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Grover’s Algorithm

- Search algorithm;

— Problem is to search for one marked item in an
unstructured database of N items.

— Assume it is easy to recognize the solution, but
difficult to find it.

- Classically, need O(N) queries to find item
with probability p.

- Same problem solved by a quantum
computer in O(~ N) queries.

» Algorithm is probabilistic.
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Computational Complexity

Problems which can be solved in a time golynomial in

the size of the input (i.e. the number of bits needed
to store the input) are in the complexity class P, e.q.
multiplication.

(Classical) Strong Church-Turing thesis: A
probabilistic Turing machine can efficiently simulate
any realistic model of computation.

Problems whose solution can be verified in
olynomial time are in the complexity class NP e.g.
actorisation.

Not known if P=NP. (It is conjectured, but not
proven, that this is not the case).

NP-complete problems, e.g. travelling salesman.
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Shor’s Algorithm

- Integer factorization algorithm. Believed to
be computationally hard classically, which is
important for security of RSA public key
cryptography.

- Best known classical algorithm requires
exp(O((log N)¥3(log log N)2/3 gates.

- Shor’s algorithm requires a number of gates
which is polynomial in input size (polynomial
in log N).

» Shor’s algorithm is probabilistic.




Decoherence and Scalability

» Have assumed unitary transformations, in the
presence of an environment this is not the
case.

- Interactions with an environment partially
corrupt the information encoded in quantum
states.

- Fault-tolerant ?uantum computation possible
If probability of single gate error is below a
certaln threshold level.

- Is there a scale at which the world stops
behaving quantum mechanically?
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Decoherence and Scalability

» Have assumed unitary transformations, in the
presence of an environment this is not the
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- Interactions with an environment partially
corrupt the information encoded in quantum
states.
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Summary

» By taking advantage of the laws of quantum
mechanics, we can perform some information
processing and communication tasks that are not
possible classically.

— Dense coding, teleportation, QKD
— Quantum algorithms

- It is not possible to do EVERYTHING faster with a
quantum computer! But by carefully using quantum
parallelism and interference, it is possible to design
some algorithms which are more powerful than any
known classical ones.




Open questions

- What are the class of problems for which a
quantum computer can provide an
improvement over classical computing?

— Note that, in principle, a quantum computer can
do anything a classical one can (without speed-

up).
- What is it that makes a quantum computer
more powerful? (Entanglement is not the full

story...)
» Is quantum computing scalable?
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- Shor’s algorithm for the man on the street:
http://scottaaronson.com/blog/?p=208










