Title: Quantum Information Theory #4

Date: Mar 20, 2008 06:30 PM

URL: http://pirsa.org/08030009

Abstract: Teleportation, quantum key distribution, and quantum algorithms.

Swipe your finger slower

×

The image was not accepted. Place the same finger on the fingerprint sensor again.

Quantum Information Lecture 4: Quantum Computing

Sarah Croke Perimeter Institute (Office: 252)

scroke@perimeterinstitute.ca

Quantum Information Lecture 4: Quantum Computing

Sarah Croke Perimeter Institute (Office: 252)

scroke@perimeterinstitute.ca

Grover's Algorithm

- Search algorithm;
 - Problem is to search for one marked item in an unstructured database of N items.
 - Assume it is easy to recognize the solution, but difficult to find it.
- Classically, need O(N) queries to find item with probability p.
- Same problem solved by a quantum computer in O(√N) queries.
- Algorithm is probabilistic.

Quantum Information Lecture 4: Quantum Computing

Sarah Croke Perimeter Institute (Office: 252)

scroke@perimeterinstitute.ca

Grover's Algorithm

- Search algorithm;
 - Problem is to search for one marked item in an unstructured database of N items.
 - Assume it is easy to recognize the solution, but difficult to find it.
- Classically, need O(N) queries to find item with probability p.
- Same problem solved by a quantum computer in O(√N) queries.
- Algorithm is probabilistic.

Page 7/132

2 2 12> 10> Uf 12>(0> = 12>(f(21)

f(x) , X= X. 0 を 120 100 しょしょう(の) ー しょう(な(な))

える しゃうしつ しょしょうしつ ー しょうしんべいう とう (歩(の)ー(い))

りん(きえいい(か(の))

り(12 元 (か(の))) ((の))) ((の) (の) (の))

り(をうえいの(か(の))) = うき(-)((い) しょう((の) -(い))

Pirsa: 08030009

Page 14/132

リーラション(声(のー(の)))

= うえい(一)((い) しょう(点(の) ー(い)) D= 2/4×41-1

= うえい(一)がりしょう(点(の)ーい)) D= 2/4×41-1 14)= ララ 12)

0-2145641-1

0 - 2 m = 41 - 1 X: 0 0 = (21 x x 41 - 1 X: = 41 y x 41 - 21 x x Page 20/132 $0^{\dagger}D = (214 \times 41 - 1)$ $= 414 \times 41 - 214 \times 41 - 214$

 $0^{+}D = (214 \times 41 - 1)$ $= 414 \times 41 - 214 \times 41 - 214 \times 41 - 71$ = 4 = 4 = (100) + (10) - (10) + (11)

D = 219x91-1 (4)= 立立に)

Pirsa: 08030009

Page 23/132

D = 219x91-1 「か」を記している。「なり」 08030009

Q=

$$D = 1 \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & 1 & -1 \end{pmatrix}$$

$$|x| = 1 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = 2$$

$$|x| = 1 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$|x| = 2 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Xo 10) 0

一下 [元(10))

京之(元(100-110))

To ((100 - 110)) 1 2 (-1) flm) /x) = 2/4×41-I

0=214×41-1-1-12) 0102=214×412>-12)

0=214×41-1 DIA7 = 212×4/27 - 127 =2(12)-14+X4+(x) 2/4/29/12>

i: 08030009

Page 45/132

1947 0=21424 Dla7 = 212. 2/4/294/27

147 120) 197, 0=214×41 DIa7 = 212×4127 -12) 214-29-127

sa: 08030009

-127-2121x

14)= T [x)

Pirsa: 08030009

Page 48/132

-127-2121x

はつこうというナートでしょう

Pirsa: 08030009

Page 50/132

= (xx) (xx) + (xx) Page 52/132 Page 53/132

一面ではつ 1 (xo) + (N-1) (xo)
Sin 6 (x-7) + coso (76) - - 5x61x.> + 600 1x.+)

三面で入 1 (xo) + [N-1 (1xo) Sin 6 12-7 + cose 1767 = - 5x6 |x.> + 600 |x.+) 50 30 1x.7 + cus 30 1x6+) DUE (~> =

1947, 1x07 0=214×41 DIa7 = 212×4/27-2/2/29/12>

120) 197 0=51424 DIA7 = 214×4/27 2/2/201/27

一かとなっ 1 /x0) + [x-1 Sur 6 12-7 + coso 1267 -5,61x,7 + 6,00 1x.+) 50 30 1x.7 + cus 30 1x6+)

Pirsa: 08030009

がでしい 1 (xo) + [N-1] Sin 6 12-7 + cose 1267 -5,61x,7 + cose (x.+) 50 30 1x.7 + cus 30 1x6+)

DU/ 12>= 50,30 120> + cos 30 120+>

DU/ 1/2) = 30/30/20 + cos 30/20/20 4 DU/ 1/2) = - 3/20/20 + cos 30/20/20 DU/ DU/ 1/2) = 5/50/30 > + cos 50/20/20

Sin30 1 x07 + cos 30 1x01> DUL 125= 4 DUL 127= 5n 501305 + coc50 12+3 Du Du 12+>=

Page 62/132

Du Du 12+>= sin ((2k+1) 0) (x0) + cos ((2k+1) 6) (20) 14 DU 1247 = sin ((2k+1)0) (x0) + cos((2k+1)0) (201)

Pirsa: 08030009

 $G^{k}|\psi\rangle = \sin[(2k+1)\Theta)|x_{0}\rangle + \cos((2k+1)\Theta)|x_{0}\rangle$ $P(x_{0}) = \{x_{0}|G^{k}|\Psi\rangle|^{2} = \sin^{2}((2k+1)\Theta)$

D= 2/4×41-1

Page 65/132

Sir 6 | 2-7 + coso 1767 5x61x0>+ coso 1x+) 50 30 1x07 + cos 30 1x6+)

Pirsa: 08030009

しろうじん 1/20) + /N/ Sir 6 | 2-7 + cose | 767 Sir 6 | x. > + coso | x.+) 50 30 1x.7 + cos 30 1x6+)

Sin2 ((7km) 6) 21 => (2km) 6 2 T/2

sin ((7k1)6) 21 =) (2k11) 0 2 T/3

Pirsa: 08030009

Page 69/132

sin2 ((7k+1)6) 21 =) (2km) 6 2 T/

Page 70/132

F 12 Sur (an 11)0)

F 12 Sur (an 11)0)

Sur (ak 11)0) P(=) = cos2 ((2k+1)6) = sx2 (7/2 - 12k+1)6) (45 30 (-61)

Sur (an 11)0) P(e) = cos2 (2k+1)6) = 507 (1/2 - 12411) 6 ~ 0(T/2- (2kin)0) ~ 0(1/N) = 547 30 1x.7 + cus 30 1x6+)

(16/x)(0)-) (2)(8(0)) 0 = 2/xx41-1 Page 77/132

Computational Complexity

- Problems which can be solved in a time polynomial in the size of the input (i.e. the number of bits needed to store the input) are in the complexity class P, e.g. multiplication.
- (Classical) Strong Church-Turing thesis: A probabilistic Turing machine can efficiently simulate any realistic model of computation.
- Problems whose solution can be verified in polynomial time are in the complexity class NP e.g. factorisation.
- Not known if P=NP. (It is conjectured, but not proven, that this is not the case).
- NP-complete problems, e.g. travelling salesman.

Computational Complexity

- Problems which can be solved in a time polynomial in the size of the input (i.e. the number of bits needed to store the input) are in the complexity class P, e.g. multiplication.
- (Classical) Strong Church-Turing thesis: A probabilistic Turing machine can efficiently simulate any realistic model of computation.
- Problems whose solution can be verified in polynomial time are in the complexity class NP e.g. factorisation.
- Not known if P=NP. (It is conjectured, but not proven, that this is not the case).
- NP-complete problems, e.g. travelling salesman.

(05 70 tro) 0000111 1 cos ((2+1)

Computational Complexity

- Problems which can be solved in a time polynomial in the size of the input (i.e. the number of bits needed to store the input) are in the complexity class P, e.g. multiplication.
- (Classical) Strong Church-Turing thesis: A probabilistic Turing machine can efficiently simulate any realistic model of computation.
- Problems whose solution can be verified in polynomial time are in the complexity class NP e.g. factorisation.
- Not known if P=NP. (It is conjectured, but not proven, that this is not the case).
- NP-complete problems, e.g. travelling salesman.

Shor's Algorithm

- Integer factorization algorithm. Believed to be computationally hard classically, which is important for security of RSA public key cryptography.
- Best known classical algorithm requires exp(O((log N)^{1/3}(log log N)^{2/3} gates.
- Shor's algorithm requires a number of gates which is polynomial in input size (polynomial in log N).
- Shor's algorithm is probabilistic.

Decoherence and Scalability

- Have assumed unitary transformations, in the presence of an environment this is not the case.
- Interactions with an environment partially corrupt the information encoded in quantum states.
- Fault-tolerant quantum computation possible if probability of single gate error is below a certain threshold level.
- Is there a scale at which the world stops behaving quantum mechanically?

Shor's Algorithm

- Integer factorization algorithm. Believed to be computationally hard classically, which is important for security of RSA public key cryptography.
- Best known classical algorithm requires exp(O((log N)^{1/3}(log log N)^{2/3} gates.
- Shor's algorithm requires a number of gates which is polynomial in input size (polynomial in log N).
- Shor's algorithm is probabilistic.

find r such that

ar = a mod N N-3 = O(JN) Classical N find r such that

ar = a mod N

f(x+r),=f(x)

f(x+r),= f(x) (= 2 1x>) (o)

8030009

Page 88/132

f(x+r),= f(x) (= Z 1x>) (0) Nf (1 2 (x)) (0)

Pirsa: 08030009

Page 89/132

f(x+r),= f(x) (0) (xx) (0) いか(一下では)(の) 一流でして)(ない)

(0) (cx 1x) Nf (1 2 (xx) (0) 2 (x))

Pirsa:

(x) / g(x)>

Pirsa: 08030009

>> x= x6+jf, juteger

コルール・サダイ Pirsa: 08030009

ラスンメルナダイ 一一 120+117

コルンXo+jf mit 1x0+j1)

Pirsa: 08030009

Page 97/132

> x= xo+jf, juleger

Pirsa: 08030009

Page 98/132

コルンXo+jr 2 /x0+jr>

コスンXu+jf 1x0+11)

Pirsa: 08030009

Page 100/13

=) x=xo+jf, juleg Unixフ語子(eをアリダー、)

=) x= Xo+jf, j illeger Unikフまましきりリッツ、) 一一でしたいり 一点写

Pirsa: 0803000

Page 102/13

Ugh X 一点一个人

1 1 1 1 1 1 2 1 x x + j (? 一点"(电影)"

Pirsa: 0803000

Page 104/13

河河河河(河)(河(中))) 10/x)(0)-> (2)(00))=2/xx41-1

 (er%) (((ere))) THO ? rhage

> 2 (engs) = 2 (1) = m Page 109/132

(1) = m 2 6 (St. ch.) = 5 cos 2 cos

(1) = m 2 6 (St. ch.) = 5 cos 2 m

Pirsa: 0803000

Page 111/132

1x0+112 1/5

Pirsa: 08030009

Page 115/132

一点で、 一点で、 一点で、 (でな)**)(を)**)(を) (でな)**)(を) Pirsa:

一点(音) Page 117/132 Pirsa:

19 vlgv => ? (eng) = ? (1) = m 3 6 (St. ch.) = 5 cos 2 this

Pirsa: 08030009

Page 122/13

Decoherence and Scalability

- Have assumed unitary transformations, in the presence of an environment this is not the case.
- Interactions with an environment partially corrupt the information encoded in quantum states.
- Fault-tolerant quantum computation possible if probability of single gate error is below a certain threshold level.
- Is there a scale at which the world stops behaving quantum mechanically?

$$\frac{1}{16}(10) + 11) (14)$$

Summary

- By taking advantage of the laws of quantum mechanics, we can perform some information processing and communication tasks that are not possible classically.
 - Dense coding, teleportation, QKD
 - Quantum algorithms
- It is not possible to do EVERYTHING faster with a quantum computer! But by carefully using quantum parallelism and interference, it is possible to design some algorithms which are more powerful than any known classical ones.

Open questions

- What are the class of problems for which a quantum computer can provide an improvement over classical computing?
 - Note that, in principle, a quantum computer can do anything a classical one can (without speedup).
- What is it that makes a quantum computer more powerful? (Entanglement is not the full story...)
- Is quantum computing scalable?

References

- Quantum Cryptography: N. Gisin, G. C. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography", Reviews of Modern Physics 74, 145 (2002)
- Quantum Information Processing: T. P. Spiller, W. J. Munro, S. D. Barrett and P. Kok, "An introduction to quantum information processing: applications and realizations", Contemporary Physics 46, 407 (2005)
- Shor's algorithm for the man on the street: http://scottaaronson.com/blog/?p=208

