chi_2^2 \right] + \mathcal{H}_{int}$$

- Unstable: dynamics drives system to become arbitrarily excited.
- This is a classical pathology (QFT can be made unitary).
- ⋆ Note: taking M² larger only makes things worse!
- Only way to salvage the theory is by imposing auxiliary constraints.<sup>a</sup>

# **Counting Initial Data**

Problem is VERY general:

$$S = S\left[\phi, \Box\phi, \cdots, \Box^N\phi\right]$$

$$N = \text{(num poles in propagator)}$$
 $= \text{(num physical states)}$ 
 $= \frac{1}{2} \text{ (num initial data)}$ 
 $= \frac{1}{2} \text{ (dim phase space)}$ 

- \* Ostrogradksi Theorem: Hamiltonian is always unstable, except in the local case N=1.
- \* Larger N just makes things worse. What about  $N=\sum_{Page} ?$

#### **Infinite Order Theories**

$$\mathcal{L} = \frac{1}{2} \phi \mathbf{F}(\square) \phi - V(\phi)$$

$$\mathbf{F}(z) = \sum_{n=0}^{\infty} a_n z^n$$

★ EOM is infinite order. How many initial data?

$$F(\Box)\phi = V'(\phi)$$

- \* Stability intimitely related to initial data counting. Infinite order PDEs very different from  $N\gg 1$ .
- Formal treatment of IVP infinite order PDEs.<sup>a</sup>
  - Systematic prescription for counting data.
  - Rigorous study of pseudo-differential operators  $f(\partial_t)$ .

Pirsa: 08030047 ANB & Kamran (2007).

# **Counting Initial Data**

Problem is VERY general:

$$S = S\left[\phi, \Box\phi, \cdots, \Box^N\phi\right]$$

$$N = \text{(num poles in propagator)}$$
 $= \text{(num physical states)}$ 
 $= \frac{1}{2} \text{ (num initial data)}$ 
 $= \frac{1}{2} \text{ (dim phase space)}$ 

- \* Ostrogradksi Theorem: Hamiltonian is always unstable, except in the local case N=1.
- \* Larger N just makes things worse. What about  $N=\sum_{\text{Page 21/48}}$ ?

#### **Infinite Order Theories**

$$\mathcal{L} = \frac{1}{2} \phi \mathbf{F}(\square) \phi - V(\phi)$$

$$\mathbf{F}(z) = \sum_{n=0}^{\infty} a_n z^n$$

\* EOM is infinite order. How many initial data?

$$F(\Box)\phi = V'(\phi)$$

- \* Stability intimitely related to initial data counting. Infinite order PDEs very different from  $N \gg 1$ .
- Formal treatment of IVP infinite order PDEs.<sup>a</sup>
  - Systematic prescription for counting data.
  - Rigorous study of pseudo-differential operators  $f(\partial_t)$ .

irsa: 08030047 <sup>a</sup>NB & Kamran (2007).

# **Pole Counting in Nonlocal Theories**

Consider nonlocal theory:

$$\mathcal{L} = \frac{1}{2} \phi \Gamma(\Box)(\Box - m^2) \phi$$

with  $\Gamma(z)$  having no zeroes (eg  $\Gamma(z) \sim e^{-z}$ ).

\* EOM:

$$\Gamma(\Box) \left(\Box - m^2\right) \phi = 0$$

Propagator has only one pole:

$$G(p^2) \sim rac{1}{\Gamma(-p^2)} rac{1}{-p^2-m^2}$$

- ⋆ Only a single physical excitation ⇒ only 2 initial data!
- Ostrogradski construction doesn't apply.

# **Infinite Derivative Dynamics**

- Theorem: pole counting exhausts all allowed initial data.<sup>a</sup>
  - Single pole infinite order theories can be ghost-free!
  - Even some multi-pole theories are okay.<sup>b</sup>
- ★ Exorcism: Pseudo-differential operator theory provides a way to redefine F(□) so as to render otherwise pathological theories ghost-free!



#### **Outline**

- Nonlocal QFT Motivations & Examples
- 2. Ghosts, Instabilities and IVP
- 3. Nonlocal Inflation
- 4. Predictions for Nongaussianity

Pirsa: 08030047 Page 25/48

### **Nonlocal Hill-Top Inflation**

Seek inflation in theories of the form:

$$\mathcal{L} = \frac{1}{2}\phi F(\square)\phi - U(\phi)$$

$$F(z) = \sum_{n=1}^{\infty} c_n z^n$$

$$U(\phi) = U_0 - \frac{\mu^2}{2}\phi^2 + \frac{g}{2}\phi^3 + \cdots$$



- \* Seek inflationary solution rolling away from  $\phi = 0$ .
- In string theory examples corresponds to inflation during brane decay.

#### **Naive Derivative Truncation**

Naively expect that during slow roll high derivative corrections are negligible:

$$\mathcal{L} = \frac{1}{2} \phi \mathbf{F} (\square) \phi - U(\phi)$$

$$\cong -\frac{1}{2} (\partial \phi)^2 - U_0 + \frac{\mu^2}{2} \phi^2 + \mathcal{O}(\square^2) + \cdots$$

- \* Expect that inflation is only possible when  $|\eta| \sim M_p^2 |U''/U| \ll 1 \Rightarrow \mu^2 \ll H^2$ .
- \* Naive picture is not always correct: can still obtain slow roll even when  $M_p^2|U''/U|\gg 1!$
- \* Most models of string cosmology follow this approach...

Pirsa: 08030047 Page 27/48

### **Nonlocal Dynamics**

Near the top of the potential ( $\phi = 0$ ) have:

$$\mathcal{L} = \frac{1}{2}\phi F\left(\Box\right)\phi - \left(U_0 - \frac{\mu^2}{2}\phi^2 + \cdots\right)$$

Equation of motion:

$$F\left(\Box\right)\phi=-\mu^{2}\phi$$

Can obtain solution by taking:

$$\Box \phi = -\omega^2 \phi \quad \text{if} \quad F\left(-\omega^2\right) = -\mu^2$$

- $\star$  Dual to a local theory with mass  $\omega$ .
- \* The effective mass,  $\omega^2$ , can be small even naive mass  $\mu^2$  is large!

### **Stretching the Inflaton Potential**

$$\mathcal{L} = \left[ \frac{1}{2} \phi F \left( \Box \right) \phi - \left( U_0 - \frac{\mu^2}{2} \phi^2 + \cdots \right) \right]$$



$$\mathcal{L} = \frac{1}{2}\phi\Box\phi - U(\phi) + \mathcal{O}(\Box^2)$$

$$U(\phi) = U_0 - \frac{\mu^2}{2}\phi^2 + \cdots$$

Steep potential, higher derivative terms slow the rolling.

$$\mathcal{L}_{\text{dual}} = \frac{1}{2} \varphi \Box \varphi - V(\varphi)$$

$$V(\varphi) = U_0 - \frac{\omega^2}{2} \varphi^2 + \cdots$$

Effective potential in dual local theory is stretched.<sup>a</sup>

a<sub>Lidsey</sub> (2007)

Page 29/48

### **Example:** *p*-adic Inflation

Explicit example in p-adic string theory:a

$$\mathcal{L} = \frac{m_s^4}{g_p^2} \left[ \frac{1}{2} \phi \left( 1 - p^{-\frac{\square}{2m_s^2}} \right) \phi - U(\phi) \right]$$

$$U(\phi) = \underbrace{\frac{p-1}{2(p+1)}}_{\equiv U_0} - \underbrace{\frac{p-1}{2} \phi^2}_{\mu^2 \equiv p-1} + \cdots$$

- \* Naively don't expect slow roll since  $\mu^2 \sim p \gg 1$  but effective mass,  $\omega^2 = -2m_s^2$ , insensitive to p.
- \* COBE normalization constrains  $g_s/\sqrt{p} \sim 10^{-7}$  so for  $g_s \sim 1$  have  $p \gg 1$ .  $\Rightarrow$  Strongly nonlocal!
- \* Predictions:  $n_s < 1, r < 0.006, m_s < 10^{-6} M_p, \cdots$

Pirsa: 08030047 Page 30/48

aNB, Biswas & Cline (2006).

#### **Outline**

- Nonlocal QFT Motivations & Examples
- 2. Ghosts, Instabilities and IVP
- 3. Nonlocal Inflation
- 4. Predictions for Nongaussianity

Pirsa: 08030047 Page 31/48

# **Including Interactions**

Include the cubic term in the action:

$$\mathcal{L} = \frac{1}{2}\phi F(\Box)\phi - U(\phi)$$

$$U(\phi) = U_0 - \frac{\mu^2}{2!}\phi^2 + \frac{g}{3!}\phi^3 + \cdots$$

- ★ For g ≠ 0 the correspondence between local and nonlocal theories breaks down.
- \* Expect  $\langle \phi^3 \rangle \propto f_{NL} \propto {\it g}$  so for large  ${\it g}$  the nongaussianity could be large.
- \* In conventional models  $g \gg 1$  would spoil inflaton but this need not be true in nonlocal theories!
- ⋆ In p-adic inflation:

$$|g| \sim p^2 \gg 1$$
 for  $p \lesssim 10^{13}$ 

### **Example:** *p*-adic Inflation

Explicit example in p-adic string theory:a

$$\mathcal{L} = \frac{m_s^4}{g_p^2} \left[ \frac{1}{2} \phi \left( 1 - p^{-\frac{\square}{2m_s^2}} \right) \phi - U(\phi) \right]$$

$$U(\phi) = \underbrace{\frac{p-1}{2(p+1)}}_{\equiv U_0} - \underbrace{\frac{p-1}{2} \phi^2}_{\mu^2 \equiv p-1} + \cdots$$

- \* Naively don't expect slow roll since  $\mu^2 \sim p \gg 1$  but effective mass,  $\omega^2 = -2m_s^2$ , insensitive to p.
- \* COBE normalization constrains  $g_s/\sqrt{p} \sim 10^{-7}$  so for  $g_s \sim 1$  have  $p \gg 1$ .  $\Rightarrow$  Strongly nonlocal!
- \* Predictions:  $n_s < 1, r < 0.006, m_s < 10^{-6} M_p, \cdots$

Pirsa: 08030047 Page 33/48

aNB, Biswas & Cline (2006).

#### **Outline**

- Nonlocal QFT Motivations & Examples
- 2. Ghosts, Instabilities and IVP
- 3. Nonlocal Inflation
- 4. Predictions for Nongaussianity

Pirsa: 08030047 Page 34/48

# **Including Interactions**

Include the cubic term in the action:

$$\mathcal{L} = \frac{1}{2}\phi F(\Box)\phi - U(\phi)$$

$$U(\phi) = U_0 - \frac{\mu^2}{2!}\phi^2 + \frac{g}{3!}\phi^3 + \cdots$$

- ★ For g ≠ 0 the correspondence between local and nonlocal theories breaks down.
- \* Expect  $\langle \phi^3 \rangle \propto f_{NL} \propto {\it g}$  so for large  ${\it g}$  the nongaussianity could be large.
- \* In conventional models  $g \gg 1$  would spoil inflaton but this need not be true in nonlocal theories!
- ⋆ In p-adic inflation:

$$|g| \sim p^2 \gg 1$$
 for  $p \lesssim 10^{13}$ 

#### **Field Redefinitions**

For ghost-free theory:

$$\mathcal{L} = \frac{1}{2}\phi\Gamma(\Box)(\Box + \omega^2)\phi - U_0 - \frac{g}{3!}\phi^3 + \cdots$$

(where  $\Gamma(z)$  has no zeroes).

\* Nonlocal field redef  $\varphi = \Gamma(\Box)^{1/2} \phi$  gives

$$\mathcal{L} = \frac{1}{2}\varphi(\Box + \omega^2)\varphi - U_0 - \frac{g}{3!}\left(\Gamma(\Box)^{-1/2}\varphi\right)^3 + \cdots$$

- Canonical kinetic structure, nonlocality in the interactions.
- Appropriate starting point to match onto standard perturbation theory calculation.

# **Perturbed Field Equations**

#### Canonical field equation:

$$(\Box + \omega^2)\varphi = \frac{g}{2}\Gamma(\Box)^{-1/2}\left[\Gamma(\Box)^{-1/2}\varphi\right]^2$$

\* Gaussian perturbations:

$$(\Box + \omega^2)\delta_1\varphi \cong 0$$

insensitive to nonlocality.

Second order:

$$(\Box + \omega^2)\delta_2\varphi \cong \frac{g}{2}\Gamma(\Box)^{-1/2}\left[\Gamma(\Box)^{-1/2}\delta_1\varphi\right]^2 + \cdots$$

\* Nonlocal structure in source term mimics a large cubic coupling V''', leads to  $f_{NL}\gg 1$ 

# **Nonlinearity Parameter**

- Calculation is simplest using Seery, Malik & Lyth (2008) formalism.
- Results:

$$f_{NL} = \frac{5}{6} \underbrace{\xi_{\text{eff}}}_{\propto \mathbf{g}} \left[ N_{\star} + \frac{3}{\sum_{i} k_{i}^{3}} \left( k_{t} \sum_{i < j} k_{i} k_{j} - \frac{4}{9} k_{t}^{3} \right) \right] + \cdots$$

⋆ For p-adic inflation have

$$f_{NL}^{\triangle} \sim 10^{-3} \, rac{\sqrt{p}}{\ln p}$$

for  $p\gg 1$ . (Recall:  $p\sim 10^{13}$  for  $g_s\sim 1$ .)

\* In the local limit  $p \to 1$  have  $f_{NL} \sim n_s - 1$ .

Pirsa: 08030047 Page 38/48

# p-adic Inflation



\* For natural values  $g_s \sim 0.1-0.3$  reproduce central value for Yadav & Wandelt detection.

Pirsa: 08030047

# **Nonlinearity Parameter**

- Calculation is simplest using Seery, Malik & Lyth (2008) formalism.
- Results:

$$f_{NL} = \frac{5}{6} \underbrace{\xi_{\text{eff}}}_{\propto \mathbf{g}} \left[ N_{\star} + \frac{3}{\sum_{i} k_{i}^{3}} \left( k_{t} \sum_{i < j} k_{i} k_{j} - \frac{4}{9} k_{t}^{3} \right) \right] + \cdots$$

⋆ For p-adic inflation have

$$f_{NL}^{\triangle} \sim 10^{-3} \, rac{\sqrt{p}}{\ln p}$$

for  $p\gg 1$ . (Recall:  $p\sim 10^{13}$  for  $g_s\sim 1$ .)

\* In the local limit  $p \to 1$  have  $f_{NL} \sim n_s - 1$ .

Pirsa: 08030047 Page 40/48

# p-adic Inflation



\* For natural values  $g_s \sim 0.1-0.3$  reproduce central value for Yadav & Wandelt detection.

Pirsa: 08030047

#### **Comparison to DBI Models**

- Formally very different from DBI:
  - High powers of  $\square$  rather than  $(\partial \phi)^2$  leads to infinite order EOM, distinctive dynamics.
  - Sound speed  $c_s = 1$  rather than  $c_s \ll 1$ .
  - Inflation is coming from brane decay rather than motion down a warped throat, · · ·
- \* Dynamics: inflation is NOT fast roll;  $\ddot{\phi} \ll H\dot{\phi}$ ,  $\dot{\phi}^2 \ll H^2 M_p^2$ .
- \* Observationally: shape of NG makes p-adic model distinguishable.



Page 42/48

# **Nonlinearity Parameter**

- Calculation is simplest using Seery, Malik & Lyth (2008) formalism.
- Results:

$$f_{NL} = \frac{5}{6} \underbrace{\xi_{\text{eff}}}_{\mathbf{x}g} \left[ N_{\star} + \frac{3}{\sum_{i} k_{i}^{3}} \left( k_{t} \sum_{i < j} k_{i} k_{j} - \frac{4}{9} k_{t}^{3} \right) \right] + \cdots$$

⋆ For p-adic inflation have

$$f_{NL}^{\triangle} \sim 10^{-3} \, rac{\sqrt{p}}{\ln p}$$

for  $p\gg 1$ . (Recall:  $p\sim 10^{13}$  for  $g_s\sim 1$ .)

\* In the local limit  $p \to 1$  have  $f_{NL} \sim n_s - 1$ .

Pirsa: 08030047 Page 43/48

# p-adic Inflation



\* For natural values  $g_s \sim 0.1-0.3$  reproduce central value for Yadav & Wandelt detection.

Pirsa: 08030047

# **Comparison to DBI Models**

- Formally very different from DBI:
  - High powers of  $\square$  rather than  $(\partial \phi)^2$  leads to infinite order EOM, distinctive dynamics.
  - Sound speed  $c_s = 1$  rather than  $c_s \ll 1$ .
  - Inflation is coming from brane decay rather than motion down a warped throat, · · ·
- \* Dynamics: inflation is NOT fast roll;  $\ddot{\phi} \ll H\dot{\phi}$ ,  $\dot{\phi}^2 \ll H^2 M_p^2$ .
- \* Observationally: shape of NG makes p-adic model distinguishable.



Page 45/48

#### **Conclusions**

- Study of high derivative theories is well-motivated.
- Can systematically construct stable/ghost-free infinite order theories with well-posed Cauchy problem.
- Nonlocal inflation can proceed even the naive potential is far too steep.
  - This structure is ubiquitous in ST. Perhaps inflation is easier to realize than previously throught?
- Novel effect has observable signatures in the CMB: large f<sub>NL</sub>.
- Possibility of realizing similar phenomena in more realistic string theories.
  - Effect relies on UV completion: CMB as a probe of distinctly stringy phenomena!

Pirsa: 08030047 Page 46/48

#### **Field Redefinitions**

For ghost-free theory:

$$\mathcal{L} = \frac{1}{2}\phi\Gamma(\Box)(\Box + \omega^2)\phi - U_0 - \frac{g}{3!}\phi^3 + \cdots$$

(where  $\Gamma(z)$  has no zeroes).

\* Nonlocal field redef  $\varphi = \Gamma(\Box)^{1/2} \phi$  gives

$$\mathcal{L} = \frac{1}{2}\varphi(\Box + \omega^2)\varphi - U_0 - \frac{g}{3!}\left(\Gamma(\Box)^{-1/2}\varphi\right)^3 + \cdots$$

- Canonical kinetic structure, nonlocality in the interactions.
- Appropriate starting point to match onto standard perturbation theory calculation.

Pirsa: 08030047 Page 47









PI - GSview































#### Field Redefinitions

For ghost-free theory:

$$\mathcal{L} = \frac{1}{2}\phi\Gamma(\Box)(\Box + \omega^2)\phi - U_0 - \frac{g}{3!}\phi^3 + \cdots$$

(where  $\Gamma(z)$  has no zeroes).

\* Nonlocal field redef  $\varphi = \Gamma(\Box)^{1/2} \phi$  gives

$$\mathcal{L} = \frac{1}{2}\varphi(\Box + \omega^2)\varphi - U_0 - \frac{g}{3!}\left(\Gamma(\Box)^{-1/2}\varphi\right)^3 + \frac{1}{2}\varphi(\Box + \omega^2)\varphi - \frac{g}{3!}\left(\Gamma(\Box)^{-1/2}\varphi\right)^3 + \frac{1}{2}\varphi(\Box + \omega^2)\varphi - \frac{g}{3!}\left(\Gamma(\Box)^{-1/2}\varphi\right)^3 + \frac{1}{2}\varphi(\Box + \omega^2)\varphi - \frac{g}{3!}(\Box +$$

 Canonical kinetic structure, nonlocality in the interactions.