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Abstract: Coin flipping by telephone (Blum \'81) is one of the most basic cryptographic tasks of two-party secure computation. In a quantum setting,
it is possible to realize (weak) coin flipping with information theoretic security. Quantum coin flipping has been a longstanding open problem, and
its solution uses an innovative formalism developed by Alexe Kitaev for mapping quantum games into convex optimization problems. The
optimizations are carried out over duals to the cone of operator monotone functions, though the mapped problem can also be described in a very
simple language that involves moving points in the plane. Time permitting, | will discuss both Kitaev\'s formalism, and the solution that leads to
guantum weak coin flipping with arbitrarily small bias.
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Quantum weak coin flipping

(with laughably small bias)

Carlos Mochon

Perimeter Institute for Theoretical Physics
Waterloo, Canada

(includes work/miracles by Alexei Kitaev)

Talk based on arXiv:0711.4114
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Outline

o

@ Coin flipping: What? Why?

© The Kitaev™ formalism

e Lots of pretty pictures
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he coin slide
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rypto I: Alice and Bob vs. Eve

Eve

3

Alice
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rypto Il: A benevolent Charlie helps Alice and Bob
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rypto Il: A benevolent Charlie is traveling again
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Secure two-party computation

@ Alice and Bob:

@ Do not trust each other.
e Want to work together.

@ Example: Find meeting time without revealing schedules.

@ Classically impossible with information theoretic security.

Is quantum information useful here?
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Quantum secure two-party computation

Bit commitment

@ A universal primitive.

@ Proven impossible!
(Mayers, Lo and Chau 1996)

Coin flipping (by telephone)
@ Classical problem studied by Manuel Blum (1981).
@ Quantum problem...

Bit commitment with cheat detection

@ Aharonov et al. (2000) and Hardy and Kent (2003).
@ + (your name here) (2008)
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oin flipping (by telephone)

Basic rules
@ Starting state: uncorrelated.
@ Alice and Bob send messages to each other.
@ At the end, each player outputs zero or one.
@ Their outputs should agree and be random (when honest).

Cheating players:

@ Can output anything they want.
@ Want to control the honest player’'s output.

Parameters

@ P, is the maximum probability for Alice to win by cheating.
@ The bias is defined as max(P;. Pg) — 2.
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ariations on coin flipping

Quantum vs classical

@ Information theoretic security.
@ No transcript.

Strong vs weak
@ Strong: neither player can bias the coin in either direction.

@ Weak: Alice wins on 0, Bob wins on 1.
We don't care if they cheat to lose.
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ariations on coin flipping

Quantum vs classical

@ Information theoretic security.
@ No transcript.

SYigelale RVERTEL
@ Strong: neither player can bias the coin in either direction.

@ Weak: Alice wins on 0, Bob wins on 1.
We don't care if they cheat to lose.
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hy is coin flipping hard?

@ ldea 1:
Start with a shared EPR and measure |i.

@ Ildea 2:
“I'll prepare an EPR and send you your half.”

@ |dea 3:
“You prepare two EPR pairs, I'll choose one as the coin
and use the other one for verification.”

@ Ildea 4:
“Let us have lots of EPRs, we’'ll check most of them, and
one of the remaining ones will be used as the coin’’
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Impossibility of strong coin flipping

Best lower bound (Kitaev 2003)
For any quantum strong coin flipping protocol:

1

=S % > S
PaP5 > - d
Best protocol
* . 3
Pa=Ps=7

by Ambainis (2001) and Spekkens and Rudolph (2001)
(and now me too using weak CF (2007)).
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hat about weak coin flipping?

Lower bound on weak coin flipping:

# rounds >= (Iog log 1;) :

where ¢ is the bias. Proven by Ambainis (2001).

@ Arbitrarily small bias = arbitrarily many rounds.
@ [tis hard to build protocols that get better with more rounds.

irsa: 08020038 Page 16/65



eak coin flipping protocols

Prior work: Goldenberg, Vaidman, Wiesner, Kerenidis, Nayak,
Ambainis, Spekkens, Rudolph, Kitaev and more.

The slow journey towards zero bias

@ me (2005): P; = Py —
@ me (2007): Py = P — 3.

3
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@ Potentially useful.

@ May help bit commitment with cheat detection.

Q@ “My research will help us better understand the mysteries
of quantum information.”
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Outline

© The Kitaev™ formalism
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he Kitaev™ formalism

Transition rules

@ Probability is conserved.
@ >, Zp, <Y, 25 py forall A € (0. x).
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Elements of a coin flipping protocol

Protocol
~ |nitial states - unitaries + final measurement

Optimization problem for P,
— Semidefinite program (SDP).

Optimization problem for Pg

— Semidefinite program (SDP).

Goal: inf {sup [max(P;.Pé)}}

protocols | spps

irsa: 08020038 Page 21/65



pper-bounded protocol (UBP)

~ |Initial states — unitaries + final measurement

Certificate of upper bound on P,

Dual SDP: P, < a.

Certificate of upper bound on Pg

Dual SDP: Pg < 3.

Goal: inf { inf [max(n.%)}}_ inf max(a, 3)
protocols | dual SDPs UBPs
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@ To do: eliminate irrelevant information from UBPs
(e.g., choices of basis, phases).

@ End result: a single convex cone.
Every feasible quantum game is a point in this cone.

@ Is coin flipping in the cone?

@ yes? prove ii.
@ no? find separating hyperplane.
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he Dual SDP for Pg

@ Initial state: inf 3 = (va0lZa0lva0)-
@ Unitary transitions:

Zai 1 QI > ,4'4; (ZA_,' fm) Ua i odd

Z,qd;_q — Z,q_f | even

@ Final measurement: Z4, =14 1.

| emma

Given Hermitian operators Za . - . . . Zanandanumber 3 > 0
satisfying the above constraints then
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Pruning excess information

Combine
@ honest state o (on A at some time /) and
@ dual variable Z = ", zMl#l (on A at some time /) to get

TrinlElsl]  z < eig(2).
N L L 9(<)
0 otherwise.

Crucial property of p(z)

For every function f(z)

Y p(2)f(z) = Tr{of(2)].

il
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Pi

IIIII

and p;_

alid transitions

N n between p; (constructed from o; and Z£;)
(constructed fromo;_yand Z_4)?

Given a function f(z) suchthat X > Y = f(X) > f(Y) then

: 08020038

Y pi_i(2)f(2) Trloi_1 #(

(wi—1| 14
(Vi_1] f(U;_T
(Wi 1\U_1 f(Zi2 1) Ulwi-)
(2| (4
Trloif( Z)]—pr ){(2)

Zi_1)]

1 & l) ‘i_‘,'_{:}

(Z @ D U;) i)

2 1) |2)
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he Dual SDP for Pg
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he Dual SDP for Pg

@ Initial state: inf 3 = (v40|Zaolta0)-
@ Unitary transitions:

Zpi1 @ Iy > Ul (Zai @ Ing) Uni i odd
ZA_j_j — ZA_f | even

@ Final measurement: Z4, =Ny 1.

| emma
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alid transitions

Pi

IIIII

What is the relation between p; (constructed from o; and Z;)
and p; ¢ (constructed from o;_{ and Z_)?

Given a function f(z) suchthat X > Y = f(X) > f(Y) then

Y pi—1(2)f(2)

: 08020038

Trloi_1F(Z1)]
(Git| (Zit @ 1) i)
Wil F(U7 (Z 2 ) U) ima)

= -u~,- 1\U—1 f(Zi2 1) Ulvi)
= (Wil (4 @ 1) |[¢j)

— Tr[ﬁ, (Z)] = Z pi(2)f(2)
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Operator monotone functions

A function f(z) : [0. ) — [0. o) Is operator monotone if for all
positive semidefinite operators X and Y

X > Y = f(X) > f(Y).

@ f(z) =1 and f(z) = z are operator monotone.
@ f(z) = ZZ is not operator monotone.
@ The operator monotone functions form a convex cone.

@ The extremal rays of the cone are generated by f(z) = 1
and f(z) = z and

f(z) = /\/fz for all A € (0. x).
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alidity defined

p — p' is valid if for all operator monotone functions f

S p(2)f(2) < 3P (2)(2)

Equivalently, p — p’ is valid if probability is conserved and
) . AZ
LR WL

for all A € (0. ).
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he bipartite case

At some fixed time
@ Let |¢') be the honest stateon A = M = B
@ Let Z4 be the dual SDP variable on A.
@ Let Zg be the dual SDP variable on B.

(M @ 1y @ MYy x € eig(Za). y € eig(Za)
0 otherwise,

p(x.y) = {

Reverse time convention: p, ; constructed from |v;), Za ;. Zg;
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SBipartite validity

pi(x.y) — pic1(Xx.y) is valid if either

@ for all ¢ € [0. o¢) the transition p;(z.¢c) — p;+1(Z.c) is valid,
or

@ for all ¢ € [0. >¢) the transition p;(c. z) — p;j.1(c. Z) Is valid,

where p;(z, ¢) is the one-variable function obtained by fixing the
second input.
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Putting it all together

A point game is a sequence pg — Py — --- — Pp_1 — Pp Of
valid transitions such that

1

Po :5[1.0]+%[0.1]. Pn = 1[3. a].

@ Point games are equivalent to protocols + upper bounds.
@ The mapping is constructive in both directions.

@ There are excellent tools for proving lower bounds.

@ The optimal point game produces the optimal protocol.
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he bipartite case
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Putting it all together

A point game is a sequence pg — Py — --- — Pp_1 — Pp Of
valid transitions such that

1

Py = E[1 0] + %[O. 1]. Pn = 1|3, al.

@ Point games are equivalent to protocols + upper bounds.
@ The mapping is constructive in both directions.

@ There are excellent tools for proving lower bounds.

@ The optimal point game produces the optimal protocol.
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From point games back to protocols

@ Hilbert spaces

A =span{|x) : x > 0}, B =span{|y) : y > 0},
M =span{|x,y) : x>0,y > 0}.

@ SDP dual operators

Zp=> x|x)(x|, Zg=>Y yly)iyl.
x>0 y>0

@ Staies

i) = - VPeoi(X. Y)IX) ® [X.¥) @ |y).
X.y

irsa: 08020038 Page 42/65



e Lots of pretty pictures
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rivial protocol 1 (Alice flips the coin)

1 e e 1
: =
12 1

1 1 1 1 1
S0+ 35001 — Z[.1]+5[0.1] — 1{2.1]
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rivial protocol 2 (Bob flips the coin)

1 e o
1/2- )
=

1

1 1 1 1 1
S0+ 35001 —  Z[1.0]+5[1.1] — 1{1.2]
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he two trivial protocols

1e . 1 1 e oo
1/2- I

| @ @

1/2 1 1

Alice flips the coin Bob flips the coin
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Some simple valid transitions

@ Point raising
plz] — plZ] (for z < Z').

@ Point merging

P1Z1 + p222]

prlzi] + palze] — (p1 + pa) | P22

@ Point splitting

p1 + P2 1 ] { 1 ]
+ — |+ P2 |— |-
(p1 + P2) {,01 W, +p2W§:| P { P2
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he Spekkens and Rudolph protocol

%) 142

irsa: 08020038 Page 48/65



Some simple valid transitions

@ Point raising
p(z] — plZ] (for z < Z').

@ Point merging

P12y + Pzzz]

prlzi] + palze] — (p1 + pa) | P22

@ Point splitting

p1 + p2 1 ] { 1 ]
-~ — | +p2 | —| .
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he Spekkens and Rudolph protocol

il § 142

irsa: 08020038 Page 50/65



Some simple valid transitions

@ Point raising
plz] — plZ] (for z < Z').

@ Point merging

P1Z£4 +P222]

prlzi] + palze] — (p1 + pa) | P22

@ Point splitting

p1 + po 1 ] { 1 ]
+ Py |—| +pP | —|.
(p1 + p2) [P1W§+92W§] P { P2
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he Spekkens and Rudolph protocol

‘ A
—

142
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he Spekkens and Rudolph protocol

1 Ox — 1 - a
S11.01+50.1] — == |xof + - === 0| + 5[0.1]

ox — 1 - T 1
S —|x0l + == 1| +50.1]

- x.0 +1{X'ﬂ
2
1
Py 1[-2)(]

for x € (1/2.1). Last slide used x = 1/v/2.
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owards bias 1/6

sy 1
Y
A A
-
F 3
1 Y
i- |
xiis s o ——————
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lternative protocol with bias 1/6

ﬁ_l
3 A

-

§—i —r

2—I —Tr I -
%—I T I e

%—: — I o

1e I e

2 |

3

wln
— @
| 4~
| 4
PO
LA~
| o
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owards bias 1/6

s 1
Y
A A
-
F 3
1 Y
i‘ |
e s o ————
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lternative protocol with bias 1/6

8 |
= | A
-
31 —Tr
2 T I o
|
%*i F 't
s R
|
|
- Y
1T i -
2 |
3 |
|

wln
—h
I =
WU 4
PO
A=~
| o
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atalyzed transitions

%[1 0] + %[0. 1]+ Z wilXi. yil — 1[5.a] + Z wilXi. yi]

@ Catalysis allows “negative probability.”
@ Catalysis allows point games with no explicit time ordering.

Lemma (Also proven by Kitaev)

Coin flipping without catalysis is possible given coin flipping
with catalysis.
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Results and Conclusions

@ For every integer k > 0 there is a family of protocols that
converges to

@ Quantum weak coin flipping with arbitrarily small bias is
possible.

@ Kitaev’'s formalism is awesome!
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Open problems!

@ How practical is coin flipping?

@ Find more applications of Kitaev's formalism.

Beyond coin flipping it can trivially be extended to deal
with:
o Multiple parties.

@ Cheat detection.
e General guantum games.

@ Find protocols for secure computation with cheat detection.
What is the best that quantum information has to offer to
this important field?
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K-+ 1

A== op

@ Quantum weak coin flipping with arbitrarily small bias is
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@ Kitaev’s formalism is awesome!

irsa: 08020038 Page 62/65



Open problems!

@ How practical is coin flipping?

@ Find more applications of Kitaev's formalism.

Beyond coin flipping it can trivially be extended to deal
with:
o Multiple parties.

@ Cheat detection.
e General guantum games.

@ Find protocols for secure computation with cheat detection.
What is the best that quantum information has to offer to
this important field?

irsa: 08020038 Page 63/65



atalyzed transitions
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