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“We never experiment with just one electron or
atom or (small) molecule. In thought-
experiments we sometimes assume that we
do, this invariably entails ridiculous
consequences... we are not experimenting

with single particles, any more than we can
raise Ichthyosauria in the zoo.”

Schrodinger, Brit J Phil Sci, 3, 233 (1952)
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» Lecture 1: Bit vs. Qubit

» Lecture 2: Quantum Communication

— Quantum teleportation

- Quantum key distribution, BB84 and ES1
protocols

— Entanglement as a resource
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 Lecture 1: Bit vs. Qubit
L ecture 2: Quantum Communication
 Lecture 3: Quantum Computing

» Lecture 4: Horizons

— Decoherence, scalability

What information processing tasks can be
performed with quantum systems but not
classical ones?




Information is physical!!!

R. Landauer, P/g’.SICS Tod%y44 5, p.23 (1993), S
Lloyd Nature 406 1047 (2000)

. States of a (physical) system used to store and
manipulate information.

Processing that information depends on the physical
system in which it is encoded.

- Quantum information theory — information is encoded
iIn quantum systems.




Why Quantum Information Theory?




Why Quantum Information Theory?

- Quantum systems cannot be efficiently
simulated by classical computers (Benioff,

Feynman, 1980s).

» What else can we do with quantum systems
that is not possible classically?

— Dense coding, teleportation.

— Quantum key distribution provably secure against
attack by eavesdroppers.

— Quantum algorithms which offer speed-up over
classical algorithms.
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Optical Components

Polarising beam splitter
(PBS) —transmits one
polarisation, reflects the
other

Photo-detector (PD) —detects

light

Half-wave plate (HWP) —
introduces a phase difference of
+ 1 between orthogonal
polarisations

, af2: |

Quarter-wave plate (QWP) -
introduces a phase of = n/2
between orthogonal
polarisations

B/2:
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Measurement transforms state to |/,) or |¢

Measurement completely specified by operators
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Polarisation Measurements

P(v)=sin’®
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Measurement transforms state to |/,) or |¢
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Properties of Measurement Operators

Von Neumann measurement:

h)y(h| + [v)(v] = 1 (1)
(|h)(h )T = |A) hi (2)

hy(hf > 0 (3)
h)(hlv)(v] = 0 (4)

Where, by (3) we mean:
W((|h)h|)|¥) >0 V |V
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Dirac Bra-Ket Notation

States represented as normalised state kets |V)in a
complex, linear vector space;

For every ket | V) there is a corresponding bra (V| in
the dual space

- The vector space has an inner product («|7), which
satisfies (a|3) = ,
Outer products |o form operators on the vector
space.

Hermitian conjugate: (|a)(7])" = |3)(a
Hermitian operators: 1" — A

Unitary onerators Dreserve inner products:
U =Y =
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Transformation of states

Unitary evolution

O(t)) = U(#)]0(0)
Schrodinger equation
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Transformation of states

Unitary evolution
Y(t)) = U(t)|v(0))

Schrodinger equation |
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Quantum Mechanics in Finite-Dimensions

 States represented as normalised state kets
in a complex, linear vector space; |V

 Von Neumann measurement along
orthogonal directions {|/) ;

 Probability of obtaining result i:

)

P(i|¥) = |(¥[2)|°
- For a closed system, evolution is unitary
(t)) = U(t)|¥(0)

» Perfect discrimination is possible, in principle,
between mutually orthogonal states.




Entanglement

 Composite systems; Can write the state of a
joint systemas |VW)ap = |@)4|0)B

. The superposition principle states that
superposition states are also allowed, at least
In principle

ID_.H} = ag|p)AlPo)B + a1|(x1) A f‘,'..f'}

. These states cannot be written as a product
state, and arise due to some interaction of
the systems; after the interaction the systems
remain correlated.
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Entanglement

The Bell states are given by
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and are said to be maximally entangled. Note
that these states are mutually orthogonal.
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Parametric Down Conversion (Type II)

P.Kwnat ct al, PRL 75, 4337 (1995)




No-cloning Theorem

Arbitrary quantum states cannot be cloned

Proof is due to the linearity of quantum
mechanics
— Suppose there exists an operator " such that
VIO)alr)g = 0)4]0) 8
{_ | \(U) B = [ \ [
— Consider the action of this operator on a
superposition state




Super-dense coding

Suppose Alice and Bob share the entangled state

Alice can convert the shared state into any one of the
other Bell states

using only local operations
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Super-dense coding

. To encode the message “00”, Alice applies the
identity operator (i.e. does nothing) to her qubit.

Similarly, to encode the messages “017, <107, or
“117, Alice applies one of the operators

[Fu'_ — -\:: U A A || + 1_11_1l U
Ui = Z =104 4(0] —|1) 4 a(]
Unn = ZX =1(1)440] —[1)4 40

- Alice then sends her qubit to Bob, who measures in
the Bell basis to determine the message.

Alice can encode two bits of information by sending
only one qubit.

i




Super-dense coding

To encode the message <007, Alice applies the
identity operator (i.e. does nothing) to her qubit.

Similarly, to encode the messages <017, <107, or
“117, Alice applies one of the operators

Unn = X =10)4a(1]+]1)44(0
Uwo = £2=10)44(0[ —|1)4 a(]
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Alice then sends her qubit to Bob, who measures in
the Bell basis to determine the message.

Alice can encode two bits of information by sending
only one qubit.
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Super-dense coding

. To encode the message <007, Alice applies the
identity operator (i.e. does nothing) to her qubit.

Similarly, to encode the messages “017, <107, or
“117, Alice applies one of the operators

Un = X =10)4a(1]+(1)44(0
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- Alice then sends her qubit to Bob, who measures in
the Bell basis to determine the message.

Alice can encode two bits of information by sending
only one qubit.




Deutsch algorithm

. Suppose I have a black box which acts as follows
)y — |o)\y® flr

for some binary function f. I want to know whether
f(0) and f(1) are the same or different.

Classically, need to evaluate both f(0) and (1)

- What about quantum mechanically? The

superposition principle means that I can evaluate
both at the same time.

(10 + 1Y) |0 {_ 0)[F(0)) + 1) f(]
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Deutsch algorithm

Suppose both the target and the control are
superposition states
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If f(0) and f(1) are equal, the control qubit is in state
I
0) + |1
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If they are different, the control qubit is in the
orthogonal state |
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Deutsch algorithm

Suppose both the target and the control are

superposition states
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Deutsch algorithm

Suppose both the target and the control are
superposition states
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Summary: Classical vs Quantum

Information

Classical information
stored as “0”’s and
“17s — “bit”

 e.g punch cards,
charge in a
capacitor, current
flowing, magnetic
storage

- Quantum

iInformation: two-
level system “qubit™

0),|1)

- Superp'osition

principle:
a|0) + 5 1:} also
allowed

> Quantum parallelism




Summary: Quantum Information

» No-cloning theorem.

 Entanglement, that is quantum correlations,
can be used as a resource in quantum
information.

 The superposition principle allows quantum
parallelism in information processing, it is
sometimes possible to use this to investigate
global properties of a function efficiently.
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» No-cloning theorem.

 Entanglement, that is quantum correlations,
can be used as a resource in quantum
information.

The superposition principle allows quantum

parallelism in information processing, it is
sometimes possible to use this to investigate

global properties of a function efficiently.










