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Nonlocal Fundamental Theories

» Nonlocal theories of the form

1
£ = SoF(O)p— V()

with nontrivial 7(-) arise in:

— String field theory.

— p-adic strings, strings quantized on a random lattice.?
— Unparticle effective actions.

— Brane-world constructions.?

~ Similar nonlocal theories arise in:
— QFT with a minimal length scale® (eg LQG, DSR).
— Noncommutative geometry.

a_. e : : :
Biswas, Grisaru & Siegel (2005)
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de Rham (2007).
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Example: p-adic String Theory

~ Toy model of the bosonic string tachyon.®

=~ World-sheet coordinates of the string are restricted to
the field of p-adic numbers.

= All amplitudes of the lowest state can be computed
exactly and one can determine a simple field-theoretic
Lagrangian which reproduces them:

_4 3 - =

m. | = 1 B
L=t | —gp mEpt —gFt!
g (pn—1) 7 p+1

« Contains infinitely many derivatives: e~ =1 -0+ --.

~ Derived for p a prime number but the theory can be
sensibly continued to other values.

. a = el
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(Non)Local Limit

~ The field equation for the p-adic scalar is:

L

p o =¢F

= Infinite order in derivatives, can be re-cast as an
iIntegral equation.?

= In the limit p — 1 this equation becomes local:"
(¢ = 2m2¢ln o

+ For p > 1 the nonlocal structure plays an important role
In the dynamics.

— Limit p > 1 will be most intesting for cosmology...

7 wiebach (2002).

b = i3 .
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Applications of Nonlocal QFT

Interesting applications of nonlocal theories:
1. Improved UV behaviour:
~ finite QFT,
+ solution to the hierarchy problem, -- -

2. Novel cosmologies:?®
= self-inflation,
+ bouncing cosmologies,
+ quintessence with w < —1, - --

3. Implications for cosmological constant problem.”
4. Inflation.©

a . ] — : : -
Khoury (2006). Biswas et al. (2006). Arefeva Calcagni, Joukovskaya Koshelev, Vernov, Viadimirov,

Volovich

bDvaJi et al. (2007); de Rham et al (2007)
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MB, Biswas, Cline.
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Nonlocal Inflation

Can we embed inflation into nonlocal theories?

Motivation: flat poten- NS fluxg
tials surprisingly hard to
obtain in realistic set-
tings. (KKLMMT; Baumann et
al. (2007): Burgess, Cline, Firouzjahi,
Leblond, Shandera, Tye...)

D7 branes

N warped
thrmc;)pat

v

Perhaps inflation doesn’t require flat potentials...

Nonlocal structure gives a way to realize inflation with
very steep potential which is also predictive, gives
fnr > 1.

Page 7/48
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Problems/Complications

« Difficulties of working with higher derivative theories are
well known:2

— Instabilities, ghosts, - - -
— Difficulties in setting up IVP.
+ Any application to physics must address fundamental
Issues:
— When can nonlocal theories be ghost-free??
— Can one make rigorous sense of the I[VP in infinite
order theories?°

~ Before discussing cosmology need to make a detour to
discuss formalism...

#Woodard (1989)

bNB. Biswas, Cline, Prokushkin (2008).
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NB, Kamran (2007).
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Finite High Derivative Corrections

~ Addition of finite higher derivative terms always leads to
trouble...

~ Example: Lee & Wick (1969) model

1 | 1
Lrw = ;0o — Ve ol 1°g — Smga)g + -

assume M2 > m?2.
* Classical EOM

1
[f——FF —mx Jé—10
M2

requires four initial data.

Page 10/48




irsa: 08030047

Lee-Wick Theory

= Propagator has two poles = two physical states!

- E) : 1 s SN .
= —p? — pt/M? — m? 2 _—m2 —p? — M?

» Ghost = excitation with
wrong-sign kinetic term

Page 11/48
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Finite High Derivative Corrections

~ Addition of finite higher derivative terms always leads to
trouble...

~ Example: Lee & Wick (1969) model

' - B e R s
LLTT':S@DO—,HI[QO; O — MG+

assume M2 > m?2.
+ Classical EOM

1 _
= =
(o-n

requires four initial data.

%]
D
R
|
-
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Lee-Wick Theory

= Propagator has two poles = two physical states!

- R ) 1 1 1
) &X ) iy ¢ 0 0 :
P —p2 —p* /M4 — m?2 :p3 —m? — J[i

-

e

reg, mass m rhost, mass M

+ Ghost = excitation with
wrong-sign kinetic term

Page 13/48
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Multi-Particle Decomposition

~ Can see explicitly by introducing auxiliary fields yq o:

[ 1

*p = (J[E l)o
[ 1

A = ( ﬁ1>0

+ Lagrangian decomposes as

- | L m’ B e
= {3(‘9\’1)2 - T\ﬂ + {3(@\9)‘ 1
_|_L:int
+~ Wrong sign kinetic term. So what?

Page 14/48
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Lee-Wick Theory

» Propagator has two poles = two physical states!

, 1

2 9 e~ 2 2
—p* — p* /M= — m?* m-

|—L

1
2 _ M

_—
reg, mass m svhost, mass M

+ Ghost = excitation with
wrong-sign kinetic term

Page 15/48
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Finite High Derivative Corrections

= Addition of finite higher derivative terms always leads to
trouble...

~ Example: Lee & Wick (1969) model

! 1 | A 1
Liw = 3@Do - V2 O_izo — Smgag S e

assume M2 > m?2.
+ Classical EOM

El
(D St 5
M2

requires four initial data.

o
)
St
|
-
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Multi-Particle Decomposition

~ Can see explicitly by introducing auxiliary fields yq o:

[]

kL — J[E — 1 @
[]
m=

= Lagrangian decomposes as

|
|
| e—
O |
)]
e
(-
€
_|_
3,
~
=t D
| e B0 |
|
1
| —
Qo
po
|
|
_I_
S
P
o |

Lrw

+ Wrong sign kinetic term. So what?

Page 17/48




What’s Wrong with Ghosts?

~ Hamiltonian is unbounded from below!

‘ Rl e i M
Mew — + E\l + 7\1} = {5\2 N 7\2

~ Unstable: dynamics drives system to become arbitrarily
excited.

= This is a classical pathology (QFT can be made
unitary).

« Note: taking 1/” larger only makes things worse!

+ Only way to salvage the theory is by imposing auxiliary
constraints.®

irsa: 08030047

a .
Cutkosky et al. (1969). Page 18/48
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Counting Initial Data

+~ Problem is VERY general:

5:5[@.5@.---.5*"’@

N = (num poles in propagator)
(

num physical states)

(num initial data)

b | — | —

(dim phase space)

= Ostrogradksi Theorem: Hamiltonian is always unstable,
except in the local case N = 1.

= Larger V just makes things worse. What about V = 07

irsa: 08030047
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Infinite Order Theories

1 . i
Ftz) — Zan:”
n—>0

« EOM is infinite order. How many initial data?
F(O)¢ = V(o)
= Stability intimitely related to initial data counting. Infinite

order PDEs very different from N > 1.

+ Formal treatment of IVP infinite order PDEs.?
— Systematic prescription for counting data.
— Rigorous study of pseudo-differential operators ().

a e |
irsa: 08030047 NB & Kamran (2007). Page 20/48




Counting Initial Data

+~ Problem is VERY general:

S=56,06,--,0%¢

N = (num poles in propagator)
(

num physical states)

(num initial data)

b | — |

(dim phase space)

+ Ostrogradksi Theorem: Hamiltonian is always unstable,
except in the local case NV = 1.

= Larger V just makes things worse. What about V = 07
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Infinite Order Theories

1 = i
£ — EOF{Z_}@—T(@)
A Fiz) — Zan:”
n—0

« EOM is infinite order. How many initial data?
F(o = V(o)
= Stability intimitely related to initial data counting. Infinite

order PDEs very different from N > 1.

+ Formal treatment of IVP infinite order PDEs.?
— Systematic prescription for counting data.
— Rigorous study of pseudo-differential operators ().

d ey .\
irsa: 08030047 NB & Kamran (2007). Page 22/48
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Pole Counting in Nonlocal Theories

= Consider nonlocal theory:

1 - 5
= IOT(E_}{_! —m°) o

with I'(z) having no zeroes (eg I'(z) ~ e 7).
+~ EOM:
IN(O) (O0—m?) o=0
~ Propagator has only one pole:

1 1
G(p?) ~ ———
LARRNS Y g

= Only a single physical excitation = only 2 initial data!
= Ostrogradski construction doesn’t apply.

Page 23/48
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Infinite Derivative Dynamics

= |heorem: pole couniing exhausts all allowed initial
data.?

- Swgle pole infinite order theories can be ghost-free!
— Even some multi-pole theories are okay.”
~ Exorcism: Pseudo-differential operator theory provides

a way to redefine F(J) so as to render otherwise
pathological theories ghost-free!

Pirsa: 08030047 Page 24/48
NB & Kamran (2007).
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Nonlocal Hill-Top Inflation

~ Seek inflation in theories of the form:

1 = .
i — SGF{__}(D—C-’(O]
Flz) — Zc—n:“
== |
U() = Up—e?+ 20 +---

4 =)

V()

+» Seek inflationary
solution rolling away
from ¢ = 0.

= In string theory exam-
ples corresponds to in-
flation during brane de-

C ay Page 26/48
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Naive Derivative Truncation

~ Naively expect that during slow roll high derivative
corrections are negligible:

1 &S
s — 30}— (L))o —U(o)

2

1 " o
~5(06)° ~To + 56"+ O(C) + -

I¢

=~ Expect that inflation is only possible when
n| ~ MZ|IU" /U] < 1= p* < H?.

= Naive picture is not always correct: can still obtain slow
roll even when M |U” /U| > 1!

+~ Most models of string cosmology follow this approach...

Page 27/48
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Nonlocal Dynamics
Near the top of the potential (¢ = 0) have:

+ Equation of motion:

9

F(O)¢=—p’

+= Can obtain solution by taking:

)

O¢p = —w?¢ if F(—uw?) =—p

2

+ Dual to a local theory with mass w.

« The effective mass, .2, can be small even naive mass
u” is large!

irsa: 08030047 Page 28/48
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—oF (L) ¢ —

V)

V(p)

irsa: 08030047

Stretching the Inflaton Potential

([T{] — %oz + - ) |

1 |
£ = s¢lo—U(e)+O(F)
U(¢) = Up— o +--

Steep potential, higher derivative terms slow
the rolling.

Ll —

Vig) = Uo— 5

Effective potential in dual local theory is
stretched.®

Page 29/48

| idsey (2007).
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Example: p-adic Inflation

Explicit example in p-adic string theory:#

4
m_ |1 S— 2
= {;O(lp “%)o(/(o)]
9, L=

p—1 1.,

—_——— ———r
= pr=p—1

« Naively don’t expect slow roll since x> ~ p > 1 but
effective mass, «? = —2m?, insensitive to p.

= COBE normalization constrains g,/,/p ~ 10~ so for
gs ~ 1 have p > 1. = Strongly nonlocal!

=« Predictions: n; < 1, 7 < 0.006, ms < 107°M,, - - -

a . = i
NB, Biswas & Cline (2008).
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Including Interactions

Include the cubic term in the action:

irsa: 08030047

1 . B
L = coF(U)o—U(9)
] 2 G .
Ulg) — Ua— — P+ 224 -

2! 3!

For g £ 0 the correspondence between local and
nonlocal theories breaks down.

Expect (¢°) « fyr o g so for large ¢ the nongaussianity
could be large.

In conventional models g > 1 would spoil inflaton but
this need not be true in nonlocal theories!

In p-adic inflation:

gl ~ p2 >1 for p3s 10%°

Page 32/48
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Example: p-adic Inflation

Explicit example in p-adic string theory:@

-
m; |1 __a_ _

5 {30 (1 —p m) O — C(o)]
9p L<

p—l p—]. 9

L’T — — i
e )
w
—U, pr=p—1

« Naively don’t expect slow roll since x4 ~ p > 1 but
effective mass, w? = —2m?, insensitive to p.

» COBE normalization constrains g./,/p ~ 10~ so for
gs ~ 1 have p > 1. = Strongly nonlocal!

« Predictions: n; < 1, 7 < 0.006, ms < 107°M,, - - -

a . e e
NB, Biswas & Cline (2008).
irsa: 08030047 Page 33/48

Bl ek T TR



Outline

1. Nonlocal QFT - Motivations & Examples
2. Ghosts, Instabilities and VP

3. Nonlocal Inflation

4. Predictions for Nongaussianity

irsa: 08030047

Page 34/48




Including Interactions

Include the cubic term in the action:

1
£ — —OF (o — Ul(o)

7.
U(o) —= CD—%@ +32o 3

For g £ 0 the correspondence between local and
nonlocal theories breaks down.

Expect (¢°) « fyr x ¢ so for large ¢ the nongaussianity
could be large.

In conventional models g > 1 would spoil inflaton but
this need not be true in nonlocal theories!

In p-adic inflation:

gl ~ p2 >1 o p= 10%°

Page 35/48
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Field Redefinitions

For ghost-free theory:

1 2, :
£ — 3@1—{'_?)(E —Fm'g)@ — Uy — %03 + - -
L .

(where I'(z) has no zeroes).

+ Nonlocal field redef » = T'(01)Y/2 ¢ gives

| e %3
p(0+w?)p—Up— = (f(:_)_l-' ‘a,:) 4

= ]_
! T e

+ Canonical kinetic structure, nonlocality in the
interactions.

~ Appropriate starting point to match onto standard
perturbation theory calculation.

irsa: 08030047 Page 36/48
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Perturbed Field Equations

Canonical field equation:

==
._’} =

(:_u...

G il 3o
2r(0)~2 |r(@) %

)Y =

+ Gaussian perturbations:
(00 + w?)d1 =20
iInsensitive to nonlocality.
+ Second order:

Ir@2{r@

12

(O +w?)dag

= Nonlocal structure in source term mimics a large cubic
coupling V", leads to fyr > 1

irsa: 08030047 Page 37/48
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Nonlinearity Parameter

= Calculation is simplest using Seery, Malik & Lyth (2008)

formalism.
~ Results:
o Ex | B = P T e
-,"l_"'r.E- :_._-_: ‘{;E‘ﬁ i 2 Ff‘Z ﬂi-' ‘j _T"ff. g
0~ ZI_ ;"{I;- e 9
L‘Cg L. -

~ For p-adic inflation have

v /D
£ 10— M
f_\‘ y e 10

Inp

forp > 1. (Recall: p ~ 103 for g, ~ 1.)

~ |In the local limit p — 1 have fy; ~ ns — 1.

Page 38/48
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p-adic Inflation

250

200
150
< g
T
100~
50+
o | ]
0 0.1 0.2 0.3 04 0.5
s

= For natural values ¢. ~ 0.1 — 0.3 reproduce central value
for Yadav & Wandelt detection.

Pirsa: 08030047 Page 39/48
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Nonlinearity Parameter

+ Calculation is simplest using Seery, Malik & Lyth (2008)
formalism.

~ Resulis:

f_\rlzr ‘-:.Pff *.f Z;ﬂt (AfZAA _ -k W =

g | <]

~ For p-adic inflation have

forp > 1. (Recall: p ~ 1083 forg, ~ 1)
~ |In the local limit p — 1 have fy; ~ ns — 1.

Page 40/48
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p-adic Inflation

2501

200

150\

+ For natural values ¢. ~ 0.1 — 0.3 reproduce central value
for Yadav & Wandelt detection.
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Comparison to DBI Models

=~ Formally very different from DBI:

— High powers of [ rather than (9¢)” leads to infinite
order EOM, distinctive dynamics.
— Sound speed ¢, = 1 rather than ¢, < 1.

— Inflation is coming from brane decay rather than
motion down a warped throat, - - -

+» Dynamics: inflation is
NOT fast roll; 0 < Ho,
@ K HQJIE.

+ Observationally: shape
of NG makes p-adic
model distinguishable.

irsa: 08030047 Page 42/48




Nonlinearity Parameter

+ Calculation is simplest using Seery, Malik & Lyth (2008)
formalism.

~ Resulis:

fae =

-
<)
=

xg e <]

~ For p-adic inflation have

.-"ﬂ P / ?j
f? L iy ]-U il
. Inp

forp > 1. (Recall: p ~ 103 for g, ~ 1.)

~ In the local limit p — 1 have fyr ~ns — 1

Page 43/48
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p-adic Inflation

= For natural values g. ~ 0.1 — 0.3 reproduce central value
for Yadav & Wandelt detection.
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Comparison to DBI Models

= Formally very different from DBI:

— High powers of (1 rather than (9¢)” leads to infinite
order EOM, distinctive dynamics.
— Sound speed c. = 1 rather than ¢, < 1.

— Inflation is coming from brane decay rather than
motion down a warped throat, - - -

= Dynamics: inflation is
NOT fast roll; 0o < Ho,
¢* < H2MZ.

= Observationally: shape
of NG makes p-adic
model distinguishable.
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Conclusions

~ Study of high derivative theories is well-motivated.

= Can systematically construct stable/ghost-free infinite
order theories with well-posed Cauchy problem.

= Nonlocal inflation can proceed even the naive potential
Is far too steep.
— This structure is ubiquitous in ST. Perhaps inflation is
easier to realize than previously throught?

~ Novel effect has observable signatures in the CMB:
large fxr.

= Possibility of realizing similar phenomena in more
realistic string theories.

— Effect relies on UV completion: CMB as a probe of
distinctly stringy phenomena!

Page 46/48

Blesl Tl AT TH




Field Redefinitions

For ghost-free theory:

,
L= -¢T(O)(O+u?)p—Up— 26> +---
2 .,

(where I'(z) has no zeroes).

« Nonlocal field redef » = T'(01)Y/~ o gives

iy
! - —
)

e X3
A0 +u?)p —Up— 2 (T(O) %)+
).

+ Canonical kinetic structure, nonlocality in the
interactions.

~ Appropriate starting point to match onto standard
perturbation theory calculation.
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Field Redefinitions

For ghost-free theory:

1
£ = sol(0)(d +u)

(where I'(z) has no zeroes).

« Nonlocal field redef o = T'(T1)'/2 o gives

+ Canonical kinetic structure, nonlocality in the
interactions.
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