Title: Big Crunch to Big Bang with AdS/CFT

Date: Mar 07, 2008 09:00 AM

URL: http://pirsa.org/08030042

Abstract:

Pirsa: 08030042 Page 1/741

From Big Crunch to Big Bang with AdS/CFT

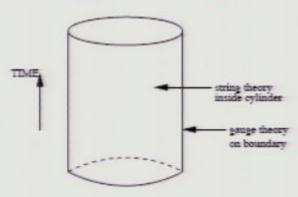
Perimeter Institute

March 2008

Thomas Hertog (APC-Paris)

w/ Ben Craps, Neil Turok arXiv:0711.1824; arXiv:0712.4180 [hep-th]

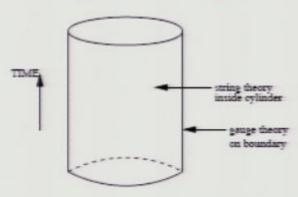
String the by with anti-de Sitter boundary conditions is equivalent to certain gauge theories living on the boundary of the AdS cylinder. [Maldacena '97]



e.g. String theory on $AdS_5 \times S^5$ is dual to $\mathcal{N}=4$ super Yang-Mills theory on $\mathbb{R} \times S^3$ with SU(N), where

$$R^4/l_s^4 \leftrightarrow g_{YM}^2 N = g_t, \qquad g_s \leftrightarrow 1/N$$

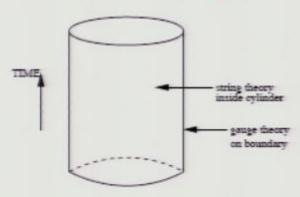
String theory with anti-de Sitter boundary conditions is equivalent to certain gauge theories living on the boundary of the AdS cylinder. [Maldacena '97]



e.g. String theory on $AdS_5 \times S^5$ is dual to $\mathcal{N}=4$ super Yang-Mills theory on $\mathbb{R} \times S^3$ with SU(N), where

$$R^4/l_s^4 \leftrightarrow g_{YM}^2 N = g_t, \qquad g_s \leftrightarrow 1/N$$

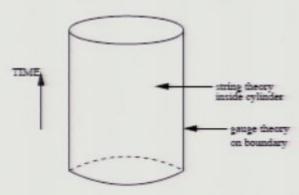
String theory with anti-de Sitter boundary conditions is equivalent to certain gauge theories living on the boundary of the AdS cylinder. [Maldacena '97]



e.g. String theory on $AdS_5 \times S^5$ is dual to $\mathcal{N}=4$ super Yang-Mills theory on $\mathbb{R} \times S^3$ with SU(N), where

$$R^4/l_s^4 \leftrightarrow g_{YM}^2 N = g_t, \qquad g_s \leftrightarrow 1/N$$

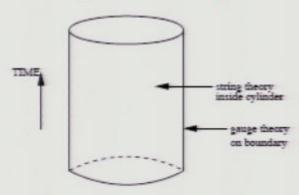
String theory with anti-de Sitter boundary conditions is equivalent to certain gauge theories living on the boundary of the AdS cylinder. [Maldacena '97]



e.g. String theory on $AdS_5 \times S^5$ is dual to $\mathcal{N}=4$ super Yang-Mills theory on $\mathbb{R} \times S^3$ with SU(N), where

$$R^4/l_s^4 \leftrightarrow g_{YM}^2 N = g_t, \qquad g_s \leftrightarrow 1/N$$

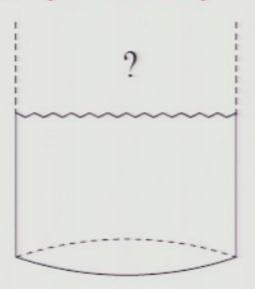
String theory with anti-de Sitter boundary conditions is equivalent to certain gauge theories living on the boundary of the AdS cylinder. [Maldacena '97]



e.g. String theory on $AdS_5 \times S^5$ is dual to $\mathcal{N}=4$ super Yang-Mills theory on $\mathbb{R} \times S^3$ with SU(N), where

$$R^4/l_s^4 \leftrightarrow g_{YM}^2 N = g_t, \qquad g_s \leftrightarrow 1/N$$

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



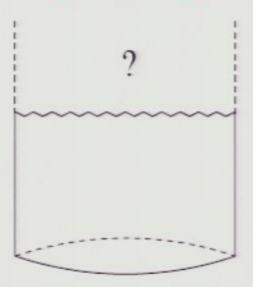
- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



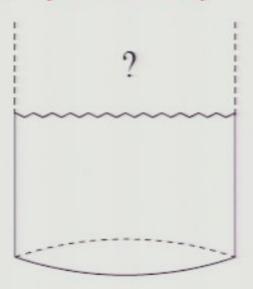
- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].

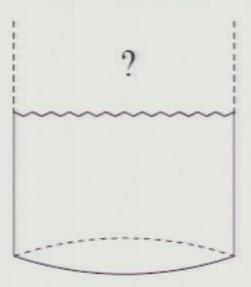


- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].

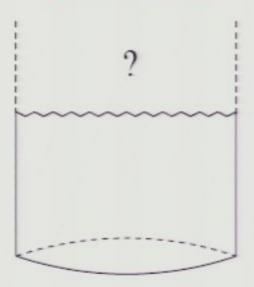
- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



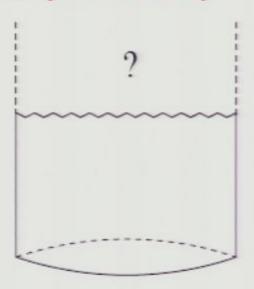
- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



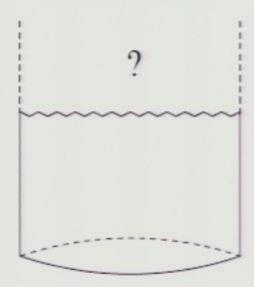
- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



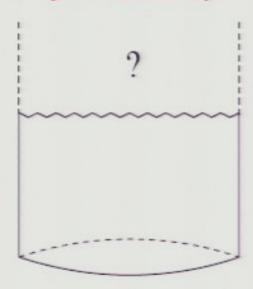
- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



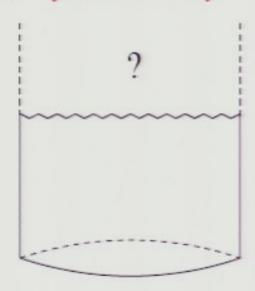
- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



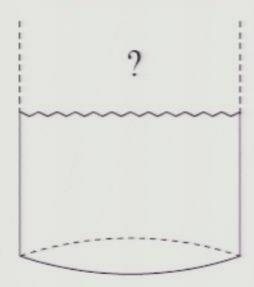
- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



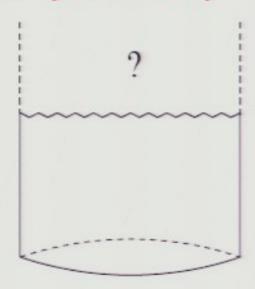
- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



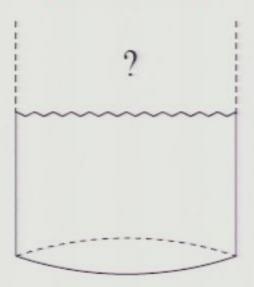
- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



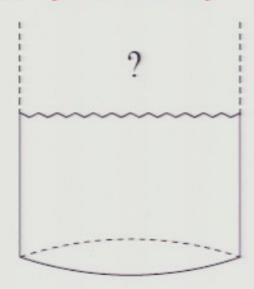
- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



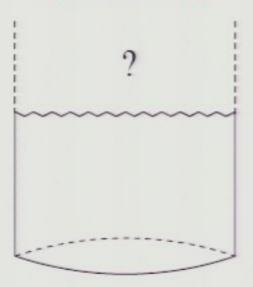
- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



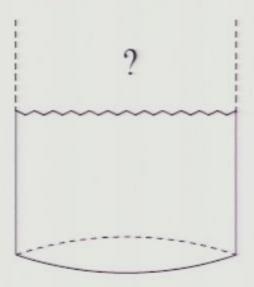
- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



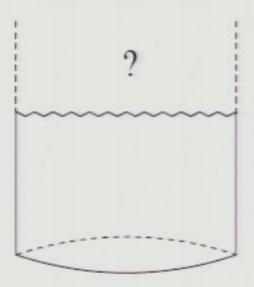
- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

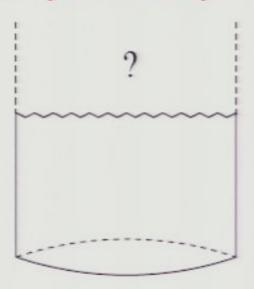
Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

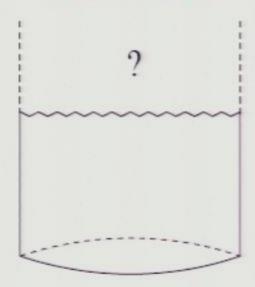
Page 26/741

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

Generalization: SUGRA solutions where smooth asymptotically AdS initial data evolve to a big crunch in the future [TH, Horowitz '04].



- 1. Does the dual gauge theory evolution "resolve" the singularity in the bulk?
- 2. If so, what is the typical bulk spacetime at late times?

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: N = 4 SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: N = 4 SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

Page 30/74

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: N = 4 SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: N = 4 SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: N = 4 SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: N = 4 SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: $\mathcal{N}=4$ SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: N = 4 SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: N = 4 SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

irsa: 08030042

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: $\mathcal{N}=4$ SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

Pirsa: 08030042

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: N = 4 SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

irsa: 08030042

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: $\mathcal{N}=4$ SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

Pirsa: 08030042

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: N = 4 SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

Pirsa: 08030042

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: $\mathcal{N}=4$ SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

Page 42/74

- ullet Bulk theory: string theory on $AdS_5 imes S^5$ with modified boundary conditions.
- Boundary theory: N = 4 SYM with unstable double trace deformation.
- Boundary evolution: ultralocality and self-adjoint extensions.
- Quantum Evolution of homogeneous component.
- Particle creation → bounce or not?

irsa: 08030042

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t, r, \Omega) = \frac{\alpha(t, \Omega) \ln r}{r^2} + \frac{\beta(t, \Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t, r, \Omega) = \frac{\alpha(t, \Omega) \ln r}{r^2} + \frac{\beta(t, \Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t, r, \Omega) = \frac{\alpha(t, \Omega) \ln r}{r^2} + \frac{\beta(t, \Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2 = -4 = m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V = -\frac{15}{4}e^{2\gamma\varphi} - \frac{5}{2}e^{-4\gamma\varphi} + \frac{1}{4}e^{-10\gamma\varphi}, \quad \gamma = \sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

No Signal VGA-1

Pirsa: 08030042 Page 115/74

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

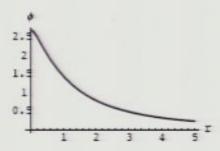
Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



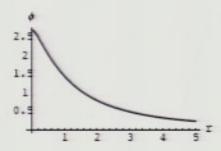
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



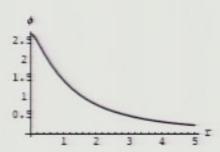
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



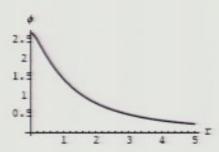
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



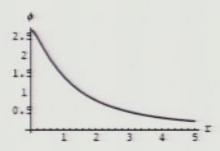
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f>0 there are smooth $M\approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

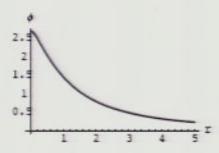
Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



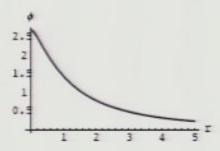
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



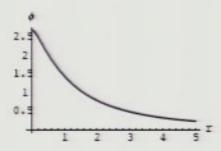
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



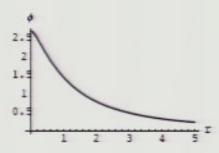
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



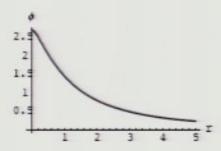
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



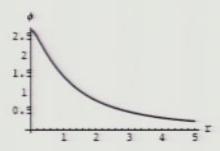
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



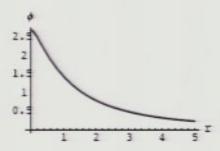
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



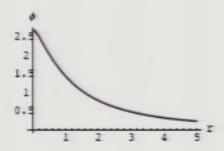
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar φ has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t, r, \Omega) = \frac{\alpha(t, \Omega) \ln r}{r^2} + \frac{\beta(t, \Omega)}{r^2}$$

Consider a consistent truncation of 10d type IIB SUGRA compactified on S^5 involving only gravity and a single scalar field with potential

$$V=-\tfrac{15}{4}e^{2\gamma\varphi}-\tfrac{5}{2}e^{-4\gamma\varphi}+\tfrac{1}{4}e^{-10\gamma\varphi},\quad \gamma=\sqrt{2/15}$$

The scalar arphi has $m^2=-4=m_{BF}^2$

AdS cylinder:
$$ds^2 = -(1+r^2)dt^2 + \frac{dr^2}{1+r^2} + r^2d\Omega_3$$

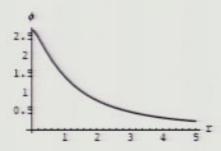
Near the boundary (at large radius r) of the anti-de Sitter cylinder φ decays as

$$\varphi(t,r,\Omega) = \frac{\alpha(t,\Omega) \ln r}{r^2} + \frac{\beta(t,\Omega)}{r^2}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



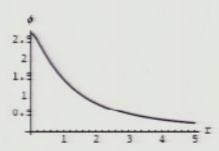
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



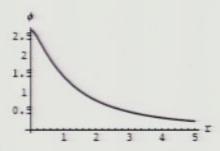
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



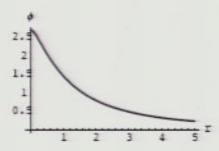
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



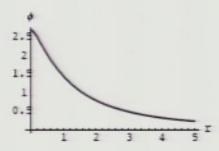
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



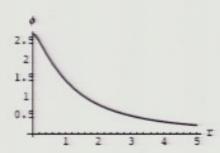
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



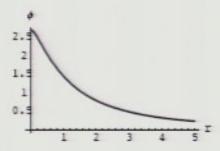
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



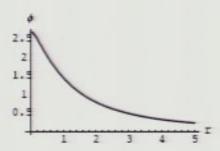
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



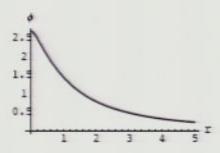
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



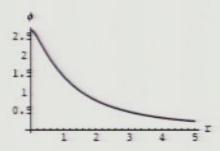
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



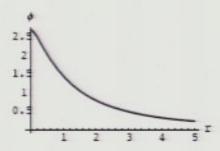
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



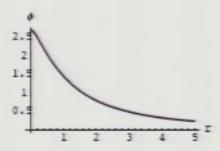
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



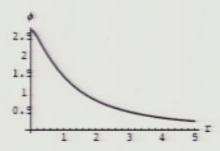
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



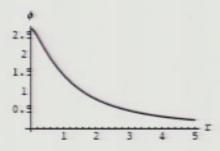
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



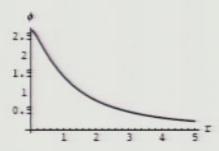
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



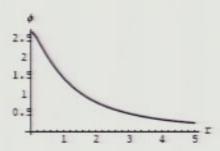
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



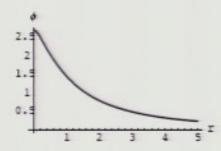
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r \right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



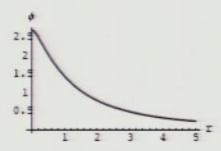
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



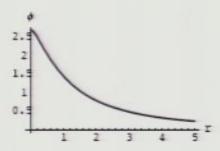
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



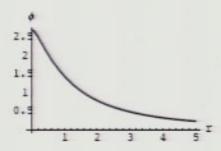
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



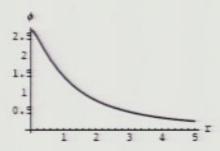
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



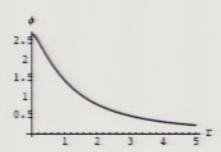
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



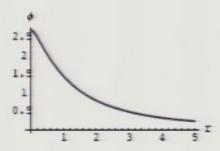
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



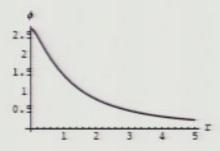
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



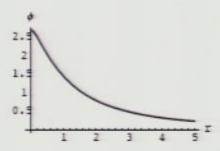
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



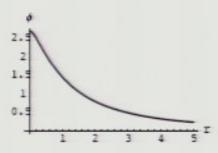
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



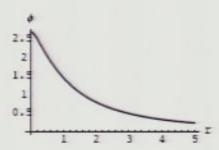
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



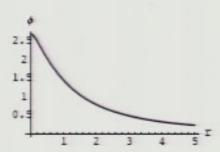
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



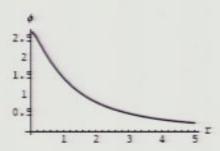
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



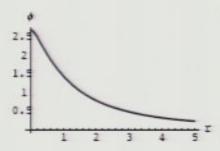
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



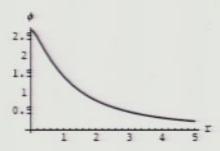
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



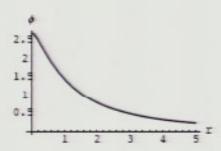
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



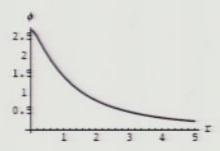
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



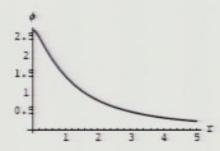
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



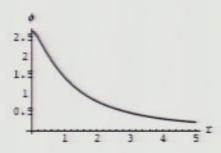
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



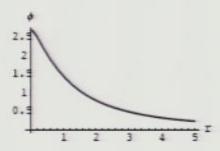
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



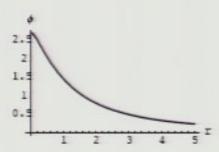
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



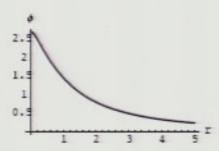
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



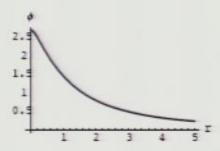
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



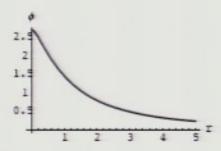
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



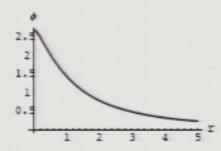
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



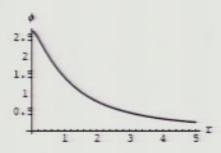
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



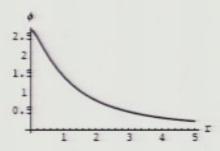
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



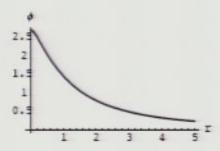
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f>0 there are smooth $M\approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



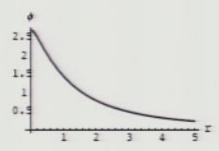
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



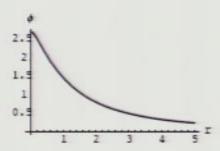
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



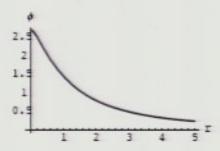
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



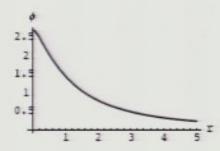
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



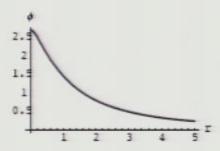
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



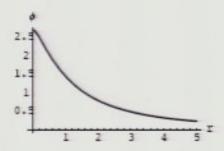
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Boundary Field Theory

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

• Taking $\alpha(\beta) \neq 0$ corresponds to adding a multitrace interaction $\int W(\mathcal{O})$ to the CFT, such that [Witten '02, Berkooz et al. '02]

$$\alpha = -\frac{\delta W}{\delta \beta}$$

Boundary Field Theory

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

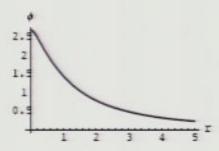
• Taking $\alpha(\beta) \neq 0$ corresponds to adding a multitrace interaction $\int W(\mathcal{O})$ to the CFT, such that [Witten '02, Berkooz et al. '02]

$$\alpha = -\frac{\delta W}{\delta \beta}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



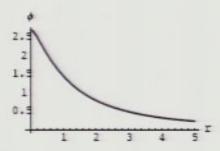
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



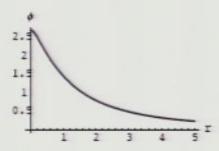
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



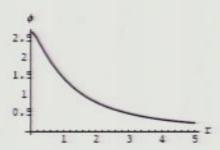
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



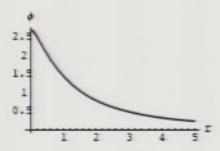
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



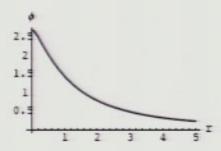
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



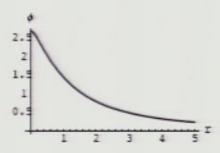
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



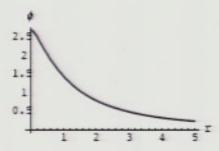
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



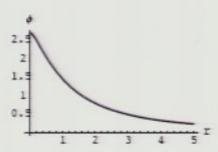
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



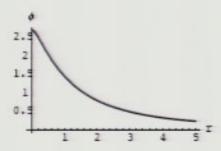
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r \right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



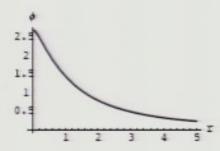
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



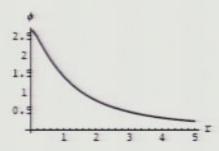
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



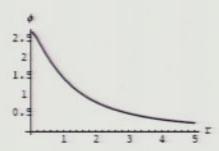
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



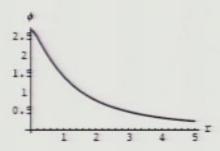
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



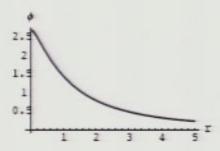
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



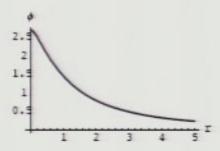
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



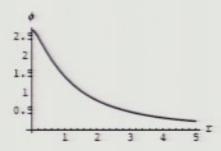
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



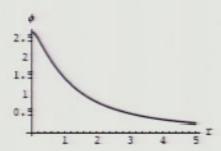
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Boundary Field Theory

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha=0$, $\varphi\sim\beta/r^2$ is dual to $\Delta=2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

• Taking $\alpha(\beta) \neq 0$ corresponds to adding a multitrace interaction $\int W(\mathcal{O})$ to the CFT, such that [Witten '02, Berkooz et al. '02]

$$\alpha = -\frac{\delta W}{\delta \beta}$$

Boundary Field Theory

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

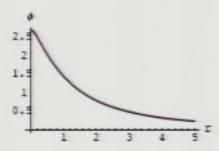
• Taking $\alpha(\beta) \neq 0$ corresponds to adding a multitrace interaction $\int W(\mathcal{O})$ to the CFT, such that [Witten '02, Berkooz et al. '02]

$$\alpha = -\frac{\delta W}{\delta \beta}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



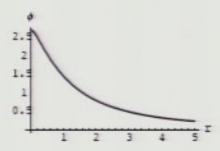
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



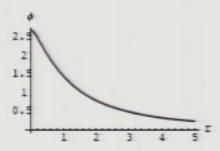
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



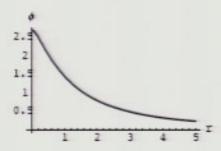
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



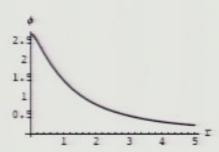
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



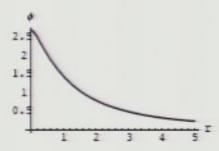
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



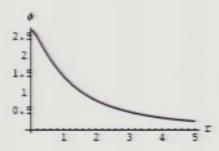
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r \right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



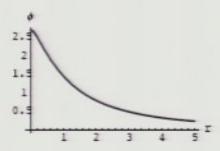
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



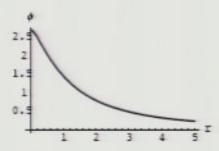
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



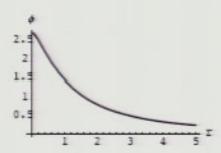
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



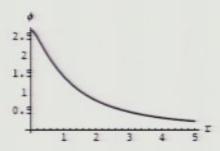
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



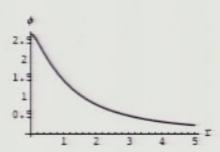
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



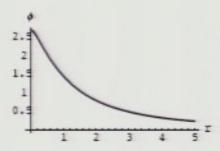
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



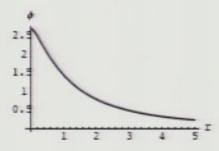
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



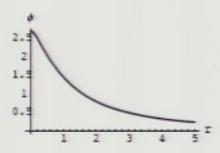
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



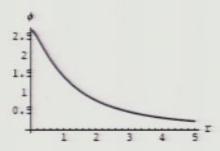
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



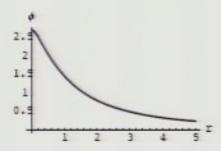
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



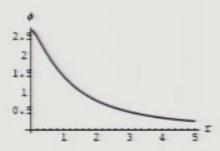
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



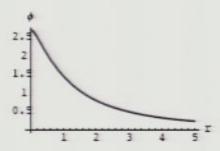
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



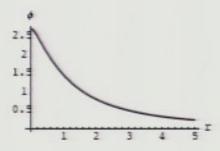
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



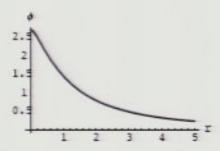
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r \right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



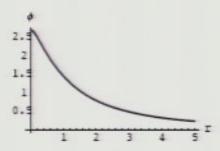
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



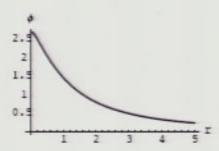
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



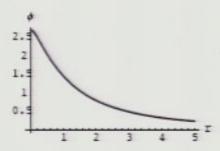
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



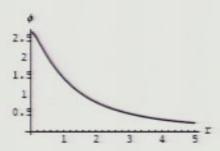
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



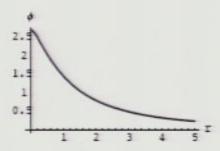
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



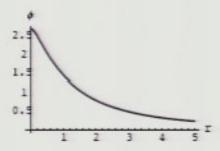
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



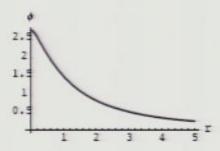
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



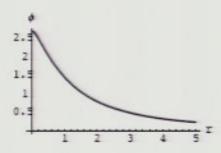
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



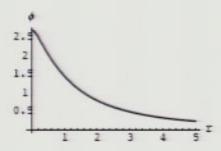
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



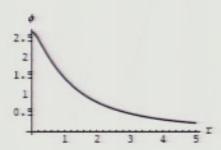
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



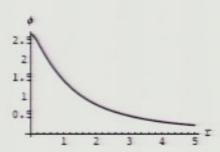
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



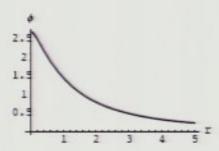
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



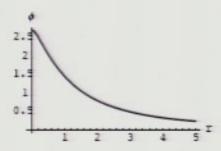
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



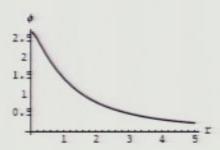
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



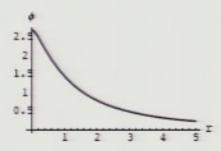
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r \right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



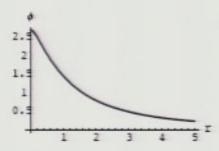
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



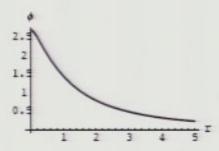
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



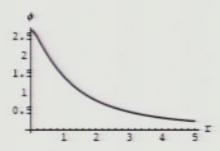
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



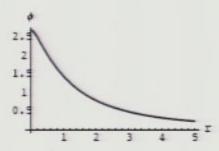
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



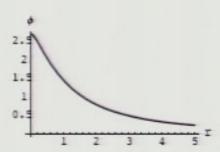
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



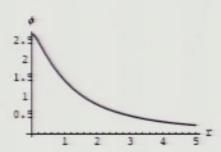
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



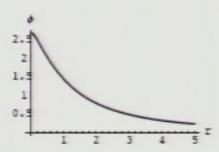
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



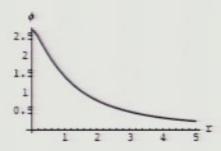
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



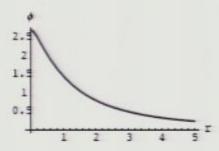
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



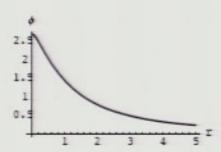
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



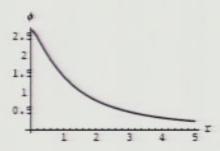
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



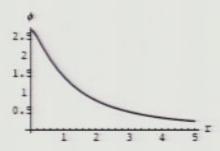
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



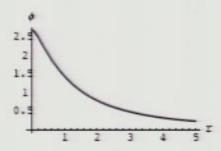
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



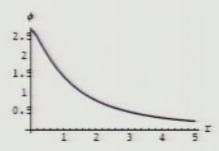
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



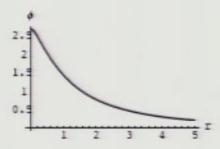
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



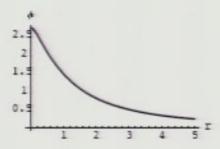
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



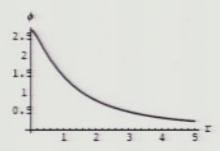
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



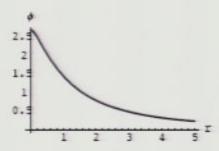
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



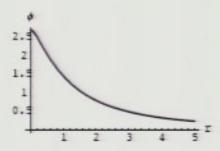
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



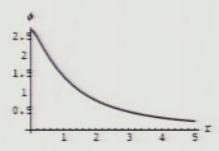
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



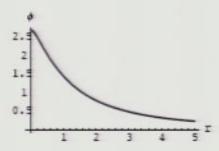
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



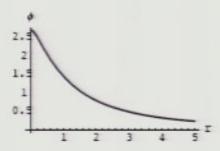
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



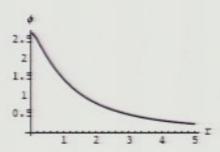
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



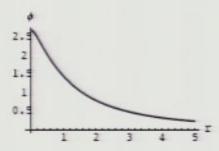
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



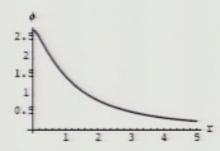
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



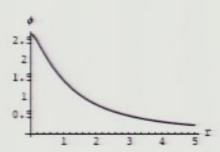
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



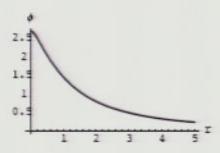
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



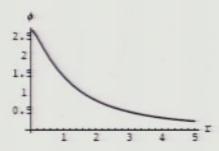
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



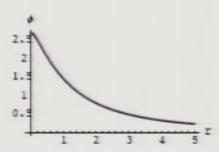
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



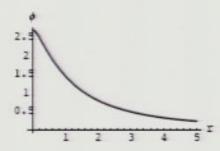
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



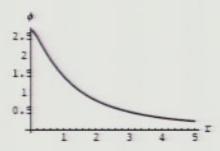
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



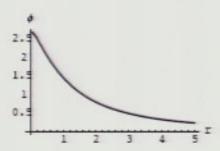
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



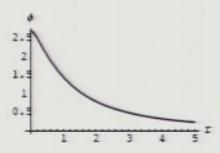
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



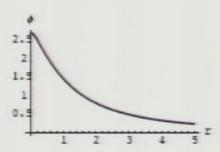
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



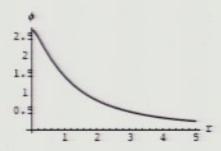
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



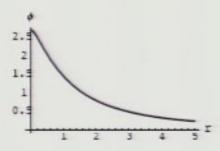
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



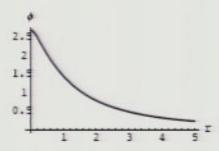
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



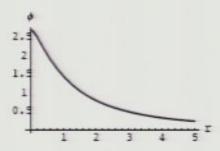
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



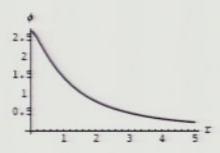
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



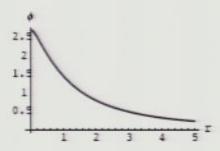
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



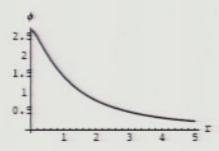
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



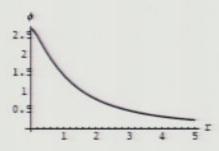
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



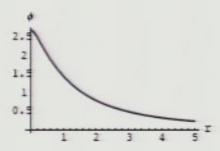
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



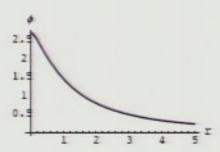
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



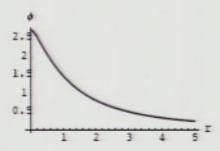
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r \right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



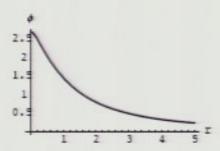
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



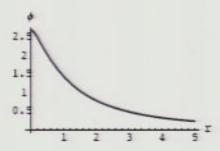
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



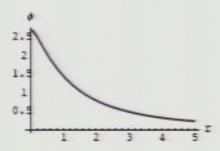
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



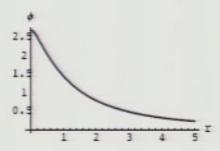
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



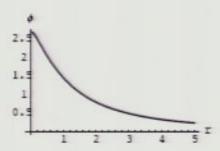
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



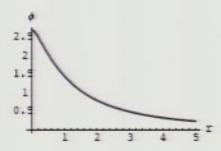
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



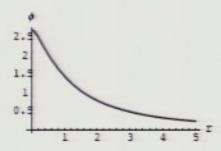
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



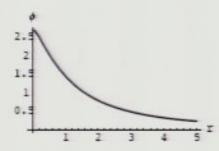
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



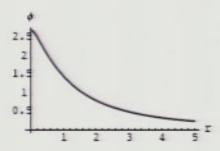
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



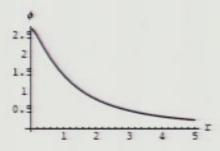
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



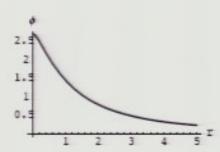
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



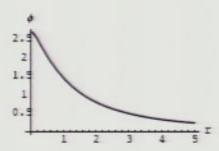
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



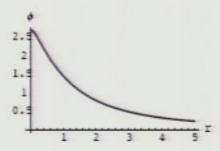
Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} \left(1 + f \ln r\right) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.



Asymptotically (at large r) one has

$$\varphi \approx \frac{\beta(t)}{r^2} (1 + f \ln r) + \mathcal{O}(r^{-3}), \qquad \beta(t) = \frac{\beta(0)}{\cos^2 t}$$

Take boundary conditions $\alpha = f\beta$, f > 0

Conserved charges remain finite but asymptotic conformal invariance is logarithmically broken.

For f > 0 there are smooth $M \approx 0$ initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha=0$, $\varphi\sim\beta/r^2$ is dual to $\Delta=2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^{6} \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^{6} \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha=0$, $\varphi\sim\beta/r^2$ is dual to $\Delta=2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha=0$, $\varphi\sim\beta/r^2$ is dual to $\Delta=2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^{6} \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha=0$, $\varphi\sim\beta/r^2$ is dual to $\Delta=2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha=0$, $\varphi\sim\beta/r^2$ is dual to $\Delta=2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha=0$, $\varphi\sim\beta/r^2$ is dual to $\Delta=2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha=0$, $\varphi\sim\beta/r^2$ is dual to $\Delta=2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha=0$, $\varphi\sim\beta/r^2$ is dual to $\Delta=2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha=0$, $\varphi\sim\beta/r^2$ is dual to $\Delta=2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha=0$, $\varphi\sim\beta/r^2$ is dual to $\Delta=2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

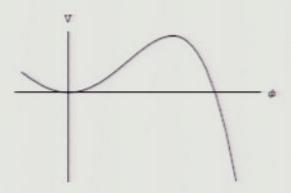
and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

With $\alpha = f\beta$,

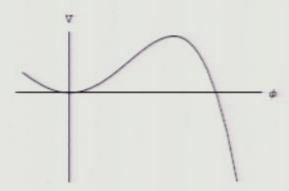
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

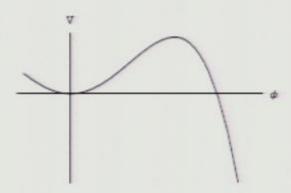
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

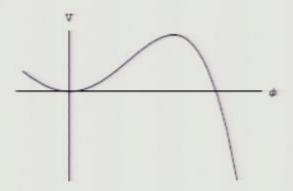
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

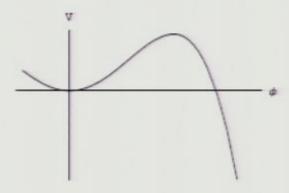
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

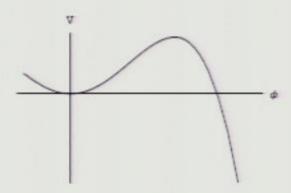
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

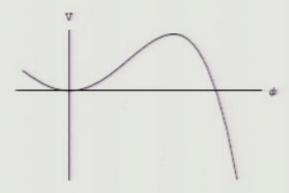
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

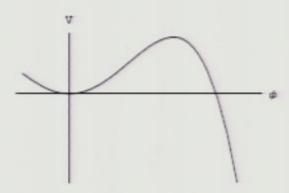
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

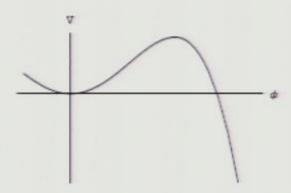
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

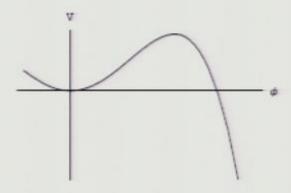
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

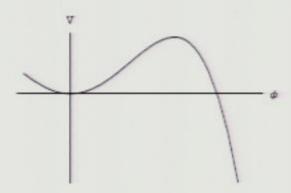
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

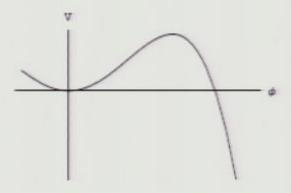
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

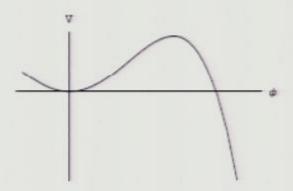
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

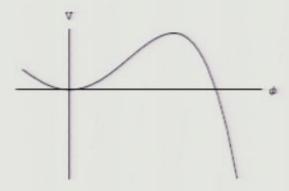
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

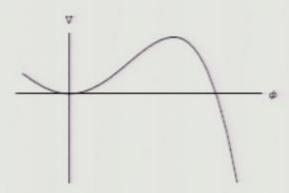
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

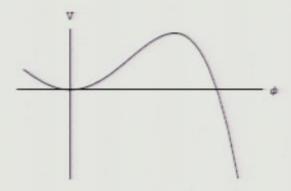
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

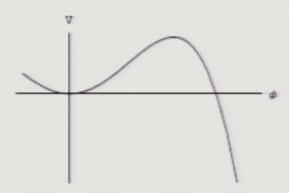
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

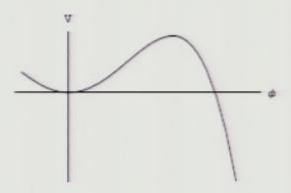
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

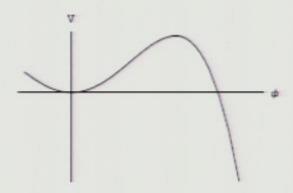
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

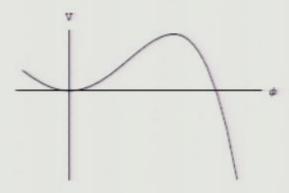
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

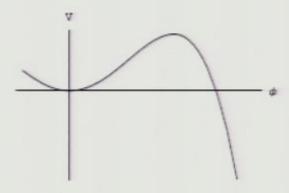
and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

$$\alpha = -\frac{\delta W}{\delta \beta}$$

With $\alpha = f\beta$,

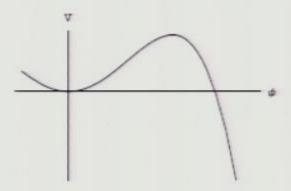
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

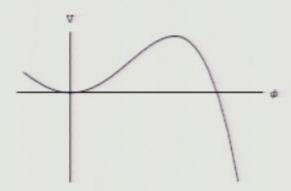
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

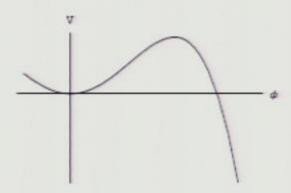
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

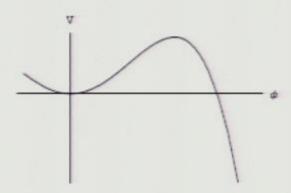
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

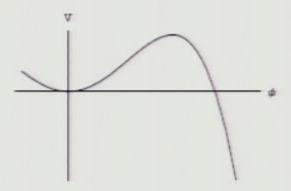
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

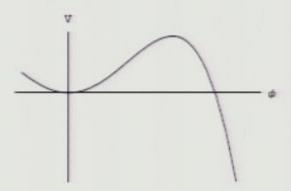
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

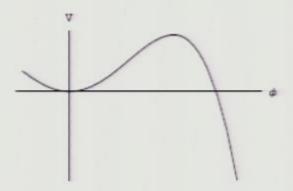
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

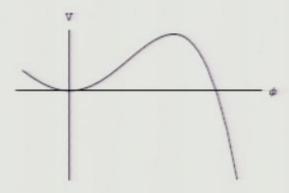
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

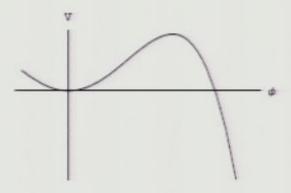
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

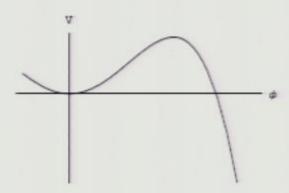
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

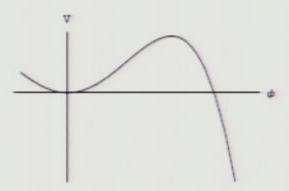
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

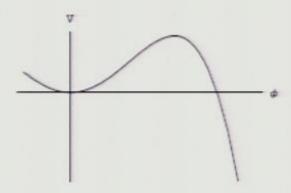
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

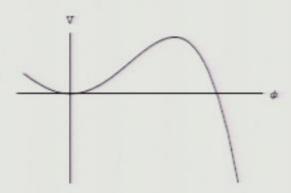
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

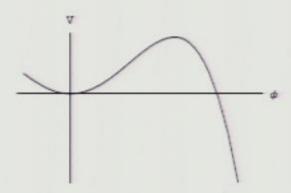
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

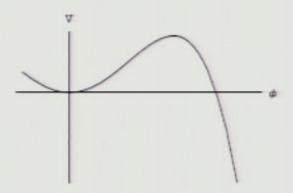
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

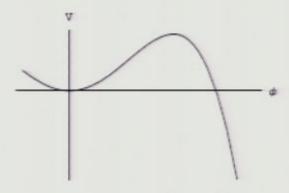
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

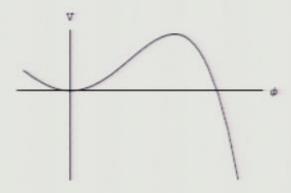
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

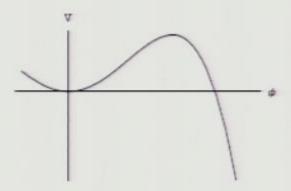
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

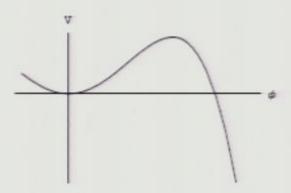
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

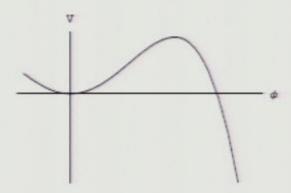
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

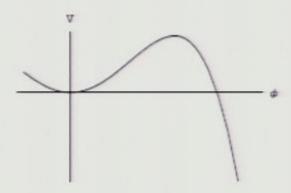
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

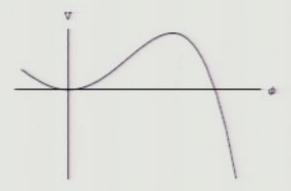
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

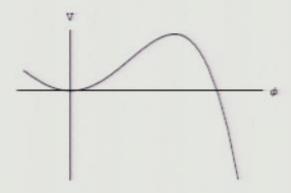
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

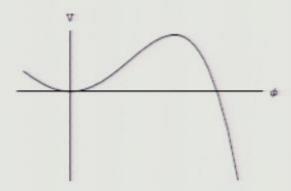
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2}\phi^2 - \lambda\phi^4$$

Boundary Field Theory

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

ullet Taking lpha(eta)
eq 0 corresponds to adding a multitrace interaction $\int W(\mathcal{O})$ to the CFT, such that [Witten '02, Berkooz et al. '02]

$$\alpha = -\frac{\delta W}{\delta \beta}$$

Boundary Field Theory

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha = 0$, $\varphi \sim \beta/r^2$ is dual to $\Delta = 2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

• Taking $\alpha(\beta) \neq 0$ corresponds to adding a multitrace interaction $\int W(\mathcal{O})$ to the CFT, such that [Witten '02, Berkooz et al. '02]

$$\alpha = -\frac{\delta W}{\delta \beta}$$

Boundary Field Theory

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}{=}4$ super Yang-Mills theory in D=4.

• For $\alpha=0$, $\varphi\sim\beta/r^2$ is dual to $\Delta=2$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr \left[\phi^2 - \frac{1}{5} \sum_{i=2}^6 \phi_i^2 \right]$$

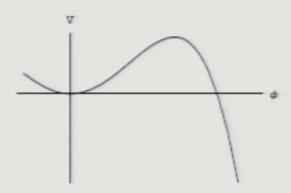
and

$$\beta \leftrightarrow \langle \mathcal{O} \rangle$$

• Taking $\alpha(\beta) \neq 0$ corresponds to adding a multitrace interaction $\int W(\mathcal{O})$ to the CFT, such

With $\alpha = f\beta$,

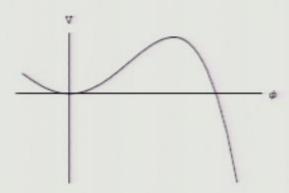
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

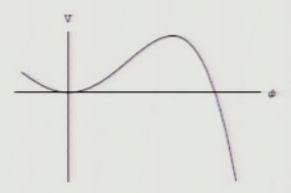
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

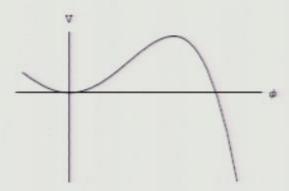
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

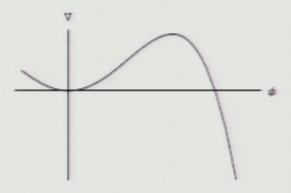
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

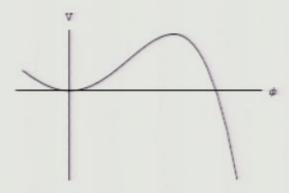
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

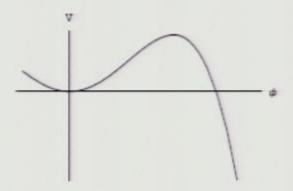
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

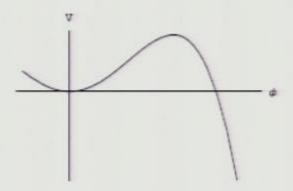
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

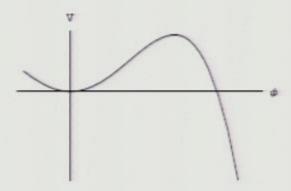
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

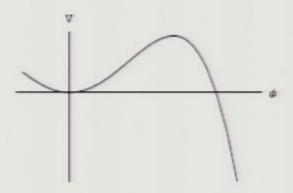
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

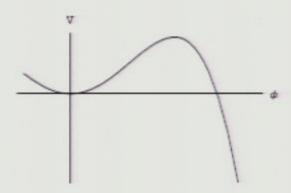
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

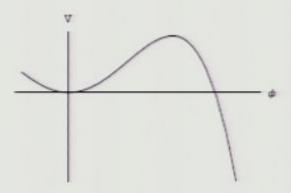
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

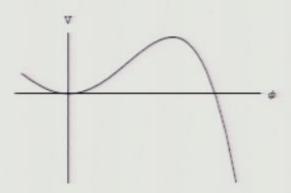
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

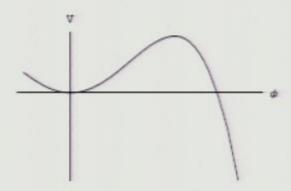
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

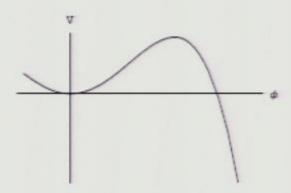
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

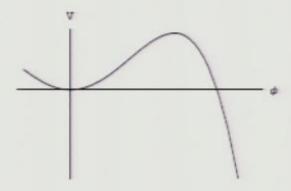
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

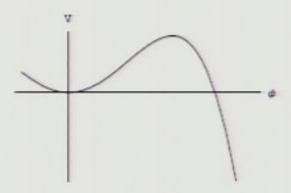
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

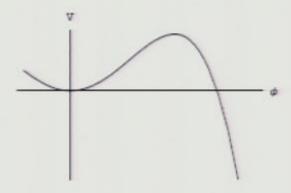
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2}\phi^2 - \lambda\phi^4$$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_\phi \phi^4,$$

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_\phi \phi^4,$$

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4,$$

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4,$$

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4,$$

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence
$$\mathcal{V}(\mathcal{O}) \to -\infty$$
 for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_\phi \phi^4,$$

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \rightarrow -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_\phi \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence
$$\mathcal{V}(\mathcal{O}) \to -\infty$$
 for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4,$$

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4,$$

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_\phi \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_\phi \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4,$$

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

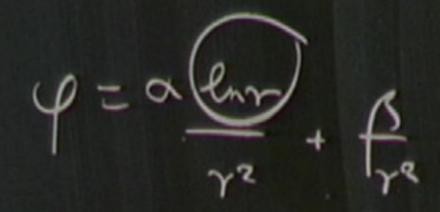
→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$



This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

irsa: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

Page 492/741

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

a: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

irsa: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

irsa: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

irsa: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

irsa: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

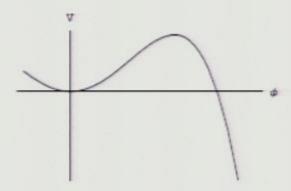
In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

With $\alpha = f\beta$,

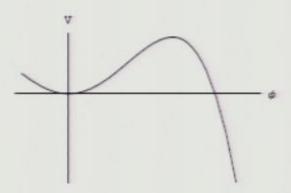
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

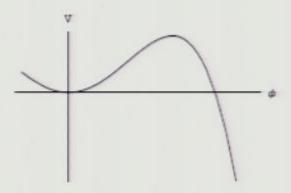
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

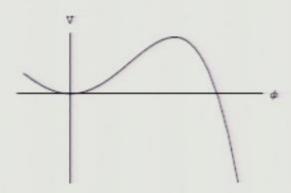
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

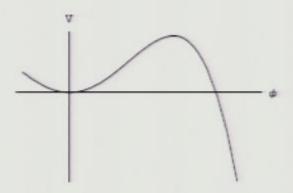
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

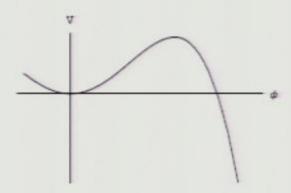
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

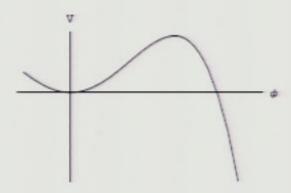
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

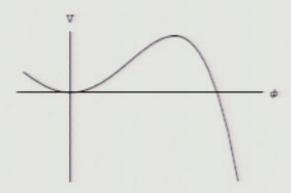
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

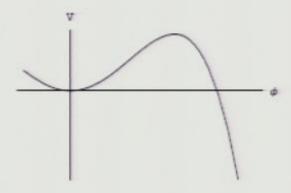
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

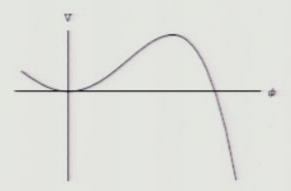
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

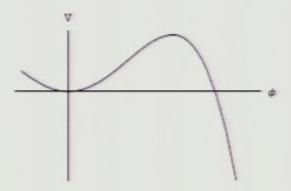
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

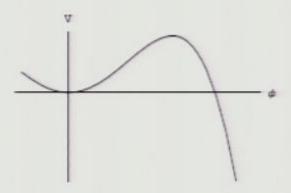
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

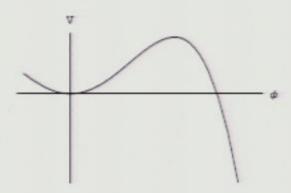
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

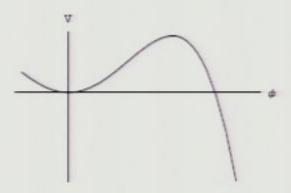
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

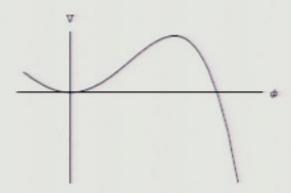
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

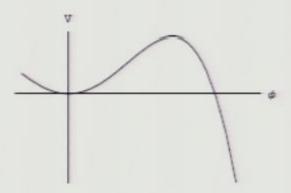
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

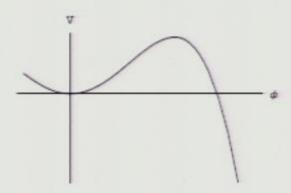
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

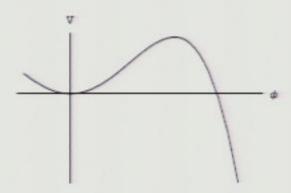
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

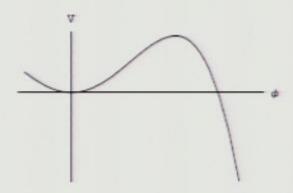
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

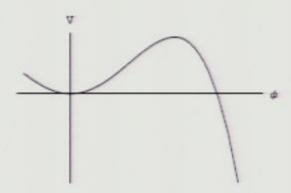
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

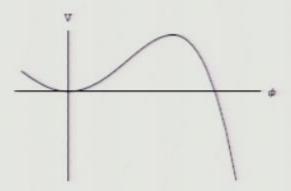
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

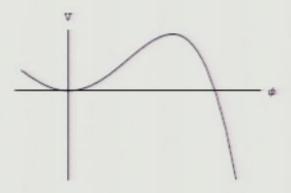
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

With $\alpha = f\beta$,

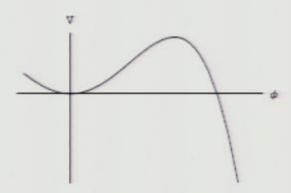
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

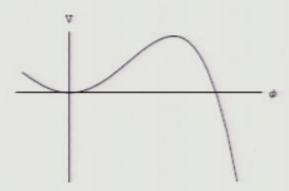
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

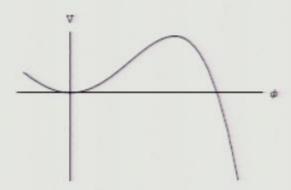
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

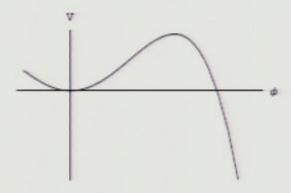
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

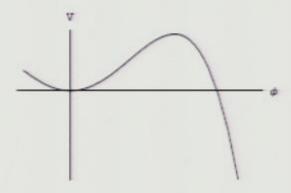
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

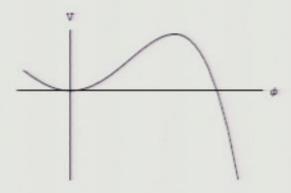
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

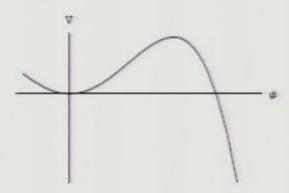
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

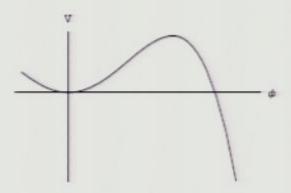
$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$V(\phi) \sim +R^{-2}\phi^2 - \lambda\phi^4$$

With $\alpha = f\beta$,

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$



$$\mathcal{V}(\phi) \sim + R^{-2} \phi^2 - \lambda \phi^4$$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4,$$

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_\phi \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4,$$

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_\phi \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4,$$

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_\phi \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_\phi \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

Pirsa: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

rsa: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

sa: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

sa: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

rsa: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

sa: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

What are the principles?

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

What are the principles?

rsa: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

What are the principles?

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

What are the principles?

rsa: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

What are the principles?

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

What are the principles?

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

What are the principles?

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

What are the principles?

rsa: 08030042

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

What are the principles?

Page 590/741

This instability is a universal feature of the dual description of AdS cosmologies: the field theory Homogeneous background solution: $\varphi = \sqrt{2/\lambda} |t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- ightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \Big] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda} |t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda} |t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\chi \equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right.$$

$$\left. + \frac{1}{6}(t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t - t_*)^5 + \ldots\right]$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda} |t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda} |t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4} \varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots] \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Consider first steepest unstable direction: $V = -\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim [t-t_*(\bar{x})\\ + &\frac{1}{6}(t-t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x})(t-t_*)^5 + \ldots \end{split}$$

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Instability

This instability is a universal feature of the dual description of AdS cosmologies: the field theory directly "sees" the gravitational instability associated with singularity formation.

In particular it appears this is also a feature of analogous cosmologies in four dimensions.

[T.H. & Horowitz '04]

→ the AdS/CFT duality maps the problem of cosmological singularities to the problem of understanding field theories with unbounded potentials.

What are the principles?

rsa: 08030042

Effective Potential

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4,$$

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

Note: logarithmic running λ_{ϕ} consistent with asymptotic behavior of bulk scalar, $\alpha = f\beta$ [Witten '02]

Effective Potential

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_\phi \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

Note: logarithmic running λ_{ϕ} consistent with asymptotic behavior of bulk scalar, $\alpha = f\beta$ [Witten '02]

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence
$$\mathcal{V}(\mathcal{O}) \to -\infty$$
 for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} ,

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4,$$

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

This remains true at small 't Hooft coupling

→ Ben's talk!

$$S = S_{YM} + \frac{f}{2} \int \mathcal{O}^2$$

Dual field theory is renormalizable and asymptotically free in f, β_f is one-loop exact at large N so that effective potential is under excellent control at large \mathcal{O} .

$$\mathcal{V}(\mathcal{O}) = -\frac{\mathcal{O}^2}{\ln(\mathcal{O}/M^2)} \to -\frac{\phi^4}{N^2 \ln(\phi/M)} \equiv -\lambda_{\phi} \phi^4$$
,

Hence $\mathcal{V}(\mathcal{O}) \to -\infty$ for $\mathcal{O} \to \infty$

Classical Dynamics

Consider first steepest unstable direction: $V=-\frac{\lambda}{4}\varphi^4$.

Homogeneous background solution: $\varphi = \sqrt{2/\lambda}|t|^{-1}$.

General classical solution near spacelike singular hypersurface $t_{st}(x)$

$$\begin{split} \chi &\equiv \sqrt{2/\lambda} \varphi^{-1} \sim \left[t - t_*(\bar{x})\right. \\ &\left. + \frac{1}{6} (t - t_*)^2 \nabla^2 t_* + \ldots + \rho(\bar{x}) (t - t_*)^5 + \ldots \right] \end{split}$$

is fully determined by "time delay" $t_*(\bar{x})$ and "energy perturbation" $\rho(\bar{x})$.

- \rightarrow spatial gradients unimportant near singularity, in regime where $k(t-t_*(x)) \leq 1$.
- → evolution becomes "ultralocal" and different spatial points decouple

Strategy

- Describe quantum field background by set of independent quantum mechanical systems, one for each point in space.
- Take in account gradient degrees of freedom perturbatively.
- Calculate energy in created particles and verify if backreaction is small

Page 729/741

Quantum Mechanics

A right-moving wave packet in $V(x) = -a^2x^p$ (for x > 0 and p > 2) reaches infinity in finite time, which would seem to lead to loss of probability.

Restore unitarity by restricting domain of allowed wavefunctions such that Hamiltonian is self-adjoint [Reed & Simon 70's].

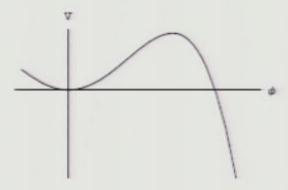
In fact, without a "self-adjoint extension" evolution is not even defined in these theories.

A basis can be constructed by taking the linear combination of the WKB energy eigenfunctions that for large x behaves as

$$\begin{split} \Psi_E \sim (2a^2x^p)^{-1/4}\cos\left[\frac{\sqrt{2}ax^{p/2+1}}{p/2+1} + \alpha\right] \\ |\Psi_E|^2 \sim x^{-2} \quad \text{at large } x \end{split}$$

Ultralocality: self-adjoint extension point by point.

Homogeneous Rolling Field



Decompose: $\phi(t,x) = \bar{\phi}(t) + \delta\phi(t,x)$

Kinetic term homogeneous mode: $V_3 \int dt \frac{1}{2} \dot{\phi}^2$

ightarrow Finite volume S^3 acts as mass, so that even homogeneous mode will undergo quantum spreading.

This will give rise to UV cutoff on creation of particles, since background remains regular.

Consider semiclassical expansion

$$\Psi(\bar{\phi}_f,t_f) = A(\bar{\phi}_f,t_f) e^{iS(\bar{\phi}_f,t_f)/\hbar}$$

Solving Schrodinger eq in expansion of \hbar one finds $S=S_{cl}(\bar{\phi}_f,t_f)$, where S_{cl} is the action of the classical solution that obeys

1. Initial condition:
$$\bar{\phi} + 2i\hbar^{-1}\pi_{\bar{\phi}}(\Delta\bar{\phi})^2 = \bar{\phi}_c, \quad t = t_i$$

i.e. Gaussian wavepacket with spread $\Delta \phi$ around $\bar{\phi}_c$ just over potential barrier.

$$\Psi(\bar{\phi},t_i) \sim e^{-\frac{(\bar{\phi}-\bar{\phi}_c)}{4(\Delta\bar{\phi})^2}}$$

2. Final condition:

$$\Psi(\bar{\phi}_f, t_f)$$
 with $\bar{\phi}_f \sim \bar{\phi}_c$ at time $t_f \sim t_i + 2R$.

→ relevant classical solutions are generally complex.

Unitary boundary conditions: implemented via method of images, by adding "mirror" wave packet with

$$\bar{\phi} + 2i\hbar^{-1}\pi_{\bar{\phi}}(\Delta\bar{\phi})^2 = -\bar{\phi}_c, \quad t = t_i$$

 \rightarrow Quantum spread and unitarity mean $\Psi(\bar{\phi},t)$ determined by two complex classical solutions.

$$\Psi(\bar{\phi}_f,t_f) = \left(A_1 e^{iS_1(\bar{\phi}_f,t_f)/\hbar} + A_2 e^{i\alpha} e^{iS_2(\bar{\phi}_f,t_f)/\hbar}\right)$$

In terms of $\bar{\chi} = \sqrt{2/\lambda} \bar{\phi}^{-1}$, mirror classical solution is

Imaginary part $-i\epsilon$ near $t\approx 0$ depends on final argument $\bar{\phi}_f$ of Ψ . Typically $\epsilon\sim (\Delta\phi)^3$.

Consider semiclassical expansion

$$\Psi(\bar{\phi}_f, t_f) = A(\bar{\phi}_f, t_f) e^{iS(\bar{\phi}_f, t_f)/\hbar}$$

Solving Schrodinger eq in expansion of \hbar one finds $S=S_{cl}(\bar{\phi}_f,t_f)$, where S_{cl} is the action of the classical solution that obeys

- 1. Initial condition: $\bar{\phi} + 2i\hbar^{-1}\pi_{\bar{\phi}}(\Delta\bar{\phi})^2 = \bar{\phi}_c, \quad t = t_i$
- i.e. Gaussian wavepacket with spread $\Delta \phi$ around $\bar{\phi}_c$ just over potential barrier.

$$\Psi(\bar{\phi}, t_i) \sim e^{-\frac{(\bar{\phi} - \bar{\phi}_c)}{4(\Delta \bar{\phi})^2}}$$

2. Final condition:

$$\Psi(\bar{\phi}_f, t_f)$$
 with $\bar{\phi}_f \sim \bar{\phi}_c$ at time $t_f \sim t_i + 2R$.

→ relevant classical solutions are generally complex.

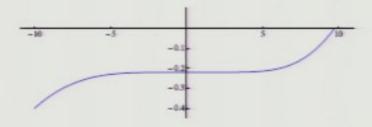
Unitary boundary conditions: implemented via method of images, by adding "mirror" wave packet with

$$\bar{\phi} + 2i\hbar^{-1}\pi_{\bar{\phi}}(\Delta\bar{\phi})^2 = -\bar{\phi}_c, \quad t = t_i$$

 \rightarrow Quantum spread and unitarity mean $\Psi(\bar{\phi},t)$ determined by two complex classical solutions.

$$\Psi(\bar{\phi}_f,t_f) = \left(A_1 e^{iS_1(\bar{\phi}_f,t_f)/\hbar} + A_2 e^{i\alpha} e^{iS_2(\bar{\phi}_f,t_f)/\hbar}\right)$$

In terms of $\bar{\chi} = \sqrt{2/\lambda} \bar{\phi}^{-1}$, mirror classical solution is



Imaginary part $-i\epsilon$ near $t\approx 0$ depends on final argument $\bar{\phi}_f$ of Ψ . Typically $\epsilon\sim (\Delta\phi)^3$.

¥

Does the universe bounce?

$$\Psi(\bar{\phi}_f,t_f) = \left(A_1 e^{iS_1(\bar{\phi}_f,t_f)/\hbar} + A_2 e^{i\alpha} e^{iS_2(\bar{\phi}_f,t_f)/\hbar}\right)$$

Early times: S_1 dominates, wave packet rolling down.

Late times: S_2 dominates, wave packet rolling up.

Intermediate times: Interference

Self-adjoint extension would seem to imply that $\bar{\phi}$ rolls up the hill again, returning to its original configuration \rightarrow bouncing cosmology.

But inhomogeneous modes $\delta \phi$ may be created and drain energy out of $\bar{\phi}$.

Do inhomogeneities prevent wave packet from rolling up the hill again?

Particle creation

To leading order, inhomogeneities evolve in the complex backgrounds,

-- extend method complex classical solutions

$$\Psi(\bar{\phi}, \delta\phi, t) = \left(A_1 e^{iS_1/\hbar} + A_2 e^{i\alpha} e^{iS_2/\hbar}\right)$$

with

$$S_i = S_{i,cl}(\bar{\phi}, t) + \delta S_i^{(2)}(\bar{\phi}, \delta \phi, t)$$

We have calculated $\delta S_i^{(2)}(\bar{\phi},\delta\phi,t)$ for fluctuations inititally in ground state.

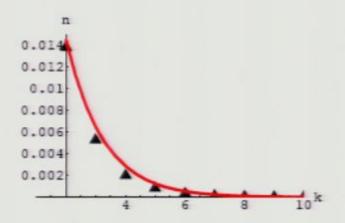
→ Ben's talk!

Particle creation from mode mixing across bounce, so that at late times

$$\langle n \rangle = \frac{|\beta|^2}{|\alpha|^2 - |\beta|^2}$$

UV Cutoff

At large k,
$$\langle n_k \rangle = \frac{|\beta_k|^2}{|\alpha_k|^2 - |\beta_k|^2} \sim e^{-4k\epsilon}$$



ightarrow backreaction negligible over entire bounce for sufficiently wide wave packets (remember $\epsilon \sim (\Delta \bar{\phi})^3$)

$$\phi_{end} - \phi_{start} << \phi_{start}$$
.

Bulk interpretation: class of cosmologies with a transition from big crunch to big bang.

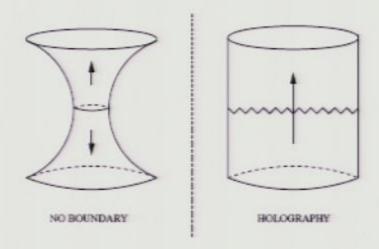
Conclusion

- A 'holographic' description of (AdS) cosmology involves unstable conformal field theories.
- The ultralocality of the field theory evolution near the singularity means one can specify consistent unitary quantum evolution on the boundary by imposing a self-adjoint extension point by point.
- The quantum spread of the unstable homogeneous mode provides a UV cutoff on particle creation.
- For a certain range of parameters, and for certain states, this leads to a high probability for the homogeneous field to roll back up.
- It is natural to interpret this in the bulk as a quantum transition from a big crunch to a big bang.

rsa: 08030042

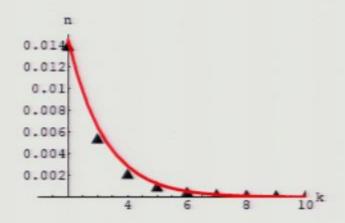
Conclusion

 The extension of these results to realistic models may lead to interesting cosmologies that bounce and have an arrow of time pointing in the same direction everywhere.



UV Cutoff

At large k,
$$\langle n_k \rangle = \frac{|\beta_k|^2}{|\alpha_k|^2 - |\beta_k|^2} \sim e^{-4k\epsilon}$$



ightarrow backreaction negligible over entire bounce for sufficiently wide wave packets (remember $\epsilon \sim (\Delta \bar{\phi})^3$)

$$\phi_{end} - \phi_{start} << \phi_{start}$$
.

Bulk interpretation: class of cosmologies with a transition from big crunch to big bang.