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Holographic Cosmology

seneralization SUGRA solutions where smooth
asymptotically AdS initial data evolve to a big crunch
in the future [TH, Horowitz "04].
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a single scalar field with potential

l;:_L_L'-,___T—a____l_L " 5715
The scalar 2 has 1* = 4 =mpzp
AdS cylinder: ds* = —(1+7r")dE* + 1_ +rdS}
Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

) In Fit.02)

2pends Doundan '_ (ions | ) on

timelike boundary AdS cylinder.




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S°® involving only gravity and
a single scalar field with potential

= 15 .2 -4 1_—1 . TR T
II — — — — —— — " —— i
1 3 I =/1
The scalar ¢ has * = -4 =mzpp
AdS cylinder: ds® = —(1 +r°)dt* + 1.?:._._ +r-df)

Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

) In

Dynamics Depends on Boundary Conditions a(J) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S°® involving only gravity and
a single scalar field with potential

V=—7ehv_cotw | e = /2/15
The scalar © has 1* = —4=mpp
AdS cylinder: ds® = —(1 +1r*\dt* + 1__ 1 724y
Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

) In

lepends « Boundary Conditions al3) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

V=—Jette_co e te iy = /2/15
The scalar 2 has 1* = -4 =myyp
AdS cylinder: ds®* = —(14+r°)dt* + 1_ + r2d0aq
Near the boundary (at large radius r) of the anti-de

Sitter cylinder © decays as

epends 3oundary Conditions al3) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S°® involving only gravity and
a single scalar field with potential

The scalar 2 has 1* = 4 =mpp
AdS cylinder: ds® = —(1 +1r3\dt* + 1_ 1 7240
Near the boundary (at large radius r) of the anti-de

Sitter cylinder » decays as

a(t,2)Inr

Depends Boundary Conditions a(d) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S° involving only gravity and
a single scalar field with potential

The scalar 2 has 1* = —4 =myay
AdS cylinder: ds® = —(14r%)dt* +-95 4 r2dQ
Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

) In F{t.02)

_'T.—. as Dounaa ';.i'. tions i) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S°® involving only gravity and
a single scalar field with potential

— 15 g —4n 1,.—1 _ Bhe

W +3 = V2/15
The scalar ¢ has 2= —4 =m5iyp

AdS cylinder: ds® = —(1 +1°\dt* + L 240

Near the boundary (at large radius r) of the anti-de
Sitter cylinder o decays as

) In

epends Joundary Conditions a(J3) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and

a single scalar field with potential

— 15 D=y -4 =1 - Fmy =t
g T3 =V2/15
The scalar © has P = —4 =m5p
AdS cylinder: ds* = —(14+7")dt* + 1__ + r<dfls

Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

) In

Dynamics D Boundary Conditions a(3) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

i:_i___f”"‘il'_l“ — /9715
The scalar ¢ has 1* = -4 =myp
AdS cylinder: ds® = —(14-r°)dt* + 1—_— + 7 dQa
Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

) In Fit.12)

Dvnamics Depends Boundary Conditions a(3) on

timelike boundary AdS cylinder.




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S°® involving only gravity and
a single scalar field with potential

= 15 Dy 5, —d ~ 1 e TR T

V =182 _ 5, +3 — /2715
The scalar ¢ has 1° = —4 =mpp
AdS cylinder: ds* = —(1+7")dt* + 1__ +r<dSls
Near the boundary (at large radius r) of the anti-de
Sitter cylinder o decays as

: ::_ . L} in L

C _'_. £Nas E L Na af '; NAITIoNS il 7)) On

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

= 15 2 -4 1.—-1 e CYRT:

Wome + 3 =V 2/15
The scalar 2 has 1* = -4 =mpp
AdS cylinder: ds" = —{1 47" )dt"+ 1_ + r=d(}
Near the boundary (at large radius r) of the anti-de
Sitter cylinder » decays as

-0 — alt. () Inr L

[ Depends Bounda Conditions af3) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S°® involving only gravity and
a single scalar field with potential

I:_LL___%._;._-__%’-P — /2715
The scalar 2 has 1* = -4 =myy
AdS cylinder: ds* = —(147")dt" + 1_ + r=dS)
Near the boundary (at large radius r) of the anti-de

Sitter cylinder » decays as

) In Fit.11)

Dyvnamics D Boundary Conditions a(3) on

timelike boundary AdS cylinder.




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S°® involving only gravity and
a single scalar field with potential

V=Gt o0 | 2o 8 = /2/15
The scalar ¢ has 1* = —4 =myy
AdS cylinder: ds® = —(14+7°)dt* + 1—_— + 7 dQa
Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

) In Fit.11)

lepends Boundary Conditions a(3) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

= 15 _Deyes -4y L —10-y s S TR T
=g 2 L = 4/ 2/15
The scalar ¢ has 2= —4 =m%iyp
AdS cylinder: ds® = —(1 +r°)dt~ +-F5+r-dfla

Near the boundary (at large radius r) of the anti-de
Sitter cylinder o decays as

Ay _ alt.Q)inr

LY Namics L'ependas Dounaa ~onaitions | ) on

timelike boundary AdS cylinder.




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

_ 15 2 i _ T
W + 3 =V 2/1
The scalar © has 2= -4 =mip
AdS cylinder: ds* = —(14+7")dt" + 1_ +r<dSls

Near the boundary (at large radius r) of the anti-de
Sitter cylinder o decays as

al(t.)Inr 7 £.02)

gitiens | 2 ) an

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of

10d type IIB

SUGRA compactified on S°® involving only gravity and

a single scalar field with potential

! :_l'"——__ —;____i’_[
1 2 1
The scalar © has 12 = —4 =m%
AdS cylinder: ds" = —(1 47" )dt"

Near the boundary (at large radius
Sitter cylinder » decays as

al(t.)Inr

r) of the anti-de

timelike boundary AdS cylinder

(7] on




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S°® involving only gravity and

a single scalar field with potential

— 15 _ Dy 5 —dve -3 - Fy =
o= +3 = /2/15
The scalar ¢ has 2 = -4 =m%yp

Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

) In

epends Boundary Conditions a(3) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

—. 15 Dy I — 1 _—10 - e

==y — 3 L = /215
The scalar ¢ has 2= —4 =m%y

'!"l'dS C"m"llﬁd‘i‘f |.'..‘-._'I | 1 1 g .,Il'_r-'. L= '-':I_j s .'-.'II.'q__.

Near the boundary (at large radius r) of the anti-de
Sitter cylinder o decays as

) In Fit.12)

L. E L'epenas Dounaar ';..'. tions 4l ) oNn

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

: 1 2y Iy o 1 10+ . ) =
W= 3 T = 4/ 2/ 1
The scalar © has = d=mpe
AdS cvlinder: ds® = —(1+r2)di® + 1+ 4+ 1240

Near the boundary (at large radius r) of the anti-de
Sitter cylinder o decays as

timelike boundary AdS cylinder.




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

_ 15 Dy 5 —dvi -1 - Py
i e +3 = V2/15
The scalar © has P = —4 =m5hy
AdS cylinder: ds* = —(1+r°)dt* + 1—_— L rdQaq

Near the boundary (at large radius r) of the anti-de
Sitter cylinder » decays as

i) Im

Dvnamics Depends 3oundary Conditions al3) on

timelike boundary AdS cylinder.




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

The scalar 2 has 1* = —4=mpgp
AdS cylinder: ds® = —(1 +r°)dt~ + 1__ +r=ds
Near the boundary (at large radius r) of the anti-de
Sitter cylinder » decays as

r. Q) = e B
Dynamics Depends Boundary Conditions a(J) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

The scalar © has 1* = —4 =mzp
AdS cylinder: ds® = —(1+1r°)dt* + 1_ 1+ 7= da
Near the boundary (at large radius r) of the anti-de

Sitter cylinder o~ decays as

a(t,2)Inr

lepends Jounda ';.:.1:.: kL) On

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

= 15 Dy —dyy 1 _—10 s T T
- —3 3 =v2/]

The scalar ¢ has 1* = —4 =mpp
AdS cylinder: ds” = —(1 47" )"+ 1____ +r=dS}
Near the boundary (at large radius r) of the anti-de
Sitter cylinder o decays as

r Q) = I. Inr L
L 1THCS _'_-T d 3 B Uundd ';.-'.'t.':-l"'"l.:Jf'I

timelike boundary AdS cylinder.




Bulk Setup

Consider a consistent truncation of 10d type I|IB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

— 15 Dy 5 . —dyis _ 100 - e
¥ e +3 = V2/15
The scalar ¢ has 2= —4 =m%yp
AdS cylinder: ds* = —(14+7r")dt* + +r<dfls

Near the boundary (at large radius r) of the anti-de
Sitter cylinder » decays as

Depends Boundary Conditions a(J) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

= 15.27¢ 4y 1,1 o — -
- -3 + 3 = V2/15
The scalar ¢ has 2= -4 =m%ip
AdS cylinder: ds®* = —(141r°)dt* + 1_ 1+ 12d 0

Near the boundary (at large radius r) of the anti-de
Sitter cylinder » decays as

al(t.M Inr F{¢.02)

lepends Dounaa ';.! grtions a2 ) an

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

s 15 Ty -4 ~1i - w Y
V = 1etre _Se—te 1 = /271
The scalar ¢ has 1* = —4 =mpp
AdS cylinder: ds® = —(1+r°)dt* + L5+ r=dQ

Near the boundary (at large radius r) of the anti-de
Sitter cylinder » decays as

lamaemec e T- I.I...._ I-.I. + 1L i 1 '-:'n

timelike boundary AdS cylinder.




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S°® involving only gravity and
a single scalar field with potential

[:_LL_' _T_‘_*%,_L — /3715
The scalar 2 has 1* = —4 =myp
AdS cylinder: ds* = —(1+7r")dt* + 1_ +redS}
Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

a(t,2)Inr

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S°® invelving only gravity and
a single scalar field with potential

V=—gete_SoOw | 2o = /2/15
The scalar o has 1= —4 =myp
AdS cylinder: ds? = —(1+7r2\dt* = 1_ 1 240
Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

C epe Boundary Conditions a(3) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

The scalar ¢ has 1* = —4 =myap
AdS cylinder: ds* = —(14+7")dt* + 1_ + r=dS}
Near the boundary (at large radius r) of the anti-de

Sitter cylinder » decays as

al(t. li)inr

[ De endas | Doundaar ';.I"'.. S il ) ONn

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

_ 15 24 4 1, —10ys _ _/57F

i ey +3 = V2/15
The scalar ¢ has * = -4 =mpp
AdS cylinder: ds® = —(1+1r3\dt* + 1__ L 240
Near the boundary (at large radius r) of the anti-de
Sitter cylinder o decays as

r Q) = -'s.".'__'l ln r L

Dynamics Depends Boundary Conditions a(J) on

timelike boundary AdS cylinder.




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

— _15_24¢g Sy 4 1,1 _ /7=
W= + 3 =v2/1

The scalar ¢ has 2 = —4 =m5iy

AdS cylinder: ds* = —(14+7")dt* + 1___ + r<dfla
Near the boundary (at large radius r) of the anti-de
Sitter cylinder o decays as

. ) — et mr
Dynamics Depends Boundary Conditions a(3) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

The scalar © has 1* = -4 =mzp
AdS cylinder: ds” ——{1 47" )"+ 1—_— +redQq
Near the boundary (at large radius r) of the anti-de

Sitter cylinder » decays as

i) inr FE.1L)

_'T enas counda ';.'.1:. 5 il ) ONn

timelike boundary AdS cylinder.




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

I:_L:___T_*;*%,_L — /2715
The scalar 2 has 1* = —4 =mygp
AdS cylinder: ds* = —(14+r")dt" + 1__ +redS}
Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

) In

Dvnamics lepends Counda4 Conditions a(3) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

- 1 Timg 2 5 v -1 N e
Y=gy +3 = /2/1
The scalar ¢ has = -4 =m%p
AdS cylinder: ds®* = —(1 4+1r*\dt* + 1-— L 240

Near the boundary (at large radius r) of the anti-de
Sitter cylinder o decays as

epends Boundary Conditions a(3) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S°® involving only gravity and

a single scalar field with potential

L :_Ll-_:__- S 5 = =2/ 15
The scalar ¢ has b
. ... P S . 20
1 2 4 O

AdS cylinder: ds

Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

) In

C Depends E wditions af3) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

I :_L_L'-.—-_T—:-__;l -1 — /2715
The scalar o has 1* = -4 =mygp
AdS cylinder: ds®* = —(14r*)dt* + 1_ L 2d 0
Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

lepends Boundary Conditions a(d) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type |IB
SUGRA compactified on S° involving only gravity and
a single scalar field with potential

- 1 2y L 1 | T- _ ) -
V=—7 ) T =v/2/1
The scalar ¢ has 1 = —4 =mpzp
AdS cylinder: ds®* = —(14r*)dt* + + L r2dQ

Near the boundary (at large radius r) of the anti-de
Sitter cylinder » decays as




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

W=—pelte_co—Ore | 1o 10w = +/2/15
The scalar ¢ has 1* = —4 =mygp
AdS cylinder: ds® = —(1 4+ r3\dt* + 1_ o T
Near the boundary (at large radius r) of the anti-de

Sitter cylinder o~ decays as

) In

Dvnamics D ] 3oundary Conditions al3) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S°® involving only gravity and
a single scalar field with potential

— 15 2y —dy -1 s YR T
W +3 =V 2/15
The scalar o has 1° = —4 =mpp
AdS cylinder: ds”* = —(147" )"+ s+ rod)
Near the boundary (at large radius r) of the anti-de
Sitter cylinder o~ decays as
- O I. ln r L AL
Dynamics Depends Boundary Conditions a(J) on

timelike boundary AdS cylinder.




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

I:_LL___%._;._-__%’-M — /2716
The scalar » has 1* = —4=mzp
AdS cylinder: ds® = —(147%)dt* +-95 4 r2dQ
Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

) In

Dynamics Depends Boundary Conditions a(d) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

e i it o i =/2/15
The scalar o has 1* = -4 =myp
AdS cylinder: ds” = —(1+r°)dt~ + 1_ +r=dS2
Near the boundary (at large radius r) of the anti-de

Sitter cylinder » decays as

)i

Dynamics Depends Boundary Conditions a(d) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

I:_L_L'—'___%_r ___l-l :1W
The scalar 2 has 1* = —4 =myp
AdS cylinder: ds* = —(1 +r=\dt= + 1_ 1 74 da
Near the boundary (at large radius r) of the anti-de

Sitter cylinder » decays as

) In

epends 3oundary Conditions a(3) on

timelike boundary AdS cylinder.




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

— 1 Foa - i v 1 1 . ) -
ll. ——— = B T & p— §
1 2 1 2/ 1
The scalar & has 2= -4 =m%iyp
AdS cylinder: ds* = —(1 4+ r=\dt* + 1'--;_ + r2d0a

Near the boundary (at large radius r) of the anti-de
Sitter cylinder o~ decays as

Dynamics Depends Boundary Conditions a(d) on

timelike boundary AdS cylinder.




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

V =—Feh1e _Zet1v | 1e-10 = /2/15
The scalar 2 has 1* = —4 =myy
AdS cylinder: ds* = —(14r°)dt* + 1_ L 12d 0
Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

) In

epends Boundary Conditions al3) on

timelike boundary AdS cylinder.




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

V=g oo O e3P = /2/15
The scalar 2 has 1* = —4=myyp
AdS cylinder: ds® = —(14+7r*\dt* + 1_ 1 7240
Near the boundary (at large radius r) of the anti-de

Sitter cylinder » decays as

b)) — D inr

L. 1) 5 L'epends Counda Conditions a(3) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

_ _ 153 5 —4ye 1,10 _ /575
o -3 + 3 = V2/15
The scalar o has * = —4 =myp
AdS cylinder: ds® = —(1+r°)dt* + 1"'_:"__ +r<dSls
Near the boundary (at large radius r) of the anti-de
Sitter cylinder o decays as
s SN I. ln r L
Dynamics Depends Boundary Conditions a(J) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S°® involving only gravity and
a single scalar field with potential

The scalar ¢ has 1* = -4 =mpp
AdS cylinder: ds* = —(14+7")dt"+ 1_ +r=dS}
Near the boundary (at large radius r) of the anti-de

Sitter cylinder o decays as

lepenads Doundaar '_ gitians el ) an

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

_ 15 24 4 1, —1 _ /3715
W + 3 =v2/]
The scalar o has 1* = —4 =mzp
AdS cylinder: ds* = —(1+7")dt"+ 1_ +r<dfla

Near the boundary (at large radius r) of the anti-de
Sitter cylinder » decays as

) In

_'—. enas Dounda '_' JNs el &) on

timelike boundary AdS cylinder




Bulk Setup

Consider a consistent truncation of 10d type IIB
SUGRA compactified on S° involving only gravity and
a single scalar field with potential

1:_L+___T_;-___ild-l — /2/15
The scalar ¢ has 1* = —4 =magp
AdS cylinder: ds* = —(147")dt"+ 1_ +r=dS2
Near the boundary (at large radius r) of the anti-de

Sitter cylinder - decays as

) In Fi¢.12)

lepends Boundary Conditions a(d) on

timelike boundary AdS cylinder.




o Signal

W




Bulk Setup

Consider a consistent truncation of 10d type I|IB
SUGRA compactified on S® involving only gravity and
a single scalar field with potential

— 1 o T 5 — -] . ) E
'| — —— —_ —= — —F r —
1 2 1 v/l
The scalar 2 has m* = —4d =mpp
AdS cylinder: ds’ = —(14+7v*)dE* + 1_ + r=dSla

Near the boundary (at large radius r) of the anti-de
Sitter cylinder o decays as

epenas C-ounda ~onaitions «¢lJ2) on

timelike boundary AdS cylinder.




AdS Cosmology

Take boundary conditions o = fJ, F ~ |

nserved charges remain finite but asymptotic
conformal invariance is logarithmically broken

F‘II I INEere are H'_’_'r*.'-'_rl' _\1( ~ -'.’.'.—'.r.—’-.'.'l f:l-.'.'.'. that

i '.-:‘-’:.- L il \_'JJJ','l:Jg_"'.r."' L ‘|J;| F) r __".r- "'.','.'N ,r. ¥ "i_-"- ML

of . lll.-_l." n fin IJI-I.. rl_":.. . .”‘,‘; F 11T

Asymptotically (at large r) one has

Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = f3, f > |

nserved charges remain finite but asymptotic
conformal invariance is logarithmically broker

_'_L_'-"' P there ars & FIL) _r.|:| jlr :-__ U imitia ..: ‘:I“'.r.-_ '.'_u |'||'
£ ._.-',l e T a ‘.':.I'J_.'|".:l.:.'.r.r 'I.-I 1 |Ij_|4 H " ..I'.r" II'II--" Ir' 0 ":_';'r M i iliLrt
i} i | !l.l-.'.-'. m |.T '.'IJ;'I r,-':l } '“.‘.‘II ;lill. FiT
@
Asymptotically (at large r) one has
i) 3 5 B | . !
s " —.——-_ 1S f 11 = ¥ | r il = ——--_ =

Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = f.J, f > |

nserved charges remain finite but asymptotic
conformal invariance is logarnthn
Fln * 130T (1 5 ST .'r'_n _‘1{ :'__ i _|.|I|:1Ir‘),. .'.-I __:II_IIF 1 _'.'.lll'

’ o a 53 :J':'J'.'_'.'Ii;_"-".i Uy U firich EeTTET '-_.. ¥ th I n .'.. ™1

i ".. " 'I.'",' :iu" T

Asymptotically (at large r) one has
F _—-.-I-;-I-.‘d_"'t. |,_|L-'I|_I'| T :—--—I—-r-

Lift to 10D: simple Kasner form near singularity




AdS Cosmology
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served charges remain finite but asymptotic
conformal invariance is logarnthmically broker

For { there are smooth M =~ 0 mitial data that
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Asymptotically (at large r) one has
NE) 5 = b
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = fJ,
Conserved charges remain finite but asymptotic
conformal invariance is logarithmically broker
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Asymptotically (at large r) one has
L) 5 L | [ |
o —|14+ flaur)+Q0O(r—) HE) = —=—

Lift to 10D: simple Kasner form near singularity




AdS Cosmology

L |

Take boundary conditions
but asymptotic

Sarve: arges  remain finite

conformal invariance is
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Asymptotically (at large r) one has
F(t) - = i U
ety = FIMF| == I | 1l I _——

Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions a= Do, f '

nserved charges remain finite but asymptotic
conformal invariance is logarithmically broken.
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o

= 1 \
Conserved charges remain finite but asymptotic
conformal invariance is logarithmically broken
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Lift to 10D: simp

e Kasner form near singularity




AdS Cosmology

Take boundary conditions o = .7, F ~ |

nserved charges remain finite but asymptotic
conformal invariance is logarithmically broken

i = i ¥
F” i there are smooth ‘I|1|r ~ () mitwal data that
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Asymptotically (at large r) one has
I+ ~ = 3
pr=(1+ flnr)+C . (L) = ——

Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = fJ, f~ |

nserved charges remain finite but asymptotic
conformal invariance is logarithmically broken
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Asymptotically (at large r) one has
o221+ finr) + O3 i(t) = —5~

Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = .7, f > |
Conserved charges remain finite but asymptotic
conformal invariance is logarithmically broker

.J‘_"'l I TIAETE il F I\--l_r_'-'rr"'II _1|1( :-'_ v In .'lnr.'i.'.'l -':I-'.i-i F'I.'I'In'
e To a u_lj;J'l'-::,:_"rf.': .'|_'IJ_-'| f ) r__".r- ?'."-_'1 .:.:I'_' -i._r-l_ -Ii'|":_'_'.-_-'._-,".'_l

of AdS mn finite global tim
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = fJ, f >

iserved charges remain finite but asymptotic
conformal invariance is logarithmically broker

For | there are smooth M =~ 0 mitial data that
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Asymptotically (at large r) one has
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o= (1+ flnr)+O0(r—) ) =—=3

Lift to 10D: simple Kasner form near singularity




AdS Cosmology

lake boundary conditions

1

arges remain  finite but

asymptotic
conformal invariance is

T
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions

remain finite but asymptotic

conformal invariance is logarthmic: yroke
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Asymptotically (at large r) one has
N = x|
r ] 14 — T

Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions

ges remain finite but asymptotic

conformal invariance is logarthmic: roker
For there are smooth M 22 0 initwal data that
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Asymptotically (at large r) one has
|  — -.I =Ty = L Ly

Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = 7, F =

Conserved charges remain finite but asymptotic
conformal invariance is logarithmically broken
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = fJ, a

Conserved charges remain finite but asymptotic
conformal invariance is logarithmically broken

I F ¥ 3
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evolve to a singularity which ertends to the boundary
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = f3, F~ |

nserved charges remain finite but asymptotic
conformal invariance is logarithmically broken

y y 2
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evolee to a sngularity whhch exrtends o the boundary
£ J S | = F I 4
of AdS in finute clobal tirme

Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = fJ3, F i

served charges remain finite but asymptotic
conformal invariance is logarithmically broker
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c
Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = f.J, F > |
Conserved charges remain finite but asymptotic
conformal invariance is logarithmically broken.
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evolre fo a sinigulartty which ertends o the boundary
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Asymptotically (at large r) one has
Nt " ; s 3 30
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = 7, F o~ |

Conserved charges remain finite but asymptotic
conformal invariance is loganthmically broken
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = fJ, F ~ |

Conserved charges remain finite but asymptotic
conformal invariance is logarnthmically broker

/ T r ¥ 3
evolrve to a singularity which ertends to the boundary
3 !-. ~ I finit wil frrme

Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = 7, |

arved charges remain finite but asymptotic
conformal invariance is logarithir ke
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# e T SaFRtedd 1T w ‘I.n' i ";4'-' F ILEFTULS "I-| FILe LT Nadari
"": _i.'lll-‘.-i tn J LELE [Fy .‘I"ql!l s [Tl

L]
Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = fJ, a
Conserved charges remain finite but asymptotic
conformal invariance is logarithmically broken.
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Asymptotically (at large r) one has
JHE) - L | y
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = fJ, F |

nserved charges remain finite but asymptotic
conformal invariance is logarithmically broken
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = f.J, f > |
Conserved charges remain finite but asymptoti
conformal invariance is logarithmically broker
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = fJ3, >

nserved charges remain finite but asymptotic
conformal invariance is logarithmically broker
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




Boundary Field Theory

String theory with AdSs x S° boundary conditions is

dual to \V' =4 yer Yang-Mills theory in D = 4.
e For o~ 3/r* is dual to A = 2 operator
O =17 2 _1v6 2
L = o . |
and
3 s '\--‘I
e [aking 1) = U corresponds to adding a

titrace interaction [ W(QO) to the CFT, such
- |

that |[Witten 02, Berkooz et al 2]




Boundary Field Theory

String theory with AdSs »

5* boundary conditions is
dual to N'=4 supe: '

theory in D =4
e For 2~ 3/r* is dual to A = 2
0 =#Tr [6*~ 158,67
and
3 = {(D

o Taking corresponds to adding a
nultitrace i n [ W(O) to the CFT, such
that [Witten '02, Berkoc '




AdS Cosmology

Take boundary conditions «a = fJ, F >

nserved charges remain finite but asymptotic
conformal invariance is logarithmic roker
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = f3, f > |

nserved charges remain finite but asymptotic
conformal invariance is logarithmically broker
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Lift to 10D: simp

e Kasner form near singularity




AdS Cosmology

Take boundary conditions o = fJ, f > |

_onserved charges remain finite but asymptotic
conformal invariance is logarithmically broker
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions
but asymptotic

remain finite

conformal invariance is logariths
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Asymptotically (at large r) one has
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e Kasner form near singularity

Lift to 10D: simp




AdS Cosmology

Take boundary conditions o = f 7, F >
Conserved charges remain finite but asymptotic
conformal invariance is logarithn
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Asymptotically (at large r) one has
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Lift to 10D: simp

e Kasner form near singularity




AdS Cosmology

Take boundary conditions

zes remain finite but asymptotic
conformal invariance is
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = 7, =4

nserved charges remain finite but asymptotic
conformal invariance is logarthmically broken
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = fJ, F >

served charges remain finite but asymptotic
conformal invariance is loganthmica woken
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions

-
i — - 1

arges  remain finite  but

asymptotic
conformal invariance is
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions

.
' — 1

arges remain finite  but

asymptotic
conformal invariance is
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f AdS in finite global time
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o« = fJ, f >

nserved charges remain finite but asymptotic
conformal invariance is logarithn
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = f.J, f > |
Conserved charges remain finite but asymptotic
conformal invariance is logarnithn ke
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = f 7, F > |

nserved charges remain finite but asymptotic
conformal invariance is logarithmically broken

For | there are smooth M =2~ 0 mnitial data that
evolrve to a singularity which exrtends to the boundary
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions «a = fJ, f > |

Conserved charges remain finite but asymptotic
conformal invariance is logarnthmically broken
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions «a

Conserved charges remain finite but asymptotic
conformal invariance is logarithmically broken.
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions y = f8, f > |
Conserved charges remain finite but asymptotic
conformal invariance is logarithmically broker

Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = fJ, £~ |

nserved charges remain finite but asymptotic
conformal invariance is logarithmically broken.
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions «

rges  remain  finite but  asymptotic

conformal invariance is loganthm
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




Boundary Field Theory

String theory with AdSs »

S® boundary conditions is
dual to N =4 super lills

theory in D =4
e Fora=10, o~ 3/r“isdualto A =2
kﬂ":%-f_- [ _'_!‘.E*.-__._":
] | .
and
p = L‘I
e Taking corresponds to adding a
frac fW(O) to the CFT, such
that  [Witten ‘02, Berkooz et al. '02]
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Boundary Field Theory

String theory with AdS; » S® boundary conditions is
dual to \'=4 super Yang-M

theore in I — A
e For o o~ 3/r* isdual to A = 2
0 =4Tr|* - 150, 47|
and

o Taking corresponds to adding a
I[" WI(Q) to the CFT, such

b = Rp— -
ar K = | i

Th&t -I.-1_' tan i




AdS Cosmology

Take boundary conditions o = fJ, f >
served charges remain finite but asymptotic
conformal invariance is logarithmically broken
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions

onserved charges remain finite but asymptotic
conformal invariance is logarnthmically broken
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Asymptotically (at large r) one has
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Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions a
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Take boundary conditions o = fJ, F~ |

nserved charges remain finite but asymptotic
conformal invariance is loganthmically broker

i T WNT y 7
F"' nere are smootnt M = U mitial dara that
EVTE TO 4 5iNg l"-"l‘!-."'-r y wiiichh ertends to the boundary
oF . !-.'.'". n jintie rl_..'.-'l'l'",l FIITLi

Asymptotically (at large r) one has
i —_-;'I'é'l" Ffimar)+QO(r=) Ity = 251

Lift to 10D: simple Kasner form near singularity




AdS Cosmology
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conformal invariance is logarithmically broke
.F-"' [ IFieTeE are wT},;.-."_‘L- J ;r ~ f':l)'.",—'.,': ..".,'rf_' that
evolve to a singularity which exrtends to the boundary
Frli _!_I'-.‘_ﬂ i finnate ol ’.‘.”!I b s Y1 é

&
Asymptotically (at large r) one has
3 i e 30
fRE—-l1l+—jn | + O | NE) = —=—

Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = fJ, o |
Conserved charges remain finite but asymptotic
conformal invariance is logarithmic roken
Fon there are smooth M =~ 0 imitwal data that
evolre to a smogularity which eTter -|'--“ Ty Ine i ndary
f AdS in finuti al time

@

Lift to 10D: simple Kasner form near singularity




AdS Cosmology

Take boundary conditions o = fJ,

Conserved charges remain finite but asymptotic
conformal invariance is logarithmically broker

I.,..ll : l.:‘_"‘ll m r .-IlJl'l rl.":- " .Ih,‘; f_-' Tl
o Taking corresponds to adding a

Frac tion [W(O) to the CFT, such
that [Witten 02, Berkooz et al. "02]




Boundary Field Theory

String theory with AdSs x S° boundary conditions is

dual to N =4 super Yang-M theory in D = 4.
e For . @~ 3/r* is dual to A = 2 operator
0 =1Tr[62_15% , 47
5 L g J
and
y [ = '\‘-‘:I
e Taking 1) £ corresponds to adding a
ultitrace interaction [ W(O) to the CFT, such
that [Witten '02, Berkooz et al. '02}
W
(Y — —




Boundary Field Theory

String theory with 4dSs x S® boundary conditions is
dual to N =4 super Yang-Mills theorv in D = 4
e For o~ 3/r* is dual to A = 2
C-‘:_.%f'. ;_%E*-__ 2|
and
3 = (D

o Taking corresponds to adding a
nultitrace fW(O) to the CFT, such
that [Witten '02, Berkooz et al 2]




Boundary Field Theory

String theory with AdSs >

S” boundary conditions is
dual to .\ =4 super '

theory in D =4.
e For a = o~ 3/r° is dual to A = 2
G‘:,—i_.f_.' y __!_.'C"""_ _
and
p - l‘_l'.I
o Taking corresponds to adding a
trace ion [ WI(Q) to the CFT. such
that  [Witten '02, Berkooz et al. '02]




Boundary Field Theory

String theory with AdSs »

S® boundary conditions is
dual to \"=4 super !

theory in D =4

e For =

g~ 3/r" is dual to A = 2
.\T':%f_.' j_}_.'i'_“'_ _
and
3 s (O
e Taking = corresponds to adding a
ultitrace interaction [ W(O) to the CFT, such
that [Witten '02, Berkooz et al. "02]
_ oW
Yy — —




Boundary Field Theory

String theory with AdSs x S° boundary conditions is

dual to \ =4 ver Yang-Mills theory in D =4.
o For @~ 3/r* is dual to A = 2 operat
0=4Tr[62-15% , 47
and
F = {{)
e Taking 3) # corresponds to adding a

ultitrace interaction [ W(O) to the CFT, such
that [Witten '02, Berkooz et al. '02]




Boundary Field Theory

String theory with AdS; >

S* boundary conditions is
dual to N =4 supe: ' 1l

theory in D=4
o For =0, o~ 3/r" is dual to A = 2
O-:_,%r.-_ I, et 2]
and
e (O

o Taking corresponds to adding a

titrace fW(O) to the CFT. such
that [Witten ‘02, Berkooz et al |
114
0N = ——




Boundary Field Theory

String theory with AdSs x S° boundary conditions is

dual to N'=4 super Yang-Mills theory in D =4

e For o = o~ 3/r* is dual to A = 2
O=4Tr|o*-130, 2|
and
3 s (O

o Taking corresponds to adding a

fWI(O) to the CFT, such
that [Witten '02, Berkooz et al. '02)




Boundary Field Theory

String theory with AdS: x S° boundary conditions is
= J u

dual to .\ =4 super theory in D =4
e For o~ 3/r*isdualto A =2
G':\;_.f_-' 2 _‘!T'{"‘"_ _
and
3 s (O
o Taking corresponds to adding a
nult ion [ WI(Q) to the CFT, such
that ten '02, Berl ' 2]

Berkooz et al




Boundary Field Theory

String theory with AdSs x S° boundary conditions is

dual to N =4 super Yang-Mills theory in D = 4.
e For o . @~ 3/r* is dual to A = 2 operator
O = %‘I.f-.' F- %E= i -1
and
3 s (O
e Taking ) # corresponds to adding a

ultitrace interaction [ W(O) to the CFT, such
that Witten '02, Berkooz et al '




Boundary Field Theory

String theory with AdSs x S°® boundary conditions is
dual to N =4 super Yang-Mills theory in D =4
e For = o~ 3/r* is dual to A = 2
,\"I:__]r 2 ___l._.z‘.-_- _
and

o Taking corresponds to adding a
nultitrac ion [ W(O) to the CFT, such
that [Witten '02, Berkooz et al. '02]




Boundary Field Theory

String theory with AdSs; x S°® boundary conditions is

dual to N =4 super Yang-Mills theory in D = 4.
e For a = g~ 3/r* is dual to A =2
O = _f,_ 2 I_E_- 32|
and
e Taking corresponds to adding a
titrace [fW(O) to the CFT, such
that [Witten 02, Berkooz et al |
W
O — ———




Boundary Field Theory

String theory with AdS; »

S* boundary conditions is
dual to \"=4 super !

= n D=4

e For = o~ 3/r* is dual to A\ =

kWZ%fFI_{ _'_J_TE" _'

and

o Taking corresponds to adding a
nultitrace interaction [ W(O) to the CFT, such

that Witten 02, Berkooz et al




Boundary Field Theory

String theory with AdSs x S® boundary conditions is

dual to \V =4 ver Yang-Mills theory in D = 4.
e For o~ 3/r* is dual to A = 2 operator

0 =Tr [6* - 1T, 47

o Taking 1) = 0 corresponds to adding a
titrace interaction [ W{O) to the CFT, such

that [Witten '02, Berkooz et al. '02]




Boundary Field Theory

String theory with AdSs »

S* boundary conditions is
dual to N =4 supe: lills

theory in D =4
e For a = o~ 3/r* is dual to A =2
£ — —1’_ * — LE__ '
and
e Taking corresponds to adding a
nultitrace interactior I|" WI(Q) to the CFT, such
that  [Witten '02, Berkooz et al. '02]




Boundary Field Theory

String theory with AdSs x S® boundary conditions is
dll.:'ll to \ =4 ser Yane=M ==r = n ‘r:r = 4

e For , @~ 3/r* is dual to A = 2 operator

r .
O =4Tr [0* - 155,02

and
3 e (O
e Taking }) # corresponds to adding a
ultitrace interaction [ W(O) to the CFT, such
that [Witten ‘02, Berkooz et al. '02]




Boundary Field Theory

String theory with AdS; »

S” boundary conditions is
dual to N =4 super '

theory in D =4
e For a = o~ 3/ris dual to A = 2
O = _fv— 2 I_E_- »2]
and
y l‘_l'.I
o Taking corresponds to adding a
nultitrace interaction [ W(Q®) to the CFT. such
that [Witten ‘02, Berkooz et al |
W
O = —3




Boundary Field Theory

String theory with AdS- S® boundary conditions is
= J .

dual to N =4 super Yang-Mills theory in D =4
e Fora=0go~3/r*isdualto A =2
O = _j - 38 I‘E—- 2|
and
; Py
e Taking = corresponds to adding a
ultitrace interaction [ W(O) to the CFT, such
that [Witten '02, Berkooz et al '




Boundary Field Theory

String theory with AdSs >

S° boundary conditions is
dual to \N'=4 super .

e in f._-i' = 4

e For = o~ 3/r* is dual to A =

and

e Taking corresponds to adding a
nultitrace interaction [ W(Q) to the CFT, such
th&t 1 o —— | - i ]

Berkooz et al




Boundary Field Theory

String theory with AdSs x S°® boundary conditions is

dual to N'=4 super Yang-Mills theory in D =4
e For a = o2~ 3/r* is dual to A =2
O =4Tr [0* - 155,67
and
3 e (O
e Taking }) corresponds to adding a
ultitrace interaction [ W(O) to the CFT, such
that |Witten 02, Berkooz et al 2]

oW
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Boundary Field Theory

String theory with AdSs x S® boundary conditions is

dual to N\ =4 super Yang-Mills theory in D = 4.
e For , @ ~ 3/r* is dual to A = 2 operat
5 I 1
O==Tr|o*—=Y . 50"
A |  2.i=29i |
and
P I\‘-‘!|
e Taking ¥) corresponds to adding a
ultitrace interaction [ W(O) to the CFT, such
that [Witten '02, Berkooz et al. '02)]
YW
Yy =— —




Boundary Field Theory

String theory with AdSs

<« 5% boundary conditions is
dual to N\ =4 super M

thec in D=4
e For = o~ 3/r* isdual to A = 2
O = %f_--' - '!__“EI.I__ _
and

e Taking corresponds to adding a
nultitrace in .[l WI(Q) to the CFT, such
that  [Witten '02, Berkooz et al. '02]




Boundary Field Theory

String theory with AdSs x S® boundary conditions is
dual to N\ =4 super Yang-M theory in D =4

e For o~ 3/r* is dual to A = 2 operatc

0 =#Tr [0* - 152,67

and
y % '\‘-\
e Taking 1) = U corresponds to adding a
ultitrace interaction [ W(O) to the CFT, such
that [Witten '02, Berkooz et al. '02}
YW
¥y — —




Boundary Field Theory

String theory with AdSs »

S° boundary conditions is
dual to \' =4 super !

theory in D =4
e For 2~ 3/r* is dual to A =2
and
; P
e Taking corresponds to adding a
nultitrace interaction [ W(Q) to the CFT, such
that [Witten '02, Berkooz et al. '02]
W
{y — — =




Boundary Field Theory

String theory with AdS;

< S5° boundary conditions is
dual to \'=4 super M

theory in D =
e For o = o~ 3/r* is dual to A = 2
O =LiTr (62 -15% , 42|
and
3 e (O
o Taking corresponds to adding a
nultitrace interaction [ W(®) to the CFT. such
that [Witten ‘02, Berkooz et al '




Boundary Field Theory

String theory with AdSs >

5" boundary conditions is
dual to N =4 super

ang-Mills theory in D =4
e For o~ 3/r* is dual to A = 2
k-j — _.Ir' s — 'LT*_ _
and
s (O
o Taking corresponds to adding a
trace fWI(O) to the CFT. such
that  [Witten ‘02, Berkooz et al. '02)]




Boundary Field Theory

String theory with AdSs; x S° boundary conditions is

dual to N =4 super Yang-Mills theory in D = 4.
o For , @~ 3/r° is dual to A = 2 operato
J:_%f_-'r p —fl_‘zi_l__n _
and
p =N |_‘_\
e Taking - corresponds to adding a

titrace interaction [ W(O) to the CFT, such
th&t 1 tier ' f:—"!-l'-'_'_" at 3i




Boundary Field Theory

String theory with AdSs; x S” boundary conditions is
dual to N =4 super Yang-Mills theory in D = 4.

e For @~ 3/r* is dual to A = 2 operat

0= 47r [ 15,4

and

e Taking 3) # corresponds to adding a
ultitrace interaction [ W(O) to the CFT, such
that [Witten '02, Berkooz et al. '02]




Boundary Field Theory

String theory with A4dS; x S boundary conditions is

dual to N\ =4 super s theorv in D = 4
e For a = o~ 3/r* is dual to A = 2
O — _I—[ 2_1y%6 52|
] | .
and
o Taking corresponds to adding a
nultitrace interaction [ W(Q) to the CFT, such
that [Witten ‘02, Berkooz et al




Boundary Field Theory

String theory with AdSs x S® boundary conditions is

dual to .\ =4 super Yang-Mills theory in D = 4.
e For . @~ 3/r* is dual to A = 2 operator
; X
O =1 Y = adt
and
F s k"‘l
o Taking 1) = U corresponds to adding a
ultitrace interaction [ W({O) to the CFT, such
that [Witten '02, Berkooz et al. '02]




Boundary Field Theory

String theory with AdSs

< 5 boundary conditions is
dual to \' =4 super M

theory in D = 4.

o For =

g~ I r= is dual to A = 2
) = _]." - l‘i__ _
and
FEEY L-"

corresponds to adding a

Hitrace interactior |’ WI(Q) to the CFT, such
that [Witten '02, Berkooz et al 2]

e Taking




Boundary Field Theory

String theory with AdS;

< 57 boundary conditions is
dual to .\ =4 super M

theory in D =4

e For = o~ 3/r* isdual to A = 2
O :—f_. 2 _!_.'{"“.'_ 2]
and

o Taking corresponds to adding a
Fitrace [fWI(O) to the CFT, such
that [Witten '02, Berkooz et al 2]




Boundary Field Theory

String theory with AdSs >

S® boundary conditions is
dual to \"=4 super lills

theory in D =4
e Fora=0, g~ 3/r“isdualto A =2
G':'}flr" _.—‘ETE'_“_I_ _
and
3 s (O
o Taking corresponds to adding a
Fitrace I[‘ii'-i_" to the CFT, such
that [Witten ‘02, Berkooz et al |




Boundary Field Theory

String theory with AdS;

<« 5% boundary conditions is
dual to .\ =4 super '

theory in D =
o For o~ 3/r* isdual to A =2
O = —r - LE_ 2]
and
3 s (O

e Taking corresponds to adding a
nultitrace interaction [ W(Q) to the CFT, such
that [Witten 02 ' |

., Berkooz et al




Boundary Field Theory

String theory with AdSs x S® boundary conditions is

dual to N\ =4 super Yang-Mills theory in D = 4.
e For @~ 3/r° is dual to A = 2 operat
k] r s # .|-
)= =Tr = A =
5 L e 8
and
. | s '\‘-\
e Taking o N - corresponds to adding a
titrace interaction [ W{QO) to the CFT, such
that [Witten '02, Berkooz et al. '02}
YW
(¥ — —




Boundary Field Theory

String theory with AdSs x S° boundary conditions is

dual to N =4 super Yang-Mills theory in D =4

e For — o~ 3/r* is dual to A\ =

k"ﬁ:‘;._]rl.{ _'___l_.'c'_‘" _'

and

e Taking corresponds to adding a

titrace interaction [ W(Q) to the CFT, such
that [Witten '02, Berkooz et al




Boundary Field Theory

String theory with AdSs x S° boundary conditions is

dual to N'=4 super Yang-Mills theory in D = 4.

e For o o~ 3/r* is dual to A = 2 opera

0= 4Tr [ 15,4

and

e Taking 3) # corresponds to adding a
titrace |nteractic f iTFL‘ o th'} CFT SU[:h

Th&t _..'1-.' tten L ::'-'l'-- oz et al ]




Boundary Field Theory

String theory with AdSs »

S® boundary conditions is
dual to \' =4 super lills

theory in D =4
e For = 2~ 3/r* is dual to A =2
O=4Tr|o*-130, 2]
and
3 s (O

o Taking corresponds to adding a
nultit ion [W(O) to the CFT, such

that  [Witten '02, Berkooz et al




Boundary Field Theory

String theory with AdSs; x S” boundary conditions is

dual to AV =4 super Yane=-Mills theorv in D = 4.
e For o~ 3/r° is dual to A = 2 operator
O ={Tr |0" - Lo 63
and
- kﬁ
e Taking corresponds to adding a
titrac I[' WI(Q) to the CFT, such
that [Witten '02, Berkooz et al :




Boundary Field Theory

String theory with AdSs

< S° boundary conditions is
dual to \' =4 super !

theory in D =4

o For o~ 3/r* isdual to A = 2
0 = 47+ [~ 158 , 7]
and
y F S 'l_-\

corresponds to adding a
race interaction [ W(O) to the CFT, such

), Berkooz et al




Boundary Field Theory

String theory with AdSs

<« 5° boundary conditions is
dual to \"=4 super M

thec in D=4
o For a = o2~ 3/r* is dual to A =2
O = _,%f_.' | - '-L_Eh__ _-_
and
o ,‘_"f'

corresponds to adding a

brac I["H' O) to the CFT, such
that  [Witten '02, Berkooz et al. '02]

e Taking




Boundary Field Theory

String theory with AdSs

< 5" boundary conditions is
dual to N =4 supe M

theory in D =4

o Eou . o~ 3/r* is dual to A =

0 =#Tr [0* ~ 155 ;43

and
P '\--\
e Taking = () corresponds to adding a
ultitrace interaction [ W(O) to the CFT, such
that [Witten ‘02, Berkooz et al. '02]
. W
(f = —




Boundary Field Theory

String theory with AdS; x S® boundary conditions is

dual to N =4 super Yang-Mills theory in D =4
e For a = o~ 3/r* is dual to A = 2
0=ATr[62_15% , 42
] | ;
and
3 s (O
o Taking corresponds to adding a
' I|" WI(Q) to the CFT, such
that  [Witten '02, Berkooz et al. '02)]




Boundary Field Theory

String theory with AdSs x S® boundary conditions is
dual to N =4 super Yang-Mills theory in D = 4.

e For o o~ 3/r* is dual to A = 2 operator

0-:%{'.-[ 2_1yv% 2

o Taking 1) = 0 corresponds to adding a
titrace interaction [ W{O) to the CFT, such

that [Witten '02, Berkooz et al. '02]




Boundary Field Theory

String theory with AdSs »

S° boundary conditions is
dual to \"'=4 super !

theory in D = 4
L] F':ll =

o~ 3/r* is dual to A =

J:%—F—-' _.—'E_‘T-MI_ 12

:-md

corresponds to adding a
fWI(O) to the CFT, such

2, Berkooz et al

e Taking

that [Witter




Boundary Field Theory

String theory with AdSs x S® boundary conditions is

dual to \' =4 super Yang-M theory in D = 4.
e For o~ 3/r* is dual to A = 2 operaton
O=4Tr|e2-15% ,, 2|
and
. | s "1-\
o Taking 1) # corresponds to adding a
ultitrace interaction [ W(O) to the CFT, such
th&t ..I‘. [taen S :'F- 0Z et i| _I
_ W
(Y — —




Boundary Field Theory

S'tl"ir"lg th;'fir"v' '.'u'ith _-‘En.'r.""'-'a ’ 'H':' bounda *?'?Jﬂditii:lll"'lﬁ i,:—.
dual to \N'=4 super Yang-Mills theory in D =4

e For o~ 3/r* is dual to A\ =

0=47r [0* - 150,43

and
P l\“
o Taking = () corresponds to adding a
ultitrace interaction [ W(O) to the CFT, such
that [Witten '02, Berkooz et al 2]
W




Boundary Field Theory

String theory with AdS; x S°® boundary conditions is
dual to N =4 super Yang-Mills theory in D =4

e For o = o~ 3/r* is dual to A = 2

y_ 1 |.2 156 2|

and
g [ = '\‘-‘:I
e Taking i) = 0 corresponds to adding a
ultitrace interaction [ W({O) to the CFT, such
that  [Witten '02, Berkooz et al. '02)]




Boundary Field Theory

String theory with AdSs x S° boundary conditions is

dual to \' =4 super Yang-Mills theory in D =4
e For o o~ 3/r* is dual to A = 2 operator
O=+Tr |0 —=Y ; »0°]
and
3 s (O
o Taking 1) = 0 corresponds to adding a
ultitrace interaction [ W(O) to the CFT, such
that [Witten '02, Berkooz et al. '02}




Boundary Field Theory

String theory with AdSs »

S5” boundary conditions is
dual to \"'=4 super !

theory in D =4
e For a = o~ 3/r“isdualto A =2
k"'.:.‘_],— 2 _‘I:E‘._: 2
and
p = |¥-'.I

o Taking corresponds to adding a
nultitrace s ot Il" WI(Q) to the CFT, such
that [Witten '02, Berl

Berkooz =t al




Boundary Field Theory

String theory with AdSs

< 5" boundary conditions is
dual to N =4 super M

theory in D =4
o For o~ 3/r* isdual to A = 2
O :_.%f_.' 2 ___[:E*.._- _
and
s (O

corresponds to adding a
race interaction [ W(O) to the CFT, such
[Witten ‘02, Berkooz et al. '02]

AW

o




Boundary Field Theory

String theory with AdSs x S® boundary conditions is

dual to N =4 super Yang-Mills theory in D = 4.
e For , @~ 3/r* is dual to A = 2 operat
0 =47r 02— 158,47
and
3 s (O
o Taking 1) = U corresponds to adding a
ultitrace interaction [ W(O) to the CFT, such
that |[Witten 02, Berkooz et al 2]
oW
Yy — —




Boundary Field Theory

String theory with AdSs x S° boundary conditions is
dual to \' =4 super Yang-Mills theory in D = 4.

e For @~ 3/r* is dual to A = 2 operat

0= 47r [ 155, 4]

and
; = ,\_"f'
e Taking 1) = 0 corresponds to adding a
ultitrace interaction [W({O) to the CFT, such
that tten ‘02 Berkooz et 3l _I
YW




Boundary Field Theory

String theory with AdSs; ¥ S° boundary conditions is

dual to N =4 super Yang-Mills theory in D =4
e For a = o~ 3/r* is dual to A =2
O = _f— 2 LE—- 2|
and
T =3 l‘_-'.I
e Taking corresponds to adding a
on [WI(O) to the CFT, such
that 'Witten '02. Berkooz et al. '02]
W
{y — — —




Boundary Field Theory

String theory with AdSs >

S* boundary conditions is
dual to .\ =4 super '

theory in D =4
e For o~ 3/r*is dual to A =2
O=1Tr|e2—1%% . 42
N | 5 Lai=2
and
3 s (O
e Taking corresponds to adding a
nultitrace interaction [ W(Q) to the CFT, such
that  [Witten '02, Berkooz et al. '02)]




Boundary Field Theory

String theory with AdSs x S® boundary conditions is

dual to N =4 super Yang-Mills theory in D = 4.

e For o @~ 3/r* is dual to A = 2 operat

0 =#Tr|6* ~ 155,47

and

3 s (O
e Taking 1) # corresponds to adding a
titrace [eraction f 'llI-F'L-‘ to the CFT EL.IE:h

that tte 12 Berkooz et 3l _

ol

a0

iy — —




Boundary Field Theory

String theory with AdS; »

S® boundary conditions is
dual to \"=4 super

ang-Mills theory in D =4

e For a = 2~ 3/r* is dual to A =

k_!':.—l_.f_-' _'___l_.z"_ \2]

and

o Taking corresponds to adding a
nultitrace interaction [ W(QO) to the CFT, such
that  [Witten '02, Berkooz et al. '02)]




Boundary Field Theory

String theory with AdSs > i boundary conditions is
dual to \V'=4 super Yane-Mills theorv in D = 4

e For o~ 3/r* is dual to A = 2 operator

)= 4T [6? 155,47

and
g N - '\‘-‘:I
e Taking F} corresponds to adding a
ultitrace interaction [ W(O) to the CFT, such
that tten 02, Berkooz et al _




Boundary Field Theory

String theory with AdSs >

S® boundary conditions is
dual to \' =4 super lills

theory in D =4
o For = o~ 3/r* isdual to A = 2
o frfﬁ-[ S el 2|
and
e |‘_-"I

e Taking corresponds to adding a

titrace interaction [ W(Q) to the CFT, such
that [Witten '02, E 2]

Berkooz at al




Boundary Field Theory

String theory with AdS; ¥ S° boundary conditions is

dual to N =4 super Yang-Mills theory in D =4
e For o~ 3/r* is dual to A = 2
C‘:%f—-' _-_%E--__ »2)
and
T =l |¥-'.I
e Taking corresponds to adding a
nultit ion [ WI(Q) to the CFT. such
that ten '02, Berkooz et al. '02]




Boundary Field Theory

String theory with AdSs >

S” boundary conditions is
dual to N =4 super

ang-Mills theory in D = 4.

e For a = o~ 3/r*is dual to A =2

O — _fv— 2 LE—- 2|
and
¥ L_-\

e Taking corresponds to adding a
nultitrace [W(O) to the CFT, such
that [Witten ‘02, Berkooz et al 5

W
O = ——




Boundary Field Theory

String theory with AdS; x S°® boundary conditions is
dual to N'=4 super Yang-Mills t

=% 3 Te0ry ”‘I _!._I:'Jl‘
e For = o~ 3/r* is dual to A = 2
&) — —f_ * — I‘E__u '
and
e (O

o Taking corresponds to adding a

nultitrace ion [W(QO) to the CFT, such

that  [Witten '02, Berkooz et al. '02]




Boundary Field Theory

String theory with AdS; x S°® boundary conditions is

dual to N =4 s — Yang-Mills theory in D =4
e For o = o~ 3/r* is dual to A = 2
and

o Taking corresponds to adding a

ace interaction [ WI(QO) to the CFT. such
that [Witten '02, Berkooz et al
IV
(¥ — 3




Boundary Field Theory

String theory with AdS; >

S* boundary conditions is
dual to N =4 super lills

theory in D =4
e For g ~ D r= is dual to A = 2
O = -_,%f_.' - 3 "!_'_EI.I__ _-_
and
s (€

e Taking corresponds to adding a
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Instability

This instability is a universal feature of the dual
description of AdS cosmologies: the field theory
directly "sees’ the gravitational instability associated
with singularity formation.

In particular it appears this is also a feature of
analogous cosmologies in four dimensions
i'-l_ i g :_:'-.--'r.‘!-: —L

— the AdS/CFT duality maps the problem
of cosmological singularities to the problem of
understanding field theories with unbounded potentials.
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Instability

This instability is a universal feature of the dual
description of AdS cosmologies: the field theory
directly "sees’ the gravitational instability associated
with singularity formation.

In particular it appears this is also a feature of
analogous cosmologies in four dimensions
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— the AdS/CFT duality maps the problem
of cosmological singularities to the problem of
understanding field theories with unbounded potentials.
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Instability

This instability is a universal feature of the dual
description of AdS cosmologies: the field theory
directly "sees’ the grawitational instability associated
with singularity formation.

In particular it appears this is also a feature of
analogous cosmologies in four dimensions
IT.H. & Horowitz '04]

— the AdS/CFT duality maps the problem
of cosmological singularities to the problem of
understanding field theories with unbounded potentials.
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Classical Dynamics

Consider first steepest unstable direction: V' = —5o

.
|
ks

Homogeneous background solution: o = /2

Genera sssical  solution near spacelike singular
hypersurface ¢ _(r

is f determined by "time delay” #,(7) and "energy
perturbation” p( T

— spatial gradients unimportant near singularity,
in regime where kif — £ <1

— evolution becomes " ultralocal” and different spatial
points decouple




Strategy

1. Describe quantum field background by set of
endent quantum mechanical systems, one for

each point in space

2. Take in account gradient degrees of freedom

perturbatively.

3. Calculate energy in created particles and venfy if
backreaction is small




Quantum Mechanics

A right-moving wave packet in V(zr) = —a“zP (for
-0 and p > 2) reaches infinity in finite time, which
would seem to lead to loss of probabilit

Restore unitarity by restricting domain of allowed
wavefunctions such that Hamiltonian is self-adjoint

o ¥

|need & 2ImMon |

T y i f

In fact, without a ' ' ' evotution
L5 [ T .F"l.ll'-l S5F .r.'l_"r i¥Yries

A basis can be constructed by taking the linear
combination of the WKE energy eigenfunctions that
for large x behaves as

241

Vg ~ (2a22?)—1 1\,{_— o

/211
U g|* ~xr™= atlarge x

Ultralocality: self-adjoint extension point by point




Homogeneous Rolling Field

Decompose: t.x) = olt) + dolt. x)

Kinetic term homogeneous mode: Va | dizo”

— Finite volume S°® acts as mass, so that even
homogeneous mode will undergo quantum spreading




Field Theory Evolution

Consider semiclassical expansion

Uoe.tr) = Aloe. ts)e™="\PF 1)

Solving Schrodinger eq in expansion of i one finds
S =Sl ts), where S_; is the action of the classical
solution that obeys

l.e. Gaussian wavepacket with spread Ao around o
just over potential barner

'I.' . F- F i M) <
F -
- ol b L
G { : ] = D
Vi te) with 0p - at time £, ~f; + 2k
— ¥ '-1 ."::","L i -'.'."- §1CiLd _\-il,'..'_'.*-'.rr:'\ are genenr |




Field Theory Evolution

nitary boundar nditions: implemented via method
of images, by adding "mirror” wave packet with

— QQuantum spread and unitarity mean Vo, t
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In terms of ¥ = /2/A L mirror classical solution is
: i
|
|
_an
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Imaginary part —ie near ¢ =~ (0 depends on final
argument o, of ¥. Typically € ~ ( Ao)”




Field Theory Evolution

Consider semiclassical expansion
'I. i L# p— _!| & TEli i 'rlr .I'.:

Solving Schrodinger eq in expansion of /i one finds
S =S l0ste), where S_; is the action of the classical
solution that obeys

1. Initial condition: &+ 2iA '73(Ad)2 = 6., t=*¢

l.e. Gaussian wavepacket with spread Ao around o
just over potential barrier.

'IJ _'_.'. P, &l S =
g - |
Flos ts with at time ¢, ~ { 2R




Field Theory Evolution

nitary boundar nditions: implemented via method
of images, by adding "mirror” wave packet with

y DB el 1) = — L =1

In terms of ¥ = \/2/\@ L mirror classical solution is

|
I | i
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Imaginary part —ie near ¢t =~ (0 depends on final
argument o, of ¥. Typically € ~ ( Ao)”




Does the universe bounce?

v ts) = (A 1t/ o Ajeivet™r(Opts)/R)
Early times: 57 dominates, wave packet rolling down.
Late times: 5, dominates, wave packet rolling up.

termediate times: Interference

Selt-adjoint extension would seem to imply that o rolls
up the hill again, returning to its original configuration

(]

But inhomogeneous modes 4¢© may be created and
drain energy out of

= | F ¥
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Particle creation

— extend method complex classical solutions
U(o.d0.t) = (A1e*V"™ + Age'@e®™ 2/ ")

with

We have calculated 45 7' (0.d0.f) for fluctuations
inititally in ground state.

Particle creation from mode mixing across bounce, so
that at late times




UV Cutoff

At large k, ) =~ o

- yckreactior egligible over entire bounce for

sufficiently wide wave packets (remember ¢ ~ (Ao ))
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Conclusion

A ‘'holographic’ description of (AdS) cosmology
involves unstable conformal fie thneories.

The ultralocality of the field theory evolution near
the singularity means one can specify consistent
unitary quantum evolution on the boundary by

imposing a self-adjoint extension point by point.
The quantum spread of the unstable homogeneous
mode provides a UV cutoff on particle creation

For a certain range of parameters, and for certain
states, this leads to a high probability for the
homogeneous field to roll back up

It is natural to interpret this in the bulk as a quantum
transition from a3 big crunch t




Conclusion

e The extension of these results to realistic models
may lead to interesting cosmologies that bounce
and have an arrow of time pointing in the same

direction everywhere.
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UV Cutoff

At large k, %) = e~ g3k

e ICKreactior egligible over entire bounce for

sufficiently wide wave packets (remember ¢ ~ (Ao )?)
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