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Abstract: The history of human knowledge is often highlighted by our efforts to explore beyond our apparent horizon. In this talk, | will describe
how this challenge has now evolved into our quest to understand the physics at/beyond the cosmological horizon, some twenty orders of magnitude
above ColumbusA’s original goal. | aso argue why inflationary paradigm predicts the existence of non-trivial physics beyond the cosmological
horizon, and how we can use the Integrated Sachs-Wolfe effect in the Cosmic Microwave Background to probe this physics, including the nature of
gravity and primordial non-gaussianity on the horizon scale.
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Other (model-dependent) features:

3 (secondary field, non-minimal kinetic term)

u {high energy scale inflation)
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PhVsics beyond the Horizon:

= Cosmic acceleration and the ISW effect
= Gravity on Horizon scale

= Statistics on Horizon scale
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Primordial non-Gaussianity, on
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systematics) ??
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= probes close to horizon
= severely constrains the (<1%)
= in correlation with galaxy surveys,
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