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Introduction

The vacuum structure and low energy dynamics of SUSY
gauge theories were studied extensively in the last 25
years. Tools such as the NSVZ p—function, Seiberg duality,
non-perturbative superpotentials and a-maximization were

developed and used to analyze a wide variety of theories.



Spontaneous supersymmetry breaking was also studied,

but was thought to be a rather esoteric phenomenon, not

exhibited by generic supersymmetric theories.

This attitude began to change in 2006, when Intriligator,
Seiberg and Shih (ISS) found a metastable supersymmetry
breaking vacuum In supersymmetric QCD (SQCD) with a

small mass for the quarks.



This suggests that there is much to be learned about non-
supersymmetric meta-stable states in supersymmetric
gauge theories. Indeed, in the first part of this talk we will
see that a small deformation of SQCD leads to a rich
landscape of metastable vacua with varying properties.
Such vacua may provide natural models of supersymmetry

breaking in nature.
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In the second part of the talk | will discuss the embedding
of the gauge theory problem in string theory, as the low
energy theory on a system of Neveu-Schwartz fivebranes

and D-branes.

Such systems were found in the past to be useful for
studying SUSY gauge dynamics. They lead to a geometric
realization of Seiberg-Witten curves in N=2 SYM, Seiberg
duality in N=1 SYM, etc.

BUT ...



Typically, the brane realization is useful in a regime of
parameter space different from the one in which the gauge
theory I1s valid. For protected quantities related to the

vacuum structure this should not matter, but the possible

existence and properties of metastable states might

strongly depend on such parameters.



Thus, apriori it is unclear whether the brane picture is
useful for studying SUSY breaking states. In fact we will
find that the brane construction has the same rich structure
of metastable states as the gauge theory. Furthermore, it
provides a good qualitative picture of these states and can
be used to perform quantitative calculations in a regime of
parameter space of brane configurations that Is

Inaccessible to gauge theory.
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Gauge theory

The theory we will consider is N=1 SQCD with gauge
group SU(N.) and Ny > N. flavors of chiral superfields

In the fundamental representation of the gauge group:

Q. Q (a=1,--- ,N; i=1,--- ,Nyp).
This theory is asymptotically free for N; < 3N, . We will
be mostly interested in the regime Ny < ch where the
theory Is strongly coupled in the infrared and there is a

better description of its dynamics.
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Seiberg dual (magnetic) theory

= Gaugegroup. SU(Nf— N,.)
= Chiral superfields:
N; fundamentals 4.4 i=1.--- Ny
Gauge singlets Mi(= Q'Q;)
1

= Superpotential: W, = Kq*}M}qj
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The deformation

We add to the electric Lagrangian the superpotential

S

Wa = STr(QQ)? - mTx(QQ) = STrM? — mTeM

In the magnetic description this corresponds to deforming

Winae 1O

i Bk
Woe = ~ Mg’ + %TrM 2 _mTrM
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Integrating out M gives

E §| 1] 2 -
Wonag = ——x |3a Tr(qq)” — mTr(qq)]

which has the same qualitative structure as the electric
superpotential. Thus, much of the analysis below can be

done in either the electric or magnetic variables. We will
use the magnetic ones.
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The deformation

We add to the electric Lagrangian the superpotential

i

Wy — %”{‘r(c'"jcg)‘2 _ mTr(QQ) = gTrM'Z — mTeM

In the magnetic description this corresponds to deforming

Wnag 10

1 PR -
Woe = Kfj,; M:q + ;TrM 2 _mTeM
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Integrating out M gives

¥ |1 2 .
Winae = Tr(qq)” — mTr(qq)]

(.}.’J\ 21’\

which has the same qualitative structure as the electric
superpotential. Thus, much of the analysis below can be

done In either the electric or magnetic variables. We will
use the magnetic ones.
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The deformation

We add to the electric Lagrangian the superpotential

A

N — %’I‘r(c'"jcg)2 — mTe(QQ) = S TeM? — mTrM

In the magnetic description this corresponds to deforming

Winae 1O

A
Wi = Y@ M@’ + STeM? — mTeM
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Integrating out M gives

EPE . :
Wonag = ——x |3a Tr(qq)” — mTr(qq)]

which has the same qualitative structure as the electric
superpotential. Thus, much of the analysis below can be

done in either the electric or magnetic variables. We will
use the magnetic ones.
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Supersymmetric vacua

There are two types of supersymmetric vacua in this

theory:
» Mesonic branch:  det M # 0.
» Baryonic branch: detM =0: b=¢"""" #£0.

We will focus on the mesonic vacua.
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The deformation

We add to the electric Lagrangian the superpotential

A

Wa = STi(QQ)? — mTr(QQ) = STeM? — mTeM

In the magnetic description this corresponds to deforming

Winag 10

M G
Wanag = Y@ M@’ + STeM? — mTeM

irsa: 08020006 Page 17/216



Integrating out M gives

E . 5 :
Wy = — |3A Tr(qq)” — mTr(qq)]

which has the same qualitative structure as the electric
superpotential. Thus, much of the analysis below can be

done in either the electric or magnetic variables. We will
use the magnetic ones.
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Supersymmetric vacua

There are two types of supersymmetric vacua in this

theory:
» Mesonic branch:  det M # 0.
» Baryonic branch: detM =0: b=¢"""" #£0.

We will focus on the mesonic vacua.
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The deformation

We add to the electric Lagrangian the superpotential

i

Wa = STr(QQ)* — mTr(QQ) = STeM* — mTeM

In the magnetic description this corresponds to deforming

Winae 1O

1 s o g :
Wine = X M q" + %TI‘M 2 _mTrM
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Integrating out M gives

3] B _Sstavene .
Woaeg = ——x |2a Tr(qq)” — m.Tr(qq)]

which has the same qualitative structure as the electric
superpotential. Thus, much of the analysis below can be

done in either the electric or magnetic variables. We will
use the magnetic ones.
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Supersymmetric vacua

There are two types of supersymmetric vacua in this

theory:
» Mesonic branch:  det M # 0.
» Baryonic branch: detM =0: b=¢"""" #£0.

We will focus on the mesonic vacua.
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Since det M # 0, the magnetic quarks ¢', §; are massive
and can be integrated out in the infrared. The resulting

superpotential for M is

det M )f-

3N.— Ny
e

Wiee = Ik (%1’\42 — -m,M) — (Ny— N,) (

The last term Is the familiar non-perturbative superpotential
of N=1 SYM.
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Supersymmetric vacua correspond to solutions of the F-

term equations of this superpotential:

3.-'\'{- - N f

1
det M \ 7~
J&E

aM? —mM = (

Here Iy, Isthe Ny x Ny Identity matrix.
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Including the D-terms constraints, one finds that M can be
diagonalized and has at most two distinct eigenvalues, x
and y. Denoting the degeneracy of y by k and that of x by
N¢ — k one finds that x, y satisfy:

m
e

3.\'?[: = .'\'F f

J:-\r_glyk_-\f-l--\r - (_{I).\f_:\r J.‘X.E
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Supersymmetric vacua correspond to solutions of the F-

term equations of this superpotential:

3N.—Njy

L
det M \ ¥~
J&E‘

aM? —mM = (

Here Iy, Isthe Ny x Ny Identity matrix.
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Including the D-terms constraints, one finds that M can be
diagonalized and has at most two distinct eigenvalues, x
and y. Denoting the degeneracy of y by k and that of x by
N¢ — k one finds that x, y satisfy:

m

3 -\rr: — -'\'F I

J:;\rﬂ—ﬁ‘yk—;\rf-l-_\rﬂ - (_“(I)-Yf_}:r J.‘x.e-
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Including the D-terms constraints, one finds that M can be
diagonalized and has at most two distinct eigenvalues, x
and y. Denoting the degeneracy of y by k and that of x by
N¢ — k one finds that x, y satisfy:

m
k"

3_\."',: —N f

pNe—kyk=Np+Ne _ (_ o)\ Ny=Nep3
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These constraints are easy to solve:

. . 1 :
for Nf < 2N. one finds 5%(&} + 1) isolated vacua;

1
for Ny 2 2Ne, (Ny — N)(Ny — N +1) vacua,

» Some of these vacua are small deformations of classical
ones, while others owe their existence to the non-

perturbative superpotential.

» Can exhibit them in both the electric and magnetic

theories and show that they are equivalent.
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Since det M # 0. the magnetic quarks ¢'.§; are massive
and can be integrated out in the infrared. The resulting

superpotential for M is

3.\'-(_' e .\'f
ile

, det M \ 57
Winag = Tt (%M' * mM) — (Ny— N.) ( 2 ) i

The last term is the familiar non-perturbative superpotential
of N=1 SYM.
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Including the D-terms constraints, one finds that M can be

diagonalized and has at most two distinct eigenvalues, x
and y. Denoting the degeneracy of y by k and that of x by
N; — k one finds that x, y satisfy:

m

Nk 3N.—N
pNe—kyk=Nr+Ne _ (_ o )\Ny—Ne A3 1
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These constraints are easy to solve:

1 .
for Nf < 2N, onefinds 5%(% + 1) isolated vacua;

1
for Ny > 2N, 2(N — N.)(Ns— N.+1) vacua.

» Some of these vacua are small deformations of classical
ones. while others owe their existence to the non-

perturbative superpotential.

» Can exhibit them in both the electric and magnetic

theories and show that they are equivalent.
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Metastable vacua

The theory described above is a small deformation of the
one studied by ISS. Hence, it is natural to expect that it has
non-supersymmetric metastable ground states as well.

To study these states we restrict to the regime N, < ch
where the magnetic theory Is infrared free and one can

neglect its gauge interactions.
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Metastable vacua

The theory described above is a small deformation of the
one studied by ISS. Hence, it is natural to expect that it has
non-supersymmetric metastable ground states as well.

To study these states we restrict to the regime N, < ng
where the magnetic theory Is infrared free and one can

neglect its gauge interactions.
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It Is also convenient to rescale the magnetic meson M
and write the Lagrangian in terms of a field ®. which has a
canonical kinetic term near the origin of field space,

K=Tr®® +--.

The magnetic superpotential takes now the form

Wmag = hf}iq’;qj —Tr (hﬂ,z@ — ‘)hzﬂqb(foz)
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Metastable vacua

The theory described above is a small deformation of the
one studied by ISS. Hence, it is natural to expect that it has
non-supersymmetric metastable ground states as well.

To study these states we restrict to the regime N, < ch

where the magnetic theory Is infrared free and one can
neglect its gauge interactions.
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Supersymmetric vacua correspond to solutions of the F-

term equations of this superpotential:

31\'} - N f

1
det M \ M=
A2

aM? —mM = (

Here Iy, Isthe Ny x Ny Identity matrix.
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Since det M # 0. the magnetic quarks ¢'.§; are massive
and can be integrated out in the infrared. The resulting

superpotential for M is

3.\..;- — _\" f
ide

2 det M e i-"‘"ﬂ
Winag = Tr (%M' E mM') = Np—-1%) ( = ) 8

The last term Is the familiar non-perturbative superpotential
of N=1 SYM.

Pirsa: 08020006 Page 41/216



It Is also convenient to rescale the magnetic meson M
and write the Lagrangian in terms of a field ®. which has a
canonical kinetic term near the origin of field space,

K=Ti®® +--.

The magnetic superpotential takes now the form

Winag = hq;®'q’ —Ir (h;nzcﬁ = ;};,3 Ltqb(pl)

irsa: 08020006 Page 42/216



where h Is a free dimensionless parameter and . ity are

mass scales. We will work in the regime

[ho

h,— <€ 1
7

in which we can study the O'Raifeartaigh model for ¢. ¢, P.

as In ISS. The small parameters above will be responsible

for the long lifetime of the metastable vacua that we will

find.

Pirsa: 08020006 Page 43/216



It Is also convenient to rescale the magnetic meson M
and write the Lagrangian in terms of a field ®. which has a
canonical kinetic term near the origin of field space,

K=Tr®® +-..

The magnetic superpotential takes now the form

Winag = hq;®q’ —Ir (hp,zﬁf’ = 9};2”(5@2)
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where h Is a free dimensionless parameter and i, ity are

mass scales. We will work in the regime

Ho

h,— <1
7

in which we can study the O'Raifeartaigh model for ¢. ¢, P.

as In ISS. The small parameters above will be responsible

for the long lifetime of the metastable vacua that we will

find.
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Supersymmetric vacua correspond to solutions of the F-

term equations of this superpotential:

3.-'\',;- - N f

L
det M \ -
) I:\rf
A

aM? —mM = (

Here Iy, Isthe Ny x Ny Identity matrix.
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Since det M # 0, the magnetic quarks ¢', §; are massive
and can be integrated out in the infrared. The resulting

superpotential for M is

det M )f-

3N.—Ny
e

Winag = Tr (%Mz ¥ .,n,M) — (Ny— N.) (

The last term Is the familiar non-perturbative superpotential
of N=1 SYM.
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Integrating out M gives

1 1 5 .
Wmag =— al | 2A TI'(_(.]H(])_ o TRTI‘((]Q)]

which has the same qualitative structure as the electric
superpotential. Thus, much of the analysis below can be

done in either the electric or magnetic variables. We will
use the magnetic ones.
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The deformation

We add to the electric Lagrangian the superpotential

Wa = %Tr( (3(2)2 - rn,Tr(éQ) — g'TrM 2 _mTeM

In the magnetic description this corresponds to deforming

Winag 10 ;

Wansg = 7 Mj@’ + S TeM? — mTeM
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Supersymmetric vacua

There are two types of supersymmetric vacua in this

theory:
» Mesonic branch:  det M # 0.
» Baryonic branch: detM =0: b=¢"""" #£0.

We will focus on the mesonic vacua.
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The deformation

We add to the electric Lagrangian the superpotential

S

W — %”{‘:-(Ej@)‘2 — mTe(QQ) = S TeM? — mTrM

In the magnetic description this corresponds to deforming

Wiae 10

ORI g
Wonas = £ G M + %Ter — mTrM
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These constraints are easy to solve:

1 .
for Ny < 2N. one finds 51\4‘}_,(1:\(1 + 1) isolated vacua;

1
for Ny > 2N, §(N — N.)(Nf — N.+1) vacua.

» Some of these vacua are small deformations of classical
ones, while others owe their existence to the non-

perturbative superpotential.

» Can exhibit them in both the electric and magnetic

theories and show that they are equivalent.
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It Is also convenient to rescale the magnetic meson M
and write the Lagrangian in terms of a field ®. which has a
canonical kinetic term near the origin of field space,

K=Tr®®d+-..

The magnetic superpotential takes now the form

Wmag — hrfji(D;qJ — TI‘ (hﬂ,z(ﬁ e ‘)hz#'(b(I)Z)
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where h Is a free dimensionless parameter and . i, are

mass scales. We will work in the regime

Ho

h,— <1
7

in which we can study the O'Raifeartaigh model for ¢. q. P.

as In ISS. The small parameters above will be responsible

for the long lifetime of the metastable vacua that we will

find.
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It is convenient to parametrize the light fields in ®,¢.¢ as

follows:

0 0 0
h (I) — 0 h {I) n ) 0
0 0 ::.;; I.""U-f —k—n
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where h Is a free dimensionless parameter and i, it are

mass scales. We will work in the regime

fo

h,— <1
7

in which we can study the O'Raifeartaigh model for ¢. ¢, P.

as in ISS. The small parameters above will be responsible

for the long lifetime of the metastable vacua that we will

find.
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It Is also convenient to rescale the magnetic meson M
and write the Lagrangian in terms of a field ®. which has a
canonical kinetic term near the origin of field space,

K=Tr®® +--.

The magnetic superpotential takes now the form

Wnag = hq;i®q" —Ir (h;:,ztfr s ;};,3 #(D(pz)
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where h Is a free dimensionless parameter and . it are

mass scales. We will work in the regime

Jho

h,— <1
7

in which we can study the O'Raifeartaigh model for ¢. q. 9P.

as In |ISS. The small parameters above will be responsible

for the long lifetime of the metastable vacua that we will

find.
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It is convenient to parametrize the light fields in ®,¢.¢ as

follows:

0 0 0
h (:D — 0 h {I) n ) 0
0 0 ::; I.-"'h"f—&—n

irsa: 08020006 Page 59/216



where h Is a free dimensionless parameter and . i, are

mass scales. We will work in the regime

Jho

h,— < 1
7

in which we can study the O'Raifeartaigh model for ¢. 4. 9P.

as in ISS. The small parameters above will be responsible

for the long lifetime of the metastable vacua that we will

find.
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It Is also convenient to rescale the magnetic meson M
and write the Lagrangian in terms of a field ®. which has a
canonical kinetic term near the origin of field space,

K=Tr®® +--.

The magnetic superpotential takes now the form

Wiag = hq;®;q’ — Tr (h;:,z(D - 9f32L£¢(P2)
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It is convenient to parametrize the light fields in ®,q.¢ as

follows:

0 0 0

h(b — 0 h{I)n 1 O
0 0 ::_al.\-f —k—n
w?l, 0 0

gq9=| 0 ¢ O
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It Is also convenient to rescale the magnetic meson M
and write the Lagrangian in terms of a field ®. which has a

canonical kinetic term near the origin of field space,
K=Tr®'®+--.

The magnetic superpotential takes now the form

Wag = hq; ®q" —Tr (h;:,E(I) - O}H#Q@E)
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It is convenient to parametrize the light fields in ®,¢.¢ as

follows:

0 0 0
h(I) — 0 h{I)" ) 0
0 0 ::a I."\i-f—‘t—ﬂ
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—

Here @, isan n X n matrix, while ¢, @ are matrices of
size n x (Ny— N.— k). Theclassical supersymmetric
vacua discussed before correspond to

p
—1
[ho

hd, = —@

i Y

ny ¥ —

In these vacua, ®,, has a large vev, h®, > p. Classically,
there are no additional vacua. However, after including the
one loop correction to the potential, new vacua appear near

the origin of field space.
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It is convenient to parametrize the light fields in ®.,¢.¢ as

follows:

0 0 0
h(I) — O h{I)n ) O
0 0 il‘l\'—f —k—n
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—

Here @, isan n X n matrix, while ¢, @ are matrices of
size n x (Ny— N.— k). The classical supersymmetric

vacua discussed before correspond to

:
h®, =2 I o=¢=0

I

Ay

In these vacua, ®,, has a large vev, h®, > p. Classically,
there are no additional vacua. However, after including the
one loop correction to the potential, new vacua appear near

the origin of field space.
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It is convenient to parametrize the light fields in ®,q.¢ as

follows:

0 0 0
h(I) —- 0 h{I)H 0
0 0 ::; I.M-f —k—n

w?l, 0 0
aga=| 0 @¢ 0
0
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—

Here @, isan n X n matrix, while @, @ are matrices of
size n x (Ny— N.— k). The classical supersymmetric

vacua discussed before correspond to

1
—1

hr(bn == ny Y — =
Ho

Ay

In these vacua, ®,, has a large vev, h®, > p. Classically,
there are no additional vacua. However, after including the
one loop correction to the potential, new vacua appear near

the origin of field space.
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It is convenient to parametrize the light fields in ®,¢.¢ as

follows:

0 0 0
h(I) — 0 h{I)n 0
0 0 %Iﬁi_f —k—n

w’lp, 0 O
gq=| 0 ¢ O
0
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—

Here @, isan n X n matrix, while @, ¢ are matrices of
size n x (Ny— N.— k). The classical supersymmetric

vacua discussed before correspond to

In these vacua, ®,, has a large vev, h®, > . Classically,
there are no additional vacua. However, after including the
one loop correction to the potential, new vacua appear near

the origin of field space.
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It is convenient to parametrize the light fields in ®,¢.¢ as

follows:

0 0 0
h(I) — 0 h{I)n y 0
0 0 ::; I.""U-f —k—n
2
iy O @

9=\ 0 ¢p 0
0 0
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—

Here @, isan n X n matrix, while @, @ are matrices of
size n x (Ny— N.— k). Theclassical supersymmetric

vacua discussed before correspond to

p
—1

h(I)n = ny Y = =40
Ho

A Y

In these vacua, ®,, has a large vev, h®, > p. Classically,
there are no additional vacua. However, after including the
one loop correction to the potential, new vacua appear near

the origin of field space.
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It is convenient to parametrize the light fields in ®,¢.¢ as

follows:

0 0 0
h (I) - — 0 h {I) n ) 0
0 0 L‘_:::I‘\-f —k—n
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—

Here @, isan n X n matrix, while @, ¢ are matrices of
size n x (Ny— N.— k). Theclassical supersymmetric

vacua discussed before correspond to

In these vacua, ®,, has a large vev, h®, > p. Classically,
there are no additional vacua. However, after including the
one loop correction to the potential, new vacua appear near

the origin of field space.
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Indeed, the full one loop potential takes the form

i y 9 ’ :
A2~ = |®,0|” + |@P.|* + |Pp — 1L, + hpts®@,|* + blhp|*Trd] @,

where b is a numerical coefficient computed In ISS,

In4 — 1
b= (N; — N.)

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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It Is also convenient to rescale the magnetic meson M
and write the Lagrangian in terms of a field ®. which has a
canonical kinetic term near the origin of field space,

K=Tr®® +--.

The magnetic superpotential takes now the form
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Indeed, the full one loop potential takes the form

% ; " 15
hE =~ = |®,0|* + |2Pn| + [P0 — 1 Iy + hpts®n|* + blhp[*Trdl &,

where b is a numerical coefficient computed in ISS,

n4 —1 )
b= (N; = N,)

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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» At this extremum, onehas ¢ = ¢ =0 and

b, = — FHe g L EHS
B T 7 7T

> The vacuum energy is given by: V =~ n|hu’|?

» Expanding around this solution one finds that the mass

2 |
matrix for ¢, @ has eigenvalues: My =~ 5 (les|® £ [bhpl*)

Thus, to avoid Infrared instabilities one must have

2 9
bh :
- ~ |bh|*
1 — b|h|? -

Ho

7
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Indeed, the full one loop potential takes the form

=
ThE = |®,0]* + |6®,.|* + |pp — 11, + hps®@,|*> + blhu|*Tr®! @,

where b is a numerical coefficient computed in ISS,

In4 —1
b= {72 (fo— \!)

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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—

Here @, isan n X n matrix, while @, @ are matrices of
size nx (Ny— N.— k). Theclassical supersymmetric

vacua discussed before correspond to

-
“—L,: =g —>_0
Ho

In these vacua, ®,, has a large vev, h®, > p. Classically,
there are no additional vacua. However, after including the
one loop correction to the potential, new vacua appear near

the origin of field space.
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» At this extremum, onehas ¢ = ¢ =0 and

Ea e : Nn‘zﬂ;]
T T Y T

> The vacuum energy is given by: V =~ n|hu*|?

» Expanding around this solution one finds that the mass
o 1 .

matrix for ¢, ¢ has eigenvalues: m% = 5 (|ps|” = [bhpl*)

Thus, to avoid Infrared instabilities one must have

Ho

7

2 9
bk :
= ~ |bh|*
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» Generically, these vacua have two types of instabilities,

having to do with tunneling over the barriers in the ®,, and

@ directions. The corresponding tunneling rates can be
made parametrically small in the regime In coupling space

mentioned above.

» For k = Ny — N, the fields ¢, ¢ do not exist. Hence, the
corresponding vacua are more long lived. In particular, they

exist for arbitrarily small zi..
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» At this extremum, onehas ¢ = ¢ =0 and

A 1o : Nn‘zu;';l
B T 17 O 7]

» The vacuum energy is given by: V =~ n|hu*|?

» Expanding around this solution one finds that the mass
3 1 .

matrix for ¢, ¢ has eigenvalues:  m% = 5 (|us|” = |bhul?)

Thus, to avoid Iinfrared instabilities one must have

Ho

7

2 9
bh]? :
> ~ |\bh|*
1o = oM
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» Generically, these vacua have two types of instabilities,

having to do with tunneling over the barriers in the ®,, and

@ directions. The corresponding tunneling rates can be

made parametrically small in the regime In coupling space

mentioned above.

» For k = Ny — N, the fields ¢, ¢ do not exist. Hence, the
corresponding vacua are more long lived. In particular, they

exist for arbitrarily small zi.
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Indeed, the full one loop potential takes the form

7 |
e = = | D0 + [Pu|* + |G — 1P L + hps®,|® + blhp[*Trd] @,

where b is a numerical coefficient computed in ISS,

In4 —1
b= (N;— No).

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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» Generically, these vacua have two types of instabilities,

having to do with tunneling over the barriers in the ®,, and

@ directions. The corresponding tunneling rates can be
made parametrically small in the regime In coupling space

mentioned above.

» For k = Ny — N, the fields ¢, ¢ do not exist. Hence, the
corresponding vacua are more long lived. In particular, they

exist for arbitrarily small zi..
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where h Is a free dimensionless parameter and . i, are

mass scales. We will work in the regime

B e
7

in which we can study the O'Raifeartaigh model for ¢. 4. P.

as In |ISS. The small parameters above will be responsible

for the long lifetime of the metastable vacua that we will

find.
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Here @, isan n X n matrix, while @, @ are matrices of
size n x (Ny— N.— k). Theclassical supersymmetric

vacua discussed before correspond to

In these vacua, ®,, has a large vev, h®, > p. Classically,
there are no additional vacua. However, after including the
one loop correction to the potential, new vacua appear near

the origin of field space.
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Indeed, the full one loop potential takes the form

-
ThE = |®,0]* + [6®,.|* + |po — 1’1, + hps®@,|> + blhu|*Tr®! ®,

where b is a numerical coefficient computed in ISS,

In4 —1
b= ]2 (Vf_w)

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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Pi

» At this extremum, onehas ¢ = ¢ =0 and

e I N

h®, =
ol + 0 "~ Bluf?

:

> The vacuum energy is given by: V =~ n|hu*|?

» Expanding around this solution one finds that the mass
1 :

matrix for ¢, ¢ has eigenvalues: mZ = 5 (|us|” = [bhpl?)

Thus, to avoid Infrared instabilities one must have

> ~ |bh|?
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» Generically, these vacua have two types of instabilities,

having to do with tunneling over the barriers in the ®,, and

@ directions. The corresponding tunneling rates can be
made parametrically small in the regime In coupling space

mentioned above.

» For k = Ny — N, the fields ¢, ¢ do not exist. Hence, the
corresponding vacua are more long lived. In particular, they

exist for arbitrarily small zi.
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Indeed, the full one loop potential takes the form

g " 2 . :
|h|2 — I(I)nlp’l . |L}9(I)n|2 - \\-ﬁ'(p f.éz-[-n - hﬁé@nr = b|h’f-£|2Tr(DL(I)n

where b is a numerical coefficient computed Iin ISS,

In4 —1
b= P (Nys— N,).

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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It is convenient to parametrize the light fields in ®,¢.¢ as

follows:

0 0 0
h(ﬁ — 0 h{I)H 0
U 0 %Iﬁi_f—k—ﬂ
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Here @, isan n X n matrix, while @, @ are matrices of
size n x (Ny— N.— k). Theclassical supersymmetric

vacua discussed before correspond to

In these vacua, ®,, has a large vev, h®, > p. Classically,
there are no additional vacua. However, after including the
one loop correction to the potential, new vacua appear near

the origin of field space.
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Indeed, the full one loop potential takes the form

% ,. X 1L
hE =~ = |®,0|* + |2®n) + [P — 1L + hps®n|* + blhp[*Trdl @,

where b is a numerical coefficient computed in ISS,

In4 — 1
b= T~ (N;— No).

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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» Generically, these vacua have two types of instabilities,

having to do with tunneling over the barriers in the ®,, and

@ directions. The corresponding tunneling rates can be
made parametrically small in the regime In coupling space

mentioned above.

» For k = Ny — N, the fields ¢, ¢ do not exist. Hence, the
corresponding vacua are more long lived. In particular, they

exist for arbitrarily small zi..
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To summarize, we see that N=1 SQCD with the deformation
described above has in addition to its supersymmetric vacua
a rather rich spectrum of metastable supersymmetry breaking
states, which can be made arbitrarily long-lived by tuning the

parameters of the model.

These vacua exhibit diverse patterns of global symmetries

and low lying excitations and might be interesting candidates
for the supersymmetry breaking sector in nature.



String theory

If string theory is realized in nature, particle physics
models that naturally arise from it are more likely to play a
role in beyond the standard model physics. Therefore, it is
Interesting to ask whether the supersymmetry breaking
dynamics described above can be naturally embedded in a
string construction. In the remainder of the talk | will argue
that this is iIndeed the case.



To summarize, we see that N=1 SQCD with the deformation
described above has in addition to its supersymmetric vacua
a rather rich spectrum of metastable supersymmetry breaking
states, which can be made arbitrarily long-lived by tuning the

parameters of the model.

These vacua exhibit diverse patterns of global symmetries

and low lying excitations and might be interesting candidates
for the supersymmetry breaking sector in nature.



Indeed, the full one loop potential takes the form

Vv | i B L gl
e = = | P + [P, + |G — P L + hps®,|® + blhp[*Trd] @,

where b is a numerical coefficient computed In ISS,

In4 — 1
b= T (N; — o).

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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It is convenient to parametrize the light fields in ®,¢.¢ as

follows:

0 0 0
hd — 0 h{I)n 0
U 0 i‘[ﬁ'—f —k—n

wlp 0 O
gq9=| 0 @ O
0 0O 0
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Here @, isan n X n matrix, while ¢, @ are matrices of
size n x (Ny— N.— k). The classical supersymmetric

vacua discussed before correspond to

=
o
|
=
™
©
I
i
|
=

In these vacua, ®,, has a large vev, h®, > p. Classically,
there are no additional vacua. However, after including the
one loop correction to the potential, new vacua appear near

the origin of field space.
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Indeed, the full one loop potential takes the form

vV -' 2 9 :
hE = = |, 0|* + |2Pn| + [P0 — 1L + hps®n|* + blhp[*Trd] @,

where b is a numerical coefficient computed in ISS,

n4 —1 )
b= T~ (N; = No).

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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» At this extremum, onehas ¢ = ¢ =0 and

el o . N;Fu:;l
B 1T 7 Y 71

> The vacuum energy is given by:  V =~ n|hp*|?

» Expanding around this solution one finds that the mass

a 1 ;
matrix for .3 has eigenvalues: m% = = (|us|” £ [bhul)

Thus, to avoid Infrared instabilities one must have

2 :

b a

&> ~ |\bh|*
1 — b|h|? I

fho

7
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Indeed, the full one loop potential takes the form

V . s ) i
hE = |®,0? + |G®.|> + |@o — 12 I + hps®,)? + blhp>Trdl @,

where b is a numerical coefficient computed In ISS,

In4 —1
b= T~ (N; — N)

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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» At this extremum, onehas ¢ = ¢ =0 and

b, = — FHe g B
B T 17 /7!

> The vacuum energy is given by: V =~ n|hu*|?

» Expanding around this solution one finds that the mass
. 1 .

matrix for ¢, ¢ has eigenvalues: mZ = 3 (|us|” = [bhul?)

Thus, to avoid Iinfrared instabilities one must have

2 F
jbh :
> ~ |bh|~
1 — blh|? I

o

7

Pirsa: 08020006 Page 107/216



» Generically, these vacua have two types of instabilities,

having to do with tunneling over the barriers in the ®,, and

@ directions. The corresponding tunneling rates can be
made parametrically small in the regime In coupling space

mentioned above.

» For k = Ny — N, the fields ¢, ¢ do not exist. Hence, the
corresponding vacua are more long lived. In particular, they

exist for arbitrarily small zi.
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To summarize, we see that N=1 SQCD with the deformation
described above has in addition to its supersymmetric vacua
a rather rich spectrum of metastable supersymmetry breaking
states, which can be made arbitrarily long-lived by tuning the

parameters of the model.

These vacua exhibit diverse patterns of global symmetries

and low lying excitations and might be interesting candidates
for the supersymmetry breaking sector in nature.



String theory

If string theory is realized in nature, particle physics
models that naturally arise from it are more likely to play a
role in beyond the standard model physics. Therefore, it is
Interesting to ask whether the supersymmetry breaking
dynamics described above can be naturally embedded in a
string construction. In the remainder of the talk | will argue
that this is iIndeed the case.



To summarize, we see that N=1 SQCD with the deformation
described above has in addition to its supersymmetric vacua
a rather rich spectrum of metastable supersymmetry breaking
states, which can be made arbitrarily long-lived by tuning the

parameters of the model.

These vacua exhibit diverse patterns of global symmetries

and low lying excitations and might be interesting candidates
for the supersymmetry breaking sector in nature.



» At this extremum, onehas ¢ = ¢ =0 and

' ¥ 20
RN Y

h-q)n —_ 5 — o Etn
ko |? + blu|? blpl?

> The vacuum energy is given by: V =~ n|hu*|?

» Expanding around this solution one finds that the mass
i 1 :

matrix for ¢, has eigenvalues:  mi =~ = (|us|” £ [bhp|’)

Thus, to avoid Iinfrared instabilities one must have

fho

7

2 9
\bh|* .
> ~ |bh!|*
= b|h|2 | |
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Indeed, the full one loop potential takes the form

4 | ' i |
A2 — = |P.0|? + |p®,|* + [P — 2L, + hps®,|* + blhp[*Trd] @,

where b is a numerical coefficient computed in ISS,

In4 — 1
b=~ (N;— No).

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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» At this extremum, onehas ¢ = o =0 and

o SR 2.9
L™ [L ;L
i’ By ™ °1

h-q)n —_ 5 — n
ko |? + bl p/? blp|?

» The vacuum energy is given by:  V =~ n|hp*|?

» Expanding around this solution one finds that the mass

R |
matrix for ¢, @ has eigenvalues: M3 =~ 5 (les|® £ [bhpl)

Thus, to avoid Iinfrared instabilities one must have

2 9,
\bh|* .
> ~ |bh|*

Ho

7
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Indeed, the full one loop potential takes the form

B " 9 ) .
|hl2 = I(I)HL{:’l 5 |99q)n|2 - \-15'&,«9 I_szﬂ 4+ h’/-ffr:m(bnr + b|h/-5|2TT(DL(Dn

where b is a numerical coefficient computed in ISS,

In4 — 1
b= (N;— No).

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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» At this extremum, onehas ¢ = ¢ =0 and

LE* Ef
Wiy . PPk,

h-(I)n —_ n — 5 in
ko |? + blp/? blpf?

> The vacuum energy is given by: V =~ n|hu*|?

» Expanding around this solution one finds that the mass
3 1 :

matrix for ¢, ¢ has eigenvalues: mZ = 5 (|us|” = [bhpl?)

Thus, to avoid Iinfrared instabilities one must have

fho

7

2 9
bh]? :
5 ~ |\bh|*
T —bap = oM
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Indeed, the full one loop potential takes the form

Vv |
e = = [P0 + [P, + [P0 — P L + hps®,|® + blhp[*Trd] @,

where b is a numerical coefficient computed In ISS,

In4 —1
b Sﬂ_z (er—“V)

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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It is convenient to parametrize the light fields in ®,¢.¢ as

follows:

0 0 0
h(I) — 0 h{I)H ; 0
0 0 ::_‘:’I.W'f—k—ﬂ

w’ly, 0 0
gq=| 0 ¢ O
0
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Here @, isan n X n matrix, while ¢, @ are matrices of
size n x (Ny— N.— k). The classical supersymmetric

vacua discussed before correspond to

d
H—I i a—gx—4

Ho

In these vacua, ®,, has a large vev, h®, > p. Classically,
there are no additional vacua. However, after including the
one loop correction to the potential, new vacua appear near

the origin of field space.
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Indeed, the full one loop potential takes the form

hE =~ = |, 0|* + |Pn| + |G — I + hps®n|* + blhp[*Trd] @,

where b is a numerical coefficient computed in ISS,

In4 — 1
b= (N;— No).

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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» At this extremum, onehas ¢ = ¢ =0 and

hb, = — FHe L EHS
B T e 17 /7T

> The vacuum energy is given by: V =~ n|hp*|?

» Expanding around this solution one finds that the mass
1 .

matrix for ¢, ¢ has eigenvalues: m% = 5 (|us|” = [bhpl?)

Thus, to avoid Infrared instabilities one must have

2 2,
|bh|“ 2
= ~ |bh
1 — b|h|2 .

Jio

7
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String theory

If string theory is realized in nature, particle physics
models that naturally arise from it are more likely to play a

role in beyond the standard model physics. Therefore, it is

Interesting to ask whether the supersymmetry breaking
dynamics described above can be naturally embedded in a
string construction. In the remainder of the talk | will argue
that this is iIndeed the case.



There are two ways of realizing it as a low energy theory on

D-branes:

» Near conical singularities of Calabi-Yau manifolds.

» In the vicinity of Neveu-Schwartz fivebranes.

The two descriptions are related by a version of T-duality.
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We will use the NS5-brane picture, which was found to be
more useful than the CY one in studying supersymmetric

vacua. It turns out to be more useful for studying metastable

vacua as well.

In particular, this description provides a nice geometric
picture of the vacua that we found in the gauge theory before.
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Brane realization of SQCD

The electric SQCD described above can be realized in
string theory as the low energy theory corresponding to a
brane configuration containing two kinds of NS5-branes,

which we will denote by NS and NS, as well as D4 and D6-

branes.
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All the branes are stretched in the 3+1 directions (0123).
The NS-branes are also stretched in the directions (435), the
NS'-branes in (89), the D4-branes in 6 and the D6-branes
In (789). One can check that any configuration containing
all these branes preserves N=1 supersymmetry in the 3+1

common dimensions (0123).

The branes are arranged in the extra dimensions as

follows:
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NS* | N D6

D6
* ®
|
|
A Np D4
| N. D4 | | Ng¢ D4
/; NS EE ) NS
(v.y)=(0.0) | Z
[ C D4 (v.w)=0.0)
|
L ]
NS’
y W
‘l—‘ |
w ” ‘U_H »
v=2zx+iz", w=zx" +ix° , y = z°

»Fleld content, gauge coupling, moduli space.
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! NS
|

v=zx*+ix’ .

NS* = Nr D6
N. D4 | | Ny D4
L 2 J NS
(v.w)=(0.0)
W
A
-
}r
w=2z"+ix", y=2z°

»Fleld content, gauge coupling, moduli space.

irsa: 08020006
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Seiberg dual (magnetic) brane configuration

NgD6 _ (0.7,)

®
NS @ (0.v,)

4 Ny—N. D4

NS

(v.y)=(0.0)

y
i

—p—= v
w !
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NS’

NS

(v.w)=(0.0)
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NS' | N D6

Ng D6
A Np D4
| N. D4 Ny D4
/‘ NS 9 NS
(v.y)=(0.0) | /

T N. D4 (v.w)=(0.0)
; |

NS’

y W

l—‘ —-.—-i

w v -t v
v=21x"+iz’ . w=3z +ix", y=2z°

»Field content, gauge coupling, moduli space.
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Seiberg dual (magnetic) brane configuration

NgD6 _ (0.7,)

A NgD4

NS'® (0.v,)
N¢—N. D4

NS

irsa: 08020006

(v.¥)=(0.0)

NS’

NS

(v.w)=(0.0)
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Pi

H

D4

—'4

|
i
(v.y)=(0.0) D4

. c
|
.
NS

y

B

v=zx*+ix" .

NS

w =z +iz’ .

»Fleld content, gauge coupling, moduli space.

IIIII

: 08020006

NS* Ny D6
Nc D4 \If D4
L 2 2 NS
(v.w)=10.0)
W
[
H v
}.‘
y=2a°
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Seiberg dual (magnetic) brane configuration

NgD6 _ (0.7,)

Ny D4
NS'® (0.y,)
N¢—N. D4
NS
(v-y)=(0.0)
y
A
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NS"  NgD6

8 NS

(v.w)=(0.0)
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7
g

NS

(v.y)=(0.0)

'.
L]

v=zx*+ix" .

NS°

Ng D6

Ny D4

N. D4
(v.w)=(0.0)
W
A
y
w=2z"+ix", y=2z°

»Fleld content, gauge coupling, moduli space.
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Seiberg dual (magnetic) brane configuration

NgD6 _ (0.y,)

A NpD4

NS'® (0.y,)

A Ny—N. D4

NS

(v.y)=(0.0)
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NS’

NS

(v.w)=(0.0)
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The deformation

Deforming the superpotential to

iy |
Wanag = 8 Mjq’ + S TrM?* — mTrM

corresponds geometrically to a translation (m) and rotation

() of the D6-branes:
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NS’ N¢ D6

N¢D6 @ (v,.y,)

0 ._V: i:'l)tﬂ

Ng—k D4

kD4 § NS'® (0.y,)
k D4 N¢e&—Ne—k D4
NS f < NS
(0.0) (0.0)
¥ w
i '}
w=0T  V }H y

where m = —Twvy, al = tanb;

wol@els supersymmetric vacua (as before).



Seiberg dual (magnetic) brane configuration

NgD6 _ (0.7,)

A NyD4

NS @ (0.y,)
Ng—N. D4

NS

(v.y)=(0.0)
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NS NgD6

8 NS

(v.w)=(0.0)
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NS N¢ D6

N¢D6 @ (v,.¥,)
L (0 .~v; cot®) Ne—k D4

kD4 § NS'® (0.y,)
k D4 Ne—Ne—k D4
NS = NS
(0.0) (0.0)
v -
i i
w=l) v } . v

where m = —Twv,, oA = tanb;

wol@delsS supersymmetric vacua (as before).



Seiberg dual (magnetic) brane configuration

NgD6 _ (0.y,)

*
A N¢D4
NS'® (0.y,)

A Nf— N. D4

NS

(v.¥)=(0.0)

y
A

) -

'\"rl v
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NS’

Df-l.

Ng D6

NS

/

(v.w)=(0.0)

L
y! .
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NS N¢ D6

N¢D6 @ (v,.¥,)
uh (0 .~v; cotO ) Ne—k D4

kD4 § NS'® (0.y,)
k D4 Ne—N—k D4
NS E NS
(0.0) (0.0)
y -
i i
w=0 L },—*-—- v

where m = —Twvy, ol = tanb;

wol@dels supersymmetric vacua (as before).



Seiberg dual (magnetic) brane configuration

NS
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(v-y)=(0.0)
&

| v
w !

NS’

NS

(v.w)=(0.0)
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NS Ng D6

N¢D6 @ (v,.¥,)
E (0 .~v, cot® Nf-k D4

kD4 § NS'® (0.y,)
k D4 Nge—Ne—k D4
NS A NS
(0.0) (0.0)
V -
: i
w=0T 3

where m = —Twvy, al = tanb;

wol@els supersymmetric vacua (as before).



The deformation

Deforming the superpotential to

R .
Winag = ~@:Mjq’ + %Ter — mTrM

corresponds geometrically to a translation (m) and rotation

() of the D6-branes:
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NS’ Ny D6

N¢D6 @ (v,.¥,)
il (0 .~v, cot® Nk D4

kD4 § NS'® (0.y,)
k D4 Ne—Ne—k D4
NS . NS
(0.0) (0.0)
V -
i [
w=l) v },. T

where m = —Twvy, ol = tanb;

wol@dels supersymmetric vacua (as before).



Metastable vacua

correspond to the following brane configurations:

N¢ D6

N¢Dé
Nf-k-nD4

k D4

N Ne-k D4

-
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NS N¢ D6

N¢D6 @ (v,.¥,)
(0 .~v, cot® Ne-k D4

kD4 § NS’ 0.y, )
k D4 Ne—Ne—k D4
NS i NS
(0.0) (0.0)
V -
i i
w=0 v 1..'_*-_- v

where m = —Twv,, oA = tanb;

~ol@dels supersymmetric vacua (as before).



Metastable vacua

correspond to the following brane configurations:

NS® N D6
(V,.¥,)
N¢Dé E
(0 .~v, cot8] Nf-k-nD4
n D4
- 't (0.v, )
k D4 NS’ Y1
Ne—Ne—k D4
= n D4 e
Ny~Ne-k D4
NS NS

(0.0) ' k D4 (0.0)

irsa: 08020006 Page 152/216



NS N¢ D6

N¢D6 @ (v,.¥,)

(0 .~v, cot® Ne-k D4
k D4 l NS'® (0.y,)
k D4 Ne—Ne—k D4
NS = NS

(0.0) (0.0)
y w
i [

“,*:ﬂl v } . v

where m = —Tvy, alA =tanb;

wol@dels supersymmetric vacua (as before).



To summarize, we see that N=1 SQCD with the deformation
described above has in addition to its supersymmetric vacua
a rather rich spectrum of metastable supersymmetry breaking
states, which can be made arbitrarily long-lived by tuning the

parameters of the model.

These vacua exhibit diverse patterns of global symmetries

and low lying excitations and might be interesting candidates
for the supersymmetry breaking sector in nature.



It is convenient to parametrize the light fields in ®,¢.¢ as

follows:

0 0 0
h (I) — 0 h {I) n 0
{) 0 ::; Ii‘ff —k—n

.U-EI k

ey

e

|

o

6
SIS
— K-

0
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Indeed, the full one loop potential takes the form

-
hE = |®,0]* + |6®,.|* + |pp — 1’1, + hps®@,|> + blhu|/*Tr®! @,

where b is a numerical coefficient computed in ISS,

In4 — 1
b= {72 (Vf_v)

In addition to the supersymmetric minimum, this potential
has a non-supersymmetric extremum at which the tree

level and one loop terms balance each other.
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» At this extremum, onehas ¢ = ¢ =0 and

hb, = —FHe L EHS
B T 7 /7T

» The vacuum energy is given by:  V =~ n|hp’|?

» Expanding around this solution one finds that the mass

N .
matrix for ¢, 3 has eigenvalues: m% = = (|us|” + [bhpl")

Thus, to avoid Iinfrared instabilities one must have

2 9
|bh|* P
- ~ |bh

Ho

7
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NS® | Nf D6
Dé6
T *
|
i N D4
| N. D4 | | Ng D4
/i— NS NS
(v.y)=(0.0) | /
3 N. D4 (v.w)=(0.0)
|
|
]
NS’
y W
l—‘ |
W v }TH v
v=uzx+iz" . w=zx" +iz° , y=12z°

»Fleld content, gauge coupling, moduli space.
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NS N¢ D6

N¢D6 @ (v,.¥,)
.l (0 .~v, cot® ?’if—k D4

kD4 4 NS'® (0.y,)
k D4 Ne—N—k D4
NS e NS
(0.0) (0.0)
y =
. i
w=0 v }—*'—". 5

where m = —Twvy, al = tanb;

wol@dels supersymmetric vacua (as before).



NS’ Ng D6

N¢D6 @ (v,.y,)
o (0 .~v, cot® Ne—k D4

kD4 4 NS'® (0.y,)
k D4 Ne—Ne—k Dd
NS o NS
(0.0) (0.0)
v =
i i
|
w=0 v f*——‘v

where m = —Twvy, ol = tanb;

wol@dels supersymmetric vacua (as before).



Metastable vacua

correspond to the following brane configurations:

N¢ D6

Nf-k—-nD4

NpNe-k D4

y .
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They are locally stable due to a competition between two

effects:

1) The tension of the D4-branes attracts them to the D6-

NS’ intersection.

2) The gravitational attraction of the D4-branes towards the

NS-brane pulls them in the opposite direction.

For small 6. one can show that there is a locally stable
equilibrium in which the D4-branes remain close to the NS-

brane.



Metastable vacua

correspond to the following brane configurations:

Nf D6
(V,.¥,)
N¢Dé6 E
Nf-k—-nD4
n D4
- 't (0.v, )
k D4 NS’ 71
N Ne—-k D4
Ny~Ne—-k D4
NS NS

(0.0)

ni_' v yl_’ v
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They are locally stable due to a competition between two

effects:

1) The tension of the D4-branes attracts them to the D6-
NS’ intersection.

2) The gravitational attraction of the D4-branes towards the

NS-brane pulls them in the opposite direction.

For small 6. one can show that there is a locally stable
equilibrium in which the D4-branes remain close to the NS-

brane.



Metastable vacua

correspond to the following brane configurations:

NS® Nf D6

(0 .~v, cotB] Nf-k-nD4

0.y, )

Ng— Ne-k D4

Nf-Ne-k D4
NS _
(0,0) kD4/ (v, 0) (0.0)

wl_' v yi_’ v
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They are locally stable due to a competition between two

effects:

1) The tension of the D4-branes attracts them to the D6-
NS’ intersection.

2) The gravitational attraction of the D4-branes towards the

NS-brane pulls them in the opposite direction.

For small 6. one can show that there is a locally stable
equilibrium in which the D4-branes remain close to the NS-

brane.



Metastable vacua

correspond to the following brane configurations:

NS’ Nf D6
(V,.¥,)
N¢D6 E
(0 .~v, cot8) Nf-k-nD4

n D4
- 't (0.v, )
k D4 NS’ L

Ne—Ne—-k D4
i n D4 S
= Ny~ Ne—k D4 —
(0.0) ' k D4 (0.0) '
y W

W l v ".‘L—’ v
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NS N¢ D6

N¢D6 @ (v,.¥,)
(0.~v; cot9® Ne—k D4

kD4 4 NS'® (0.y,)
k D4 Ne—Ne—k D4
NS e NS
(0.0) (0.0)
¥ -
‘ '
“':{}—-.-—-F v 1‘—-.-—-- v

where m = —Twvy, al = tanb;

wol@els supersymmetric vacua (as before).



Metastable vacua

correspond to the following brane configurations:

NS’ N D6
(V,.¥,)
N¢D6 :
(0.~v, cot8)® Ne—k—nD4
n D4
C A (0.v, )
k D4 NS_L Y1
N N—k D4
il n D4 ST
| NS Nf-Ne-k D4 -
(0.0) ' k D4 (0.0) '
¥ w

W I Wi—, v
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They are locally stable due to a competition between two

effects:

1) The tension of the D4-branes attracts them to the D6-

NS’ intersection.

2) The gravitational attraction of the D4-branes towards the

NS-brane pulls them in the opposite direction.

For small 6. one can show that there is a locally stable
equilibrium in which the D4-branes remain close to the NS-

brane.



For N; — N. — &k > 0 there are two types of instabilities:

1) Reconnection of the endpoints of (some of) the D4-

branes on the NS'-brane.

2) Motion of the n D4-branes to larger w back to the susy

vacuum configuration described above.

Both are non-perturbative instabilities. For fixed values of
the geometric parameters in the Iimitg, — 0, the lifetime

goes like exp(C/g.).
For N; — N. — k = 0 the first type of instability is absent.
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They are locally stable due to a competition between two

effects:

1) The tension of the D4-branes attracts them to the D6-
NS’ intersection.

2) The gravitational attraction of the D4-branes towards the

NS-brane pulls them in the opposite direction.

For small 6. one can show that there is a locally stable
equilibrium in which the D4-branes remain close to the NS-

brane.



For N; — N. — &k > 0 there are two types of instabilities:
1) Reconnection of the endpoints of (some of) the D4-
branes on the NS'-brane.

2) Motion of the n D4-branes to larger w back to the susy

vacuum configuration described above.

Both are non-perturbative instabilities. For fixed values of
the geometric parameters in the Iimitg, — 0, the lifetime

goes like exp(C/g.).
For N; — N. — k = 0 the first type of instability is absent.
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They are locally stable due to a competition between two

effects:

1) The tension of the D4-branes attracts them to the D6-
NS’ intersection.

2) The gravitational attraction of the D4-branes towards the

NS-brane pulls them in the opposite direction.

For small 6. one can show that there is a locally stable
equilibrium in which the D4-branes remain close to the NS-

brane.



For N — N. — &k > 0 there are two types of instabilities:

1) Reconnection of the endpoints of (some of) the D4-

branes on the NS'-brane.

2) Motion of the n D4-branes to larger w back to the susy

vacuum configuration described above.

Both are non-perturbative instabilities. For fixed values of
the geometric parameters in the Imitg, — 0, the lifetime

goes like exp(C/gs).

For N; — N. — k = 0 the first type of instability is absent.
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They are locally stable due to a competition between two

effects:

1) The tension of the D4-branes attracts them to the D6-
NS’ intersection.

2) The gravitational attraction of the D4-branes towards the

NS-brane pulls them in the opposite direction.

For small 6. one can show that there is a locally stable
equilibrium in which the D4-branes remain close to the NS-
brane.

Wl

v v | v



Metastable vacua

correspond to the following brane configurations:

NS® Nf D6

(0.~v, cot8)® Ne—k-—nD4

n D4

Ng—Ne-k D4
(0.0)

y -
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They are locally stable due to a competition between two

effects:

1) The tension of the D4-branes attracts them to the D6-
NS’ intersection.

2) The gravitational attraction of the D4-branes towards the

NS-brane pulls them in the opposite direction.

For small 6. one can show that there is a locally stable
equilibrium in which the D4-branes remain close to the NS-

brane.



For N — N. — &k > 0 there are two types of instabilities:

1) Reconnection of the endpoints of (some of) the D4-

branes on the NS'-brane.

2) Motion of the n D4-branes to larger w back to the susy

vacuum configuration described above.

Both are non-perturbative instabilities. For fixed values of
the geometric parameters in the Iimitg, — 0, the lifetime

goes like exp(C/gs).
For Ny — N. — k = 0 the first type of instability is absent.
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They are locally stable due to a competition between two

effects:

1) The tension of the D4-branes attracts them to the D6-
NS’ intersection.

2) The gravitational attraction of the D4-branes towards the

NS-brane pulls them in the opposite direction.

For small 6. one can show that there is a locally stable
equilibrium in which the D4-branes remain close to the NS-

brane.



Metastable vacua

correspond to the following brane configurations:

NS® N D6
(V,.¥,)
N¢Dé iy
(0 .~v, cot®® Ne—k—nD4
n D4
- 't (0.v, )
k D4 NS Y1
NgeNe—k D4
e n D4 . =
Nf~Ne-k D4
NS NS

(0.0) ' k D4 (0.0)

W [ v ".‘L v
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For N — N. — &k > 0 there are two types of instabilities:

1) Reconnection of the endpoints of (some of) the D4-

branes on the NS'-brane.

2) Motion of the n D4-branes to larger w back to the susy

vacuum configuration described above.

Both are non-perturbative instabilities. For fixed values of
the geometric parameters in the Iimitg, — 0, the lifetime

goes like exp(C/gs).

For Ny — N. — k = 0 the first type of instability is absent.



All the elements of the gauge theory discussion have direct

analogs in the brane construction. For example:

» The n light fundamentals of SU(N;— N. — k). ¢. &,
correspond to fundamental strings stretched between the n

flavor D4-branes and the N; — N, — k color ones.

» The one loop effects that are necessary for stabilizing

the metastable states in gauge theory are replaced by the
gravitational attraction of the D4-branes to the NS-brane.

Pirsa: 08020006 Page 183/216



Metastable vacua

correspond to the following brane configurations:

N¢Dé

k D4

irsa: 08020006

NS

(0 .~v, cotB)

n D4

N¢ D6

Nf—-k—-nD4

N Ne-k Db

k D4

(0.0)

-
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All the elements of the gauge theory discussion have direct

analogs in the brane construction. For example:

» The n light fundamentals of SU(N;— N. — k). ¢. &,
correspond to fundamental strings stretched between the n

flavor D4-branes and the N; — N, — k color ones.

» The one loop effects that are necessary for stabilizing

the metastable states in gauge theory are replaced by the
gravitational attraction of the D4-branes to the NS-brane.
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Metastable vacua

correspond to the following brane configurations:

NS® Nf D6
(V,.¥,)
N¢D6 )
(0 .~v, cot8) Nf-k-nD4
n D4
- 't (0.v, )
k D4 NS’ Y1
Nge&—Ne—k D4
= n D4 - =
Ny—Ne—-k D4
NS NS

(0,0) ' k D4 (0.0)

wl g vi v
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All the elements of the gauge theory discussion have direct

analogs in the brane construction. For example:

» The n light fundamentals of SU(N;— N. — k). ¢. .
correspond to fundamental strings stretched between the n

flavor D4-branes and the N; — N, — k color ones.

» The one loop effects that are necessary for stabilizing

the metastable states in gauge theory are replaced by the
gravitational attraction of the D4-branes to the NS-brane.
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Comments

» Deforming N=1 SQCD leads to a large number of non-
supersymmetric vacua, which may be made long-lived by
tuning parameters in the superpotential. In other regions of
parameter space, many of these states become unstable

and disappear.

» Can generalize to higher order superpotentials; the

number of metastable states grows rapidly with the order.



All the elements of the gauge theory discussion have direct

analogs in the brane construction. For example:

» The n light fundamentals of SU(N; - N.— k). ¢.¢.
correspond to fundamental strings stretched between the n

flavor D4-branes and the N; — N, — k color ones.

» The one loop effects that are necessary for stabilizing

the metastable states in gauge theory are replaced by the
gravitational attraction of the D4-branes to the NS-brane.
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Comments

» Deforming N=1 SQCD leads to a large number of non-
supersymmetric vacua, which may be made long-lived by
tuning parameters in the superpotential. In other regions of
parameter space, many of these states become unstable

and disappear.

» Can generalize to higher order superpotentials; the

number of metastable states grows rapidly with the order.



All the elements of the gauge theory discussion have direct

analogs in the brane construction. For example:

» The n light fundamentals of SU(N;— N. — k). ¢. 9,
correspond to fundamental strings stretched between the n

flavor D4-branes and the N; — N, — k color ones.

» The one loop effects that are necessary for stabilizing

the metastable states in gauge theory are replaced by the
gravitational attraction of the D4-branes to the NS-brane.
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The deformation

Deforming the superpotential to

by |
Wanag = 8 Mjq’ + STrM* — mTrM

corresponds geometrically to a translation (m) and rotation

(o) of the D6-branes:
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Seiberg dual (magnetic) brane configuration

NgD6 o (0.¥))

4 NyD4
NS'® (0.y,)
Ny—N. D4
NS
(v.y)=(0.0)
v
A
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(v.w)=(0.0)
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All the branes are stretched in the 3+1 directions (0123).
The NS-branes are also stretched in the directions (435), the
NS'-branes in (89), the D4-branes in 6 and the D6-branes
In (789). One can check that any configuration containing
all these branes preserves N=1 supersymmetry in the 3+1

common dimensions (0123).

The branes are arranged in the extra dimensions as

follows:
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Seiberg dual (magnetic) brane configuration

NS

irsa: 08020006

NS’

NS

(v.w)=(0.0)
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The deformation

Deforming the superpotential to

el |
Wanag = ~@: Mg’ + %Ter _ mTeM

corresponds geometrically to a translation (m) and rotation

() of the D6-branes:
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NS N¢ D6

N¢yD6 @ (v,.¥,)
(0 .~v, cot® Ne-k D4

kD4 § NS'® (0.y,)
k D4 N¢—Ne—k D4
NS f < NS
(0.0) (0.0)
), W
i i
w=0+_" }—-.-—-- v

where m = —Twvy, ol = tanb;

wol@els supersymmetric vacua (as before).



Seiberg dual (magnetic) brane configuration

NgD6 o (0.y,) NS” \ NgDé
NS @® (0.v,)
T N¢—N. D4
NS oes NS
(v.y)=(0.0) ) 4
(v.w)=(0.0)
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NS N¢ D6

NyDé6 @ (v,.¥,)
LB (0 .~v, cot® Nf-k D4

kD4 § NS'® (0.y,)
k D4 Nge—Ne—k D4
NS o NS
(0.0) (0.0)
V -
i i
w=l) v },. v

where m = —Twvy, ol = tanb;

wel@dels supersymmetric vacua (as before).



Seiberg dual (magnetic) brane configuration

NgD6 _ (0.7,)

A NgD4

NS'® (0.7v,)
N¢— N, D4

NS
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(v-y)=(0.0)

NS’

NS

(v.w)=(0.0)

F#— v
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NS’ N¢ D6

N¢D6 @ (v,.¥,)
(0 .~v, cot® Ne-k D4

kD4 § NS’ 0.y, )
k D4 N¢—Ne—k D4
NS f < NS
(0.0) (0.0)
¥ w
i 'l
“,-:ﬁl k' }‘ ] v

where m = —Twvy, ol = tanb;

~ol@els supersymmetric vacua (as before).



Metastable vacua

correspond to the following brane configurations:

NS’ Nf D6

(0 .~v, cot8] Nf-k-nD4

n D4

Ny Ne-k D4
(0.0)

y -
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For N — N. — k > 0 there are two types of instabilities:

1) Reconnection of the endpoints of (some of) the D4-

branes on the NS'-brane.

2) Motion of the n D4-branes to larger w back to the susy

vacuum configuration described above.

Both are non-perturbative instabilities. For fixed values of
the geometric parameters in the Iimitg, — 0, the lifetime

goes like exp(C/gs).

For Ny — N. — k = 0 the first type of instability is absent.



All the elements of the gauge theory discussion have direct

analogs in the brane construction. For example:

» The n light fundamentals of SU(N;— N. — k). ¢. &,
correspond to fundamental strings stretched between the n

flavor D4-branes and the N; — N, — k color ones.

» The one loop effects that are necessary for stabilizing

the metastable states in gauge theory are replaced by the
gravitational attraction of the D4-branes to the NS-brane.
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Comments

» Deforming N=1 SQCD leads to a large number of non-
supersymmetric vacua, which may be made long-lived by
tuning parameters in the superpotential. In other regions of
parameter space, many of these states become unstable

and disappear.

» Can generalize to higher order superpotentials; the

number of metastable states grows rapidly with the order.



» Intersecting NS and D-brane systems provide a useful
qualitative guide for the study of supersymmetric and non-

supersymmetric ground states.

» One can use the brane picture to perform a quantitative
analysis of the metastable vacua in a regime of parameter

space where the gauge theory picture is not valid.

» Phenomenological applications?
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NS N¢ D6

N¢D6 @ (v,.¥,)

(0 .~v, cot®

Ng—k D4

kD4 4 NS'® (0.y,)
k D4 Ne—N-—k D4
NS i NS
(0.0) (0.0)
¥ =
. '
w=l{) b v v

where m = —Twvy, al = tanb;

~ol@dels supersymmetric vacua (as before).



We will use the NS3-brane picture, which was found to be
more useful than the CY one in studying supersymmetric

vacua. It turns out to be more useful for studying metastable

vacua as well.

In particular, this description provides a nice geometric

picture of the vacua that we found in the gauge theory before.
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There are two ways of realizing it as a low energy theory on
D-branes:

» Near conical singularities of Calabi-Yau manifolds.

» In the vicinity of Neveu-Schwartz fivebranes.

The two descriptions are related by a version of T-duality.
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—

Here @, isan n X n matrix, while @, @ are matrices of
size n x (Ny— N.— k). The classical supersymmetric

vacua discussed before correspond to

~
)
|
™
™
©
1
A Y
|
i

In these vacua, ®,, has a large vev, h®, > p. Classically,
there are no additional vacua. However, after including the
one loop correction to the potential, new vacua appear near

the origin of field space.
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where h Is a free dimensionless parameter and i, ity are

mass scales. We will work in the regime

Jho

h,— <1
7

in which we can study the O'Raifeartaigh model for ¢. ¢. P.

as In |ISS. The small parameters above will be responsible

for the long lifetime of the metastable vacua that we will

find.

Pirsa: 08020006 Page 211/216



Brane realization of SQCD

The electric SQCD described above can be realized in
string theory as the low energy theory corresponding to a
brane configuration containing two kinds of NS5-branes,

which we will denote by NS and NS, as well as D4 and D6-

branes.
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Seiberg dual (magnetic) brane configuration

NgD6 _ (0.y,)

A NgD4
NS'® (0.y,)

i Nf— N. D4

NS

(v-y)=(0.0)
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The deformation

Deforming the superpotential to

1 L L, .
Winag = K@;i ; q’ + %TrM 2 _mTcM

corresponds geometrically to a translation (m) and rotation

() of the D6-branes:
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NS N¢ D6

N¢D6 @ (v,.¥,)
gl (0 .~v, cot® Ne—k D4

kD4 NS 0.y, )
k D4 Ne—Ne—k D4
NS = NS
(0.0) (0.0)
y -
i i
w=l) v F. =

where m = —Twv,, ol =tan#;

wel@dels supersymmetric vacua (as before).
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