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Abstract: The history of human knowledge is often highlighted by our efforts to explore beyond our apparent horizon. In this talk, | will describe
how this challenge has now evolved into our quest to understand the physics at/beyond the cosmological horizon, some twenty orders of magnitude
above Columbus\' original goal. | then recount how the study of physics on the horizon scale has led to the successful development of inflationary
cosmology, and how we can use the Integrated Sachs-Wolfe effect in the Cosmic Microwave Background to probe cosmological physics, such as
late-time inflation, the nature of gravity, and primordial non-gaussianity on the horizon scale.
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WU Horizon through time

= 4 x 107 cm (200 BC): Eratosthenes measured the earth
circumference to 1%
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1015 cm (1672): Richer and Cassini measured the Parallax of
Mars
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WU HOorizon through time

4 x 10” cm (200 BC): Eratosthenes measured the earth
circumference to 1%

1015 cm (1672): Richer and Cassini measured the Parallax of
Mars

10*® cm (1838): Bessel measured stellar parallax for 61 Cygm
10*2 cm (1920): Shapley argues for the island Universe in the




= 10 cm (1930): Hubble measures distance to other galaxies

WU Horizon through time

N
CIr(C
10
Ma
10°
10



=]

WU Horizon

4 x 10° cm (200 BC): Eratos

circumference to 1%

10415 cm (1672): Richer anc
Mars
10™ cm (1838): Bessel meast

10% cm (1920): Shapley arg:

10%° em (1930): Hubble mea
10%° cm (1965): Penzias and Wilson discover the




WU Horizon

4 x 10° cm (200 BCO): Eratos

circumference to 1%

e

10415 cm (1672): Richer anc

Mars
10 cm (1838): Bessel meast

10 cm (1920): Shapley arg;

1022 em (1930): Hubble mea
10%° cm (1965): Penzias and Wilson discover the




y

= 10 em (1930): Hubble measures distance to other galaxies
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= scale-invariant
adiabatic

= Gravitational waves ??
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F] Gaussian

= scale-invariant
adiabatic

= Gravitational waves ??

Spergel et al. 2007
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PhHVSICS beyond the Horizon:

= Cosmic acceleration and the ISW effect
= Gravity on Horizon scale
= Statistics on Horizon scale
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ISW in Cross-Correlation

Cosmic Microwave Background

Galaxies

= Crosscorrelating CMBwith Galaxy distribution
the ISW signal from
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—> Consistency of different cosmological observations
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= Not the best probe of
conventional DE properties
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= Good probe of new physics
close to the horizon scale
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= Not the best probe of
conventional DE properties
(w,w’',...)

= Good probe of new physics
close to the horizon scale
Why are all the observations larger than
predicted?!
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= Friedmann Equation Newtonian Gravity
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= Friedmann Equation Newtonian Gravity
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Ple]akS run on the

Horizon scale?

2 G > Gy 2 © decays during matter era =
= Farly ISW = CMB spectrum
= Structure formation

NA, Chung, Doran, & Geshmizjani 2007
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= Farly ISW = CMB spectrum
= Siructure formation
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modulation of the metric perturbations:

Minimal (single-field) inflation

= Note ©_~10"

Multi-field inflation, Ekpyrotic scenario, non-
canonical kinetic terms can give

WMAP3 (1....=500, Spergel et al. 07)
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Inflation typically generates a non-gaussian
modulation of the metric perturbations:

Minimal (single-field) inflation

= Note ©~10"

Multi-field inflation, Ekpyrotic scenario, non-
canonical kinetic terms can give

WMAP3 (1...=000, Spergel et al. 07)

WMAP3 @__ =750, Yadav & Wandelt 07)
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Inflation typically generates a non-gaussian
modulation of the metric perturbations:

Minimal (single-field) inflation

= Note ©-~10"

Multi-field inflation, Ekpyrotic scenario, non-
canonical kinetic terms can give

WMAP3 __.=500, Spergel et al. 07)

WMAP3 @___ =750, Yadav & Wandelt 07)
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= This infroduces mode-mode coupling
2> A large scale mode can modulate the statistics on
small scales:
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(rather than DM density)



DLALISTICS Oon Horizon scale

= This infroduces mode-mode coupling
2> A large scale mode can modulate the statistics on
small scales:

+

> O large scales, galaxy distribution follows the
(rather than DM density)

> Galaxy distribution is much more inhomogeneous
on large scales
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= Similar accuracy for upcoming
large scale surveys (in lieu of
systematics) ??
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= probes close to the horizon

= severely constrains the

(<1%)
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Conclusions:

probes close to the horizon

severely constrains the

(<1%)

in correlation with galaxy surveys,
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BOSMology on the

= gravity in the infrared?
= origins and observations of

= observational signatures of

= Large Scale Structure surveys:

= CMB surveys:

= S7 cluster surveys:
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1960’s:
1970’s:
1980’s:
1990’s:
2000’s:

2010’s:




