Title: Quantum Information Theory #1

Date: Mar 11, 2008 06:30 PM

URL: http://pirsa.org/08030004

Abstract: Teleportation, quantum key distribution, and quantum algorithms.

Pirsa: 08030004 Page 1/98

# Quantum Information Lecture 1: Bit vs. Qubit

Sarah Croke Perimeter Institute (Office: 252)

scroke@perimeterinstitute.ca

"We never experiment with just one electron or atom or (small) molecule. In thoughtexperiments we sometimes assume that we do; this invariably entails ridiculous consequences... we are not experimenting with single particles, any more than we can raise Ichthyosauria in the zoo."

Schrödinger, Brit J Phil Sci, 3, 233 (1952)

#### References

- M.A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000)
- J. Preskill, Lecture Notes, <a href="http://www.theory.caltech.edu/%7Epreskill/ph219/index.html#lecture">http://www.theory.caltech.edu/%7Epreskill/ph219/index.html#lecture</a>
- P. Kaye, R. Laflamme and M. Mosca, An Introduction to Quantum Computing, Oxford University Press (2007)
- G. Benenti, G. Casati and G. Strini, Principles of Quantum Computation and Information, World Scientific
  - Volume I: Basic Concepts (2004)
  - Volume II: Basic Tools and Special Topics (2007)
- J. J. Sakurai, Modern Quantum Mechanics, Addison Wesley (1993)

- Lecture 1: Bit vs. Qubit
  - Why quantum information theory?
  - The difference between a bit and a quantum bit
  - Two-level quantum systems
- Lecture 2: Quantum Communication
- Lecture 3: Quantum Computing
- Lecture 4: Horizons

- Lecture 1: Bit vs. Qubit
- Lecture 2: Quantum Communication
  - Quantum teleportation
  - Quantum key distribution, BB84 and E91 protocols
  - Entanglement as a resource
- Lecture 3: Quantum Computing
- Lecture 4: Horizons

- Lecture 1: Bit vs. Qubit
- Lecture 2: Quantum Communication
- Lecture 3: Quantum Computing
  - Quantum circuit diagrams
  - Quantum algorithms: Deutsch-Josza,
     Grover's search algorithm.
- Lecture 4: Horizons

- Lecture 1: Bit vs. Qubit
- Lecture 2: Quantum Communication
- Lecture 3: Quantum Computing
- Lecture 4: Horizons
  - Decoherence, scalability
  - What information processing tasks can be performed with quantum systems but not classical ones?

# Information is physical!!!

- R. Landauer, *Physics Today* 44, 5, p.23 (1993), S. Lloyd, Nature 406, 1047 (2000)
- States of a (physical) system used to store and manipulate information.







- Processing that information depends on the physical system in which it is encoded.
- Quantum information theory information is encoded in quantum systems.

# Why Quantum Information Theory?



# Why Quantum Information Theory?

- Quantum systems cannot be efficiently simulated by classical computers (Benioff, Feynman, 1980s).
- What else can we do with quantum systems that is not possible classically?
  - Dense coding, teleportation.
  - Quantum key distribution provably secure against attack by eavesdroppers.
  - Quantum algorithms which offer speed-up over classical algorithms.

# Two-level Systems

Two-level atom



Polarisation of light



Spin-1/2 particles



## Polarisation of Light

• Linear Polarisation  $\cos \theta |h\rangle + \sin \theta |v\rangle$ 



• Elliptical Polarisation –in general complex amplitudes  $\cos\theta|h\rangle+e^{i\delta}\sin\theta|v\rangle$ 

Circular Polarisation

$$\frac{1}{\sqrt{2}}(|h\rangle \pm i|v\rangle)$$



# Two-level Systems

Two-level atom



Polarisation of light



Spin-1/2 particles





Pirsa: 08030004

## Polarisation of Light

• Linear Polarisation  $\cos \theta |h\rangle + \sin \theta |v\rangle$ 



• Elliptical Polarisation –in general complex amplitudes  $\cos\theta|h\rangle+e^{i\delta}\sin\theta|v\rangle$ 

Circular Polarisation

$$\frac{1}{\sqrt{2}}(|h\rangle \pm i|v\rangle)$$



## Polarisation of Light

• Linear Polarisation  $\cos \theta |h\rangle + \sin \theta |v\rangle$ 



• Elliptical Polarisation –in general complex amplitudes  $\cos\theta|h\rangle+e^{i\delta}\sin\theta|v\rangle$ 

Circular Polarisation

$$\frac{1}{\sqrt{2}}(|h\rangle \pm i|v\rangle)$$



08030004

Page 10/08

## Polarisation of Light

• Linear Polarisation  $\cos \theta |h\rangle + \sin \theta |v\rangle$ 



• Elliptical Polarisation –in general complex amplitudes  $\cos\theta|h\rangle+e^{i\delta}\sin\theta|v\rangle$ 

Circular Polarisation

$$\frac{1}{\sqrt{2}}(|h\rangle \pm i|v\rangle)$$



## Polarisation of Light

• Linear Polarisation  $\cos \theta |h\rangle + \sin \theta |v\rangle$ 



• Elliptical Polarisation –in general complex amplitudes  $\cos\theta|h\rangle+e^{i\delta}\sin\theta|v\rangle$ 

Circular Polarisation

$$\frac{1}{\sqrt{2}}(|h\rangle \pm i|v\rangle)$$



# Optical Components

 Polarising beam splitter (PBS) –transmits one polarisation, reflects the other



 Photo-detector (PD) –detects light



Half-wave plate (HWP) –
introduces a phase difference of
± π between orthogonal
polarisations

• 
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
,  $\alpha/2$ :  $\begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$ 

 Quarter-wave plate (QWP) – introduces a phase of ± π/2 between orthogonal polarisations

$$\begin{pmatrix} 1 & 0 \\ 0 & \pm i \end{pmatrix}$$

• 
$$\beta/2$$
:  $\frac{1}{\sqrt{2}} \begin{pmatrix} \cos \beta - i & \sin \beta \\ \sin \beta & -\cos \beta - i \end{pmatrix}$ 

#### Polarisation Measurements



- $P(h) = |\langle \Psi | h \rangle|^2$ ,  $P(v) = |\langle \Psi | v \rangle|^2$
- Measurement transforms state to  $|h\rangle$  or  $|v\rangle$
- Measurement completely specified by operators  $|h\rangle\langle h|$  ,  $|v\rangle\langle v|$

: 08030004

E(ω= E(ο)e(κη-ωε) = E(χε(κη-ωε) + ye(κη-ωε) = E(χ+iy)e(κη-ωε) P(h) = (h(γγχγ/h))

- Manifold is nk - dilaton is indep of warp st

irsa: 08030004

Page 26/08

#### Polarisation Measurements



- $P(h) = |\langle \Psi | h \rangle|^2$ ,  $P(v) = |\langle \Psi | v \rangle|^2$
- Measurement transforms state to  $|h\rangle$  or  $|v\rangle$
- Measurement completely specified by operators  $|h\rangle\langle h|$  ,  $|v\rangle\langle v|$

#### Properties of Measurement Operators

Von Neumann measurement:

$$|h\rangle\langle h| + |v\rangle\langle v| = \hat{I}$$

$$(|h\rangle\langle h|)^{\dagger} = |h\rangle\langle h|$$

$$|h\rangle\langle h| \ge 0$$

$$|h\rangle\langle h|v\rangle\langle v| = 0$$

$$(1)$$

$$(2)$$

$$(3)$$

Where, by (3) we mean:

$$\langle \Psi | (|h\rangle\langle h|) | \Psi \rangle \ge 0 \ \forall \ |\Psi \rangle$$

#### Polarisation Measurements



- $P(h) = |\langle \Psi | h \rangle|^2$ ,  $P(v) = |\langle \Psi | v \rangle|^2$
- Measurement transforms state to  $|h\rangle$  or  $|v\rangle$
- Measurement completely specified by operators  $|h\rangle\langle h|$  ,  $|v\rangle\langle v|$

#### Properties of Measurement Operators

Von Neumann measurement:

$$|h\rangle\langle h| + |v\rangle\langle v| = \hat{I}$$

$$(|h\rangle\langle h|)^{\dagger} = |h\rangle\langle h|$$

$$|h\rangle\langle h| \ge 0$$

$$|h\rangle\langle h|v\rangle\langle v| = 0$$

$$(1)$$

$$(2)$$

$$(3)$$

Where, by (3) we mean:

$$\langle \Psi | (|h\rangle\langle h|) | \Psi \rangle \ge 0 \ \forall \ |\Psi \rangle$$

#### Properties of Measurement Operators

Von Neumann measurement:

$$|h\rangle\langle h| + |v\rangle\langle v| = \hat{I}$$

$$(|h\rangle\langle h|)^{\dagger} = |h\rangle\langle h|$$

$$|h\rangle\langle h| \ge 0$$

$$|h\rangle\langle h|v\rangle\langle v| = 0$$

$$(1)$$

$$(2)$$

$$(3)$$

Where, by (3) we mean:

$$\langle \Psi | (|h\rangle\langle h|) | \Psi \rangle \ge 0 \ \forall \ |\Psi \rangle$$

#### Polarisation Measurements



- $P(h) = |\langle \Psi | h \rangle|^2$ ,  $P(v) = |\langle \Psi | v \rangle|^2$
- Measurement transforms state to  $|h\rangle$  or  $|v\rangle$
- Measurement completely specified by operators  $|h\rangle\langle h|$  ,  $|v\rangle\langle v|$

#### Properties of Measurement Operators

Von Neumann measurement:

$$|h\rangle\langle h| + |v\rangle\langle v| = \hat{I}$$

$$(|h\rangle\langle h|)^{\dagger} = |h\rangle\langle h|$$

$$|h\rangle\langle h| \ge 0$$

$$|h\rangle\langle h|v\rangle\langle v| = 0$$

$$(1)$$

$$(2)$$

$$(3)$$

Where, by (3) we mean:

$$\langle \Psi | (|h\rangle\langle h|) | \Psi \rangle \ge 0 \ \forall \ |\Psi \rangle$$

#### Polarisation Measurements



- $P(h) = |\langle \Psi | h \rangle|^2$ ,  $P(v) = |\langle \Psi | v \rangle|^2$
- Measurement transforms state to  $|h\rangle$  or  $|v\rangle$
- Measurement completely specified by operators  $|h\rangle\langle h|$  ,  $|v\rangle\langle v|$

#### Properties of Measurement Operators

Von Neumann measurement:

$$|h\rangle\langle h| + |v\rangle\langle v| = \hat{I}$$

$$(|h\rangle\langle h|)^{\dagger} = |h\rangle\langle h|$$

$$|h\rangle\langle h| \ge 0$$

$$|h\rangle\langle h|v\rangle\langle v| = 0$$

$$(1)$$

$$(2)$$

$$(3)$$

Where, by (3) we mean:

$$\langle \Psi | (|h\rangle\langle h|) | \Psi \rangle \ge 0 \ \forall \ |\Psi \rangle$$

E(z +in ) eilez-ut) I = lixil = I < h/wxwih> 11 xilj xj1= 11>01 80

|ixiljxj1= |cxil &ij

#### Dirac Bra-Ket Notation

- States represented as normalised state kets |Ψ⟩ in a complex, linear vector space;
- For every ket |Ψ⟩ there is a corresponding bra ⟨Ψ| in the dual space
- The vector space has an inner product  $\langle \alpha | \beta \rangle$ , which satisfies  $\langle \alpha | \beta \rangle = (\langle \beta | \alpha \rangle)^*$
- Outer products |α⟩⟨β| form operators on the vector space.
- Hermitian conjugate:  $(|\alpha\rangle\langle\beta|)^{\dagger} = |\beta\rangle\langle\alpha|$
- Hermitian operators:  $\hat{A}^{\dagger} = \hat{A}$
- Unitary operators preserve inner products:

$$\hat{U}^{\dagger}\hat{U} = \hat{U}\hat{U}^{\dagger} = \hat{\mathbb{1}}$$

08030004

#### Dirac Bra-Ket Notation

- States represented as normalised state kets |Ψ⟩ in a complex, linear vector space;
- For every ket |Ψ⟩ there is a corresponding bra ⟨Ψ| in the dual space
- The vector space has an inner product  $\langle \alpha | \beta \rangle$ , which satisfies  $\langle \alpha | \beta \rangle = (\langle \beta | \alpha \rangle)^*$
- Outer products |α⟩⟨β| form operators on the vector space.
- Hermitian conjugate:  $(|\alpha\rangle\langle\beta|)^{\dagger} = |\beta\rangle\langle\alpha|$
- Hermitian operators:  $\hat{A}^{\dagger} = \hat{A}$
- Unitary operators preserve inner products:

$$\hat{U}^{\dagger}\hat{U} = \hat{U}\hat{U}^{\dagger} = \hat{\mathbb{1}}$$

: 08030004

### Polarisation Measurements



- $P(h) = |\langle \Psi | h \rangle|^2$ ,  $P(v) = |\langle \Psi | v \rangle|^2$
- Measurement transforms state to  $|h\rangle$  or  $|v\rangle$
- Measurement completely specified by operators  $|h\rangle\langle h|$  ,  $|v\rangle\langle v|$

## Properties of Measurement Operators

Von Neumann measurement:

$$|h\rangle\langle h| + |v\rangle\langle v| = \hat{I}$$

$$(|h\rangle\langle h|)^{\dagger} = |h\rangle\langle h|$$

$$|h\rangle\langle h| \ge 0$$

$$|h\rangle\langle h|v\rangle\langle v| = 0$$

$$(1)$$

$$(2)$$

$$(3)$$

Where, by (3) we mean:

$$\langle \Psi | (|h\rangle\langle h|) | \Psi \rangle \ge 0 \ \forall \ |\Psi \rangle$$

#### Dirac Bra-Ket Notation

- States represented as normalised state kets |Ψ⟩ in a complex, linear vector space;
- For every ket |Ψ⟩ there is a corresponding bra ⟨Ψ| in the dual space
- The vector space has an inner product  $\langle \alpha | \beta \rangle$ , which satisfies  $\langle \alpha | \beta \rangle = (\langle \beta | \alpha \rangle)^*$
- Outer products |α⟩⟨β| form operators on the vector space.
- Hermitian conjugate:  $(|\alpha\rangle\langle\beta|)^{\dagger} = |\beta\rangle\langle\alpha|$
- Hermitian operators:  $\hat{A}^{\dagger} = \hat{A}$
- Unitary operators preserve inner products:

$$\hat{U}^{\dagger}\hat{U} = \hat{U}\hat{U}^{\dagger} = \hat{\mathbb{1}}$$

08030004

## Properties of Measurement Operators

Von Neumann measurement:

$$|h\rangle\langle h| + |v\rangle\langle v| = \hat{I}$$

$$(|h\rangle\langle h|)^{\dagger} = |h\rangle\langle h|$$

$$|h\rangle\langle h| \ge 0$$

$$|h\rangle\langle h|v\rangle\langle v| = 0$$

$$(1)$$

$$(2)$$

$$(3)$$

Where, by (3) we mean:

$$\langle \Psi | (|h\rangle\langle h|) | \Psi \rangle \ge 0 \ \forall \ |\Psi \rangle$$

### Polarisation Measurements



- $P(h) = |\langle \Psi | h \rangle|^2$ ,  $P(v) = |\langle \Psi | v \rangle|^2$
- Measurement transforms state to  $|h\rangle$  or  $|v\rangle$
- Measurement completely specified by operators  $|h\rangle\langle h|$  ,  $|v\rangle\langle v|$

#### Dirac Bra-Ket Notation

- States represented as normalised state kets |Ψ⟩ in a complex, linear vector space;
- For every ket |Ψ⟩ there is a corresponding bra ⟨Ψ| in the dual space
- The vector space has an inner product  $\langle \alpha | \beta \rangle$ , which satisfies  $\langle \alpha | \beta \rangle = (\langle \beta | \alpha \rangle)^*$
- Outer products |α⟩⟨β| form operators on the vector space.
- Hermitian conjugate:  $(|\alpha\rangle\langle\beta|)^{\dagger} = |\beta\rangle\langle\alpha|$
- Hermitian operators:  $\hat{A}^{\dagger} = \hat{A}$
- Unitary operators preserve inner products:

$$\hat{U}^{\dagger}\hat{U} = \hat{U}\hat{U}^{\dagger} = \hat{\mathbb{1}}$$

08030004







### Polarisation Measurements



- $P(h) = |\langle \Psi | h \rangle|^2$ ,  $P(v) = |\langle \Psi | v \rangle|^2$
- Measurement transforms state to  $|h\rangle$  or  $|v\rangle$
- Measurement completely specified by operators  $|h\rangle\langle h|$  ,  $|v\rangle\langle v|$

### Transformation of states

Unitary evolution

$$|\psi(t)\rangle = \hat{U}(t)|\psi(0)\rangle$$

Schrödinger equation

$$\frac{\partial}{\partial t} |\psi(t)\rangle = -\frac{i}{\hbar} \hat{H} |\psi(t)\rangle$$

$$\frac{\partial}{\partial t} \hat{U}(t) |\psi(0)\rangle = -\frac{i}{\hbar} \hat{H} \hat{U}(t) |\psi(0)\rangle$$

$$\frac{\partial}{\partial t} \hat{U}(t) = -\frac{i}{\hbar} \hat{H} \hat{U}(t)$$

### Transformation of states

Unitary evolution

$$|\psi(t)\rangle = \hat{U}(t)|\psi(0)\rangle$$

Schrödinger equation

$$\frac{\partial}{\partial t} |\psi(t)\rangle = -\frac{i}{\hbar} \hat{H} |\psi(t)\rangle$$

$$\frac{\partial}{\partial t} \hat{U}(t) |\psi(0)\rangle = -\frac{i}{\hbar} \hat{H} \hat{U}(t) |\psi(0)\rangle$$

$$\frac{\partial}{\partial t} \hat{U}(t) = -\frac{i}{\hbar} \hat{H} \hat{U}(t)$$

. 08030004

### Quantum Mechanics in Finite-Dimensions

- States represented as normalised state kets in a complex, linear vector space; |Ψ⟩
- Von Neumann measurement along orthogonal directions {|i⟩}
- Probability of obtaining result i:

$$P(i|\Psi) = |\langle \Psi | i \rangle|^2$$

• For a closed system, evolution is unitary  $|\psi(t)\rangle = \hat{U}(t)|\psi(0)\rangle$ 

 Perfect discrimination is possible, in principle, between mutually orthogonal states.

- Composite systems; Can write the state of a joint system as  $|\Psi\rangle_{AB} = |\alpha\rangle_A |\beta\rangle_B$
- The superposition principle states that superposition states are also allowed, at least in principle

$$|\Psi\rangle_{AB} = a_0|\alpha_0\rangle_A|\beta_0\rangle_B + a_1|\alpha_1\rangle_A|\beta_1\rangle_B$$

 These states cannot be written as a product state, and arise due to some interaction of the systems; after the interaction the systems remain correlated.



initial is nk likation is indep of warp so

Page 54/98

C\$19>=1 147 = (220 B)B

> - manifold is nk - dilaton is indep or warp stid

art ( dat + en

Page 55/98

- Composite systems; Can write the state of a joint system as  $|\Psi\rangle_{AB} = |\alpha\rangle_A |\beta\rangle_B$
- The superposition principle states that superposition states are also allowed, at least in principle

$$|\Psi\rangle_{AB} = a_0|\alpha_0\rangle_A|\beta_0\rangle_B + a_1|\alpha_1\rangle_A|\beta_1\rangle_B$$

 These states cannot be written as a product state, and arise due to some interaction of the systems; after the interaction the systems remain correlated.

- Composite systems; Can write the state of a joint system as  $|\Psi\rangle_{AB} = |\alpha\rangle_A |\beta\rangle_B$
- The superposition principle states that superposition states are also allowed, at least in principle

$$|\Psi\rangle_{AB} = a_0|\alpha_0\rangle_A|\beta_0\rangle_B + a_1|\alpha_1\rangle_A|\beta_1\rangle_B$$

 These states cannot be written as a product state, and arise due to some interaction of the systems; after the interaction the systems remain correlated.

The Bell states are given by

$$|\Psi_{00}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B + |1\rangle_A |1\rangle_B)$$

$$|\Psi_{01}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |1\rangle_B + |1\rangle_A |0\rangle_B)$$

$$|\Psi_{10}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B - |1\rangle_A |1\rangle_B)$$

$$|\Psi_{11}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |1\rangle_B - |1\rangle_A |0\rangle_B)$$

and are said to be maximally entangled. Note that these states are mutually orthogonal.



Pirsa: 08030004

Page 59/98

The Bell states are given by

$$|\Psi_{00}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B + |1\rangle_A |1\rangle_B)$$

$$|\Psi_{01}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |1\rangle_B + |1\rangle_A |0\rangle_B)$$

$$|\Psi_{10}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B - |1\rangle_A |1\rangle_B)$$

$$|\Psi_{11}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |1\rangle_B - |1\rangle_A |0\rangle_B)$$

and are said to be maximally entangled. Note that these states are mutually orthogonal.

The Bell states are given by

$$|\Psi_{00}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B + |1\rangle_A |1\rangle_B)$$

$$|\Psi_{01}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |1\rangle_B + |1\rangle_A |0\rangle_B)$$

$$|\Psi_{10}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B - |1\rangle_A |1\rangle_B)$$

$$|\Psi_{11}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |1\rangle_B - |1\rangle_A |0\rangle_B)$$

and are said to be maximally entangled. Note that these states are mutually orthogonal.

## Parametric Down Conversion (Type II)





P.Kwiat et al, PRL 75, 4337 (1995)

## No-cloning Theorem

- Arbitrary quantum states cannot be cloned
- Proof is due to the linearity of quantum mechanics
  - Suppose there exists an operator  $\hat{V}$  such that

$$\hat{V}|0\rangle_A|\psi\rangle_B = |0\rangle_A|0\rangle_B$$

$$\hat{V}|1\rangle_A|\psi\rangle_B = |1\rangle_A|1\rangle_B$$

 Consider the action of this operator on a superposition state

$$\hat{V}(\alpha_0|0\rangle_A + \alpha_1|1\rangle_A)|\psi\rangle_B = \alpha_0|0\rangle_A|0\rangle_B + \alpha_1|1\rangle_A|1\rangle_B 
\neq (\alpha_0|0\rangle_A + \alpha_1|1\rangle_A)(\alpha_0|0\rangle_B + \alpha_1|1\rangle_B)$$

a: 08030004

# Super-dense coding

Suppose Alice and Bob share the entangled state

$$|\Psi_{00}\rangle_{AB} = \frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)$$

Alice can convert the shared state into any one of the other Bell states

$$|\Psi_{00}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B + |1\rangle_A |1\rangle_B)$$

$$|\Psi_{01}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |1\rangle_B + |1\rangle_A |0\rangle_B)$$

$$|\Psi_{10}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B - |1\rangle_A |1\rangle_B)$$

$$|\Psi_{11}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |1\rangle_B - |1\rangle_A |0\rangle_B)$$

using only local operations

Pirsa: 08030004

京(100)+(111)

10×11+11×01)

04 Page 67/S

京(100)+(11) 0×11+11×01)(100>+111)

Pirsa: 0803000-

Page 68/98

(100) + (11) 0x11+11x01) (100) + (11)

京(100)+(11)) +11×01)(1005+111)



Tr (100) + (11) 0×11+11×01)(1005+111) = 10>11>+11710>

Pirsa: 08030004

TOO)+(11) (10×11+11×01)(100>+111) (10×01-11×11)(100)+111)

. eletote stray will

(x,0) = 1- horm on kg

Page 73/98

- To encode the message "00", Alice applies the identity operator (i.e. does nothing) to her qubit.
- Similarly, to encode the messages "01", "10", or "11", Alice applies one of the operators

$$\hat{U}_{01} = \hat{X} = |0\rangle_{AA}\langle 1| + |1\rangle_{AA}\langle 0| 
\hat{U}_{10} = \hat{Z} = |0\rangle_{AA}\langle 0| - |1\rangle_{AA}\langle 1| 
\hat{U}_{11} = \hat{Z}\hat{X} = |1\rangle_{AA}\langle 0| - |1\rangle_{AA}\langle 0|$$

- Alice then sends her qubit to Bob, who measures in the Bell basis to determine the message.
- Alice can encode two bits of information by sending only one qubit.

- To encode the message "00", Alice applies the identity operator (i.e. does nothing) to her qubit.
- Similarly, to encode the messages "01", "10", or "11", Alice applies one of the operators

$$\hat{U}_{01} = \hat{X} = |0\rangle_{AA}\langle 1| + |1\rangle_{AA}\langle 0| 
\hat{U}_{10} = \hat{Z} = |0\rangle_{AA}\langle 0| - |1\rangle_{AA}\langle 1| 
\hat{U}_{11} = \hat{Z}\hat{X} = |1\rangle_{AA}\langle 0| - |1\rangle_{AA}\langle 0|$$

- Alice then sends her qubit to Bob, who measures in the Bell basis to determine the message.
- Alice can encode two bits of information by sending only one qubit.

Suppose Alice and Bob share the entangled state

$$|\Psi_{00}\rangle_{AB} = \frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)$$

Alice can convert the shared state into any one of the other Bell states

$$|\Psi_{00}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B + |1\rangle_A |1\rangle_B)$$

$$|\Psi_{01}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |1\rangle_B + |1\rangle_A |0\rangle_B)$$

$$|\Psi_{10}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B - |1\rangle_A |1\rangle_B)$$

$$|\Psi_{11}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |1\rangle_B - |1\rangle_A |0\rangle_B)$$

using only local operations

- To encode the message "00", Alice applies the identity operator (i.e. does nothing) to her qubit.
- Similarly, to encode the messages "01", "10", or "11", Alice applies one of the operators

$$\hat{U}_{01} = \hat{X} = |0\rangle_{AA}\langle 1| + |1\rangle_{AA}\langle 0| 
\hat{U}_{10} = \hat{Z} = |0\rangle_{AA}\langle 0| - |1\rangle_{AA}\langle 1| 
\hat{U}_{11} = \hat{Z}\hat{X} = |1\rangle_{AA}\langle 0| - |1\rangle_{AA}\langle 0|$$

- Alice then sends her qubit to Bob, who measures in the Bell basis to determine the message.
- Alice can encode two bits of information by sending only one qubit.

Suppose Alice and Bob share the entangled state

$$|\Psi_{00}\rangle_{AB} = \frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)$$

Alice can convert the shared state into any one of the other Bell states

$$|\Psi_{00}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B + |1\rangle_A |1\rangle_B)$$

$$|\Psi_{01}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |1\rangle_B + |1\rangle_A |0\rangle_B)$$

$$|\Psi_{10}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B - |1\rangle_A |1\rangle_B)$$

$$|\Psi_{11}\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |1\rangle_B - |1\rangle_A |0\rangle_B)$$

using only local operations

- To encode the message "00", Alice applies the identity operator (i.e. does nothing) to her qubit.
- Similarly, to encode the messages "01", "10", or "11", Alice applies one of the operators

$$\hat{U}_{01} = \hat{X} = |0\rangle_{AA}\langle 1| + |1\rangle_{AA}\langle 0| 
\hat{U}_{10} = \hat{Z} = |0\rangle_{AA}\langle 0| - |1\rangle_{AA}\langle 1| 
\hat{U}_{11} = \hat{Z}\hat{X} = |1\rangle_{AA}\langle 0| - |1\rangle_{AA}\langle 0|$$

- Alice then sends her qubit to Bob, who measures in the Bell basis to determine the message.
- Alice can encode two bits of information by sending only one qubit.

Suppose I have a black box which acts as follows

$$|x\rangle|y\rangle \rightarrow |x\rangle|y \oplus f(x)\rangle$$

for some binary function f. I want to know whether f(0) and f(1) are the same or different.

- Classically, need to evaluate both f(0) and f(1)
- What about quantum mechanically? The superposition principle means that I can evaluate both at the same time.

$$\frac{1}{\sqrt{2}} \left( |0\rangle + |1\rangle \right) |0\rangle \rightarrow \frac{1}{\sqrt{2}} \left( |0\rangle |f(0)\rangle + |1\rangle |f(1)\rangle \right)$$

 Suppose both the target and the control are superposition states

$$\frac{1}{2} (|0\rangle + |1\rangle) (|0\rangle - |1\rangle) \rightarrow \frac{1}{2} \Big( (-1)^{f(0)} |0\rangle + (-1)^{f(1)} |1\rangle \Big) (|0\rangle - |1\rangle)$$

If f(0) and f(1) are equal, the control qubit is in state

$$\frac{1}{\sqrt{2}}\left(\left|0\right\rangle+\left|1\right\rangle\right)$$

• If they are different, the control qubit is in the orthogonal state  $\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$ 

. 08030004

Suppose I have a black box which acts as follows

$$|x\rangle|y\rangle \rightarrow |x\rangle|y \oplus f(x)\rangle$$

for some binary function f. I want to know whether f(0) and f(1) are the same or different.

- Classically, need to evaluate both f(0) and f(1)
- What about quantum mechanically? The superposition principle means that I can evaluate both at the same time.

$$\frac{1}{\sqrt{2}} \left( |0\rangle + |1\rangle \right) |0\rangle \rightarrow \frac{1}{\sqrt{2}} \left( |0\rangle |f(0)\rangle + |1\rangle |f(1)\rangle \right)$$

 Suppose both the target and the control are superposition states

$$\frac{1}{2} (|0\rangle + |1\rangle) (|0\rangle - |1\rangle) \rightarrow \frac{1}{2} \Big( (-1)^{f(0)} |0\rangle + (-1)^{f(1)} |1\rangle \Big) (|0\rangle - |1\rangle)$$

If f(0) and f(1) are equal, the control qubit is in state

$$\frac{1}{\sqrt{2}}\left(\left|0\right\rangle+\left|1\right\rangle\right)$$

• If they are different, the control qubit is in the orthogonal state  $\frac{1}{\sqrt{2}}\left(|0\rangle-|1\rangle\right)$ 

· 08030004



Pirsa: 08030004

Page 84/98

下100(元(10)-110)) > 10) ( 1/2 (10+8(0)) > - 11+8(0))

Pirsa: 08030004

Page 85/98

a: 08030004

Page 86/98

a: 080300

Page 87/98

ir<mark>sa: 0803000</mark>4

Page 88/98

10) 中(10) -11) -) (-1)を(0) (0) (10)-11)

10) 中(10) -11) -> (-1)をの10)単(10)-115) 10元(10)-10) - (-1)(10)た(10)-10)



Pirsa: 08030004

Page 91/98

10)当(10)-11)) ->(-1)(0)10)型(10)-11) 10元(10)-10) つ(ー)(10) (10) (10) [ (10) + (10) (10) - 110) 

sa: 0803000-

Page 92/9

 Suppose both the target and the control are superposition states

$$\frac{1}{2} (|0\rangle + |1\rangle) (|0\rangle - |1\rangle) \rightarrow \frac{1}{2} \Big( (-1)^{f(0)} |0\rangle + (-1)^{f(1)} |1\rangle \Big) (|0\rangle - |1\rangle)$$

If f(0) and f(1) are equal, the control qubit is in state

$$\frac{1}{\sqrt{2}}\left(\left|0\right\rangle+\left|1\right\rangle\right)$$

• If they are different, the control qubit is in the orthogonal state  $\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$ 

- 08030004

#### Summary: Classical vs Quantum Information

- Classical information stored as "0"s and "1"s – "bit"
- e.g punch cards, charge in a capacitor, current flowing, magnetic storage

- Quantum information: two-level system "qubit"  $|0\rangle$ ,  $|1\rangle$
- Superposition principle:  $\alpha|0\rangle+\beta|1\rangle$  also allowed
- Quantum parallelism

## Summary: Quantum Information

- No-cloning theorem.
- Entanglement, that is quantum correlations, can be used as a resource in quantum information.
- The superposition principle allows quantum parallelism in information processing, it is sometimes possible to use this to investigate global properties of a function efficiently.

## Summary: Quantum Information

- No-cloning theorem.
- Entanglement, that is quantum correlations, can be used as a resource in quantum information.
- The superposition principle allows quantum parallelism in information processing, it is sometimes possible to use this to investigate global properties of a function efficiently.



Page 98/98