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Many worlds.
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* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the
Everettian interpretation to succeed, our perceptions must divide in a particular
basis. Generally considered to be solved by decoherence.
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Many worlds.

PERIMETER INSTITUTE
FOR THEGAETICAL PEYSICS

* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the

Everettian interpretation to succeed, our perceptions must divide in a particular
basis. Generally considered to be solved by decoherence.

* Probability. How to make sense of normal probabilistic assertions in a universe

in which all possible outcomes do actually occur? Recent work has suggested a
resolution, but it is still controversial.
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Many worlds.

PERIMETER INSTITUTE
FiNE TREGRETTC AL PEYSICS

* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the
Everettian interpretation to succeed, our perceptions must divide in a particular
basis. Generally considered to be solved by decoherence.

* Probability. How to make sense of normal probabilistic assertions in a universe

in which all possible outcomes do actually occur? Recent work has suggested a
resolution, but it is still controversial.

* Locality. It has been argued that branching universes do not require any non-
locality. This makes reconciliation between quantum theory and general
relativity easier to achieve.
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Many worlds.

PERIMETER INSTITUTE
FOR THEDAETRCAL PEYSICS

* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the
Everettian interpretation fo succeed, our perceptions must divide in a particular
basis. Generally considered to be solved by decoherence.

* Probability. How to make sense of normal probabilistic assertions in a universe

in which all possible outcomes do actually occur? Recent work has suggested a
resolution, but it is still controversial.

* Locality. It has been argued that branching universes do not require any non-
locality. This makes reconciliation between quantum theory and general
relativity easier to achieve.

- Is the wavefunction a local object?
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Many worlds.

PERIMETER INSTITUTE
FOR THERHIETICAL PEYSICS

* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the
Everettian interpretation to succeed, our perceptions must divide in a particular
basis. Generally considered to be solved by decoherence.

* Probability. How to make sense of normal probabilistic assertions in a universe

in which all possible outcomes do actually occur? Recent work has suggested a
resolution, but it is still controversial.

* Locality. It has been argued that branching universes do not require any non-

locality. This makes reconciliation between quantum theory and general
relativity easier to achieve.

- Is the wavefunction a local object?
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Many worlds.

PERIMETER INSTITUTE
FOR THEDRETICAL PEYSICS

* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the
Everettian interpretation to succeed, our perceptions must divide in a particular
basis. Generally considered to be solved by decoherence.

* Probability. How to make sense of normal probabilistic assertions in a universe

in which all possible outcomes do actually occur? Recent work has suggested a
resolution, but it is still controversial.

* Locality. It has been argued that branching universes do not require any non-
locality. This makes reconciliation between quantum theory and general
relativity easier to achieve.

- Is the wavefunction a local object?

- Deutsch-Hayden argument: against the Schrodinger picture
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Many worlds.

PERIMETER INSTITUTE
FOR THEORETRC AL PEYSICS

* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the
Everettian interpretation to succeed, our perceptions must divide in a particular
basis. Generally considered to be solved by decoherence.

* Probability. How to make sense of normal probabilistic assertions in a universe

in which all possible outcomes do actually occur? Recent work has suggested a
resolution, but it is still controversial.

* Locality. It has been argued that branching universes do not require any non-
locality. This makes reconciliation between quantum theory and general
relativity easier to achieve.

- Is the wavefunction a local object?
- Deutsch-Hayden argument: against the Schrodinger picture
* Operator Realism vs. Wavefunction Realism
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Many worlds.
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* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the
Everettian interpretation to succeed, our perceptions must divide in a particular
basis. Generally considered to be solved by decoherence.

* Probability. How to make sense of normal probabilistic assertions in a universe

in which all possible outcomes do actually occur? Recent work has suggested a
resolution, but it is still controversial.

* Locality. It has been argued that branching universes do not require any non-

locality. This makes reconciliation between quantum theory and general
relativity easier to achieve.

- Is the wavefunction a local object?
- Deutsch-Hayden argument: against the Schrodinger picture
* Operator Realism vs. Wavefunction Realism
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Hidden Variables

* Original quantum theory! De Broglie, 1924-1927. Fo e P

- Wave or particle?
- Wave and particlel

ISix, 1)

w(x,r)=|g(x,t)e
For a plane wave 4 efh SO p:hk:EVS(x, f)

mx=aV S(x,t) P(;*chf:I‘G]ZMJ(Ji‘,2’0)|:3

girtx.t)

Conservation equation > +V J=0
C

wrlx, )V EVw(x, t)—wlx, 1)V q!»'*ix,r}_Pffx,r}ﬁVS[x,r]

2im 11

Je t— =PFt{x, I)x
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Hidden Variables l

w(x,t)=|g(x,t)e”™" ———

mi—=hV S(x,1) P(le:%):|w(-r:fg)|z

S, (x 1)

T Hw (x,1)|e

fS;‘.I,f'I

=l (x, t)|e™™"

tptj:c.r}-—'luf (x,7)le

"-._

@ (x, )+, (x, o) +2|@ (x.0)||w, (x,t)|cos(S (x,1)—S ,(x,1))
|lp{:r.r][:\ : S

w_(x,)lsinS (x, 1)+ @, (x,¢)|sinS,(x, 1)

S (x,r)=arctan , . .
@, (x,t)|cosS (x, t)+Hw,(x, 1)|cos S (x,1)

If, at some positionx* | (x',7)|=0 or |@, (x",z)|=0

|¢Hx. )|~ {phl'r' }I a [wi;r’_.r}|::[wd!x',ﬂ[

r)~S§, (x' S{x",r)=8,(x",1)

then
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Hidden Variables

i ' PERIMETER ENSTITUTE
I SI x,7) FOR TREDRETICAL PEYSICS

glx,t)=|lg(x,t)e
mi—hV S(x. i) P(_x|r':r0):|(p(x,r0)|2

Lpf.?{'. rl:%“ﬂuut I!r-]lefs‘ll-’r:+Iwa'{ ¥ 1 jlefgi.x’ﬂ_]:hf) [ = f}lgfs;x*r'

Vo=

ol @ (x, )+, (x, 0 ) 2w, (x, 6)l|lw,(x, t)cos(S (x,1)—S (x,1))
& &
'. @ (x,¢)lsinS (x, )+ @, (x,1)|sinS (x, 1) "

W (x, 1)

S (x,r)=arctan , . .
@, (x,t)|cos S (x, t)+Hw,(x,1)|cos S (x,1)

If, at some position x* | (x',7)|=0 or |p (x", )|=0

wix', t)l=~lwp (x', 1) A @ (x’, t)|=|p,(x", 1)
S(x',t)=~8 (x',¢t) S{x",t)=8,(x",1)

then
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Hidden Variables

wlx, f}:{(p(x , f]|ef5'x'r:' D
mi—=hV S(x,1) Pixip=t)=lwlx. e )f

iS lx. 1)

THuypx, 1 Jlejg"'x -

= I|:|L.U[-x,r}‘€:=5-.x,rl

Wix, t)= \EH{{} (x,1)le

@ (x, )+, (x, 0 )+ 2w, (x, 6)||lw,(x, t)cos(S (x,1)—S (x,1))
|{,U{x.r}F=\‘ ' 5

fq!f | x, r}}smS Lo r*+|{p (x, r}|smS (x,1)

S (x, r)=arctan
|, (x,1)|cos S, (x,r)+Hw,(x,1)|cos S (x, 1),

If, at some position x* |@ (x',7)|=0 or |y, (x", 1)|=0

wix', t)=lp (x’, ]I - @ ix’, t)|=|w, (x", 1)
S(x",t)=S (x’, Six",t)=§,(x',t]

then

ArPEntegdaction to Quantum Foundations MNew HorPaesiddn
Lecture 4: Interpretation, Reformulation or Replacement? Fundamental Physics



Hidden Variables 1
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Hidden Variables [j[
iSix, v, 1) l

¥(x, v.1) =¥ (x v, t)e PEMNETER rySTITUTE
With two degrees of freedom: | ke N
Plx. ylit=t ) 3F(x. ¥. )|
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Hidden Variables

: FSix, v,
¥(x,y,0)=|¥(x,y, 1) """ mummimn
With two degrees of freedom: | _ -
Plx, yli=t) ¥ (x.5.6))

6P(x,y

cr

the probability current: 1) N6
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Hidden Variables [‘jl
iSix,v.1) l

s oWy f):| ¥ ( e W I )Ié’ PERIMETER INSTITUTE

FOR THEDRETRCAL PHYSICS

With two degrees of freedom: | - N
Plx. ylt=t) ¥ (x.¥.1.)|

éP(x,y

-

cr

the probability current: 1) N -I—8

produces two coupled equations:
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Hidden Variables

lf/ t b 3 ’ J" - f ) :| ]P ( B 3 3 J' - f )l {‘,’j a ot PERIMETER INSTITUTE

P(x, vit=t,)=|¥(x. ».£.)f

With two degrees of freedom:

the probability current: 0 P( fr‘ 2] +V-J=0
O

produces two coupled equations:

de h ©
' = - S ( X s J"* s r )
dt mdx
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Hidden Variables [j[
ERmay |

¥(x, 5. 0= {¥(x.y.f)le E——
With two degrees of freedom: f _ i
Plx, yit=tJ4F (x,y. 1)}

éP(x,y
ot

the probability current: ad +N- =0

produces two coupled equations:

dc h © dy h 0
=T C ste w8y L St 5.3)
dt mdx dt méoy
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Hidden Variables [j[
ey |

¥(x,v.0) =¥ (x, ¥ 0e e

FOHR THETHRETIC AL PRYSICS

With two degrees of freedom:

P(x, ylt=t)=|¥(x,y.t,)f

6P(x, y

)
= L 7.
ot

the probability current:

produces two coupled equations:

dx h O dv _h ©
S(x 1 f) = S(*Y;-V!r)
dt méox dt moady "

In general there is an instantaneous interaction between the two degrees of freedom.
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Hidden Variables

Yix v. =¥z p il e

P(x, y|t=t,)=|¥(x, v, t,)f

With two degrees of freedom:

éP(x,y,t)

the probability current: -
ot

+V-J=0

produces two coupled equations:

dx h ¢ dyv h ©
.: - S(xrj*sr) }: - S(*Y;J"xr)
dt mdx dt maoy

In general there is an instantaneous interaction between the two degrees of freedom.

Butif ¥(x,y,f)=ywl(x,r)P(y,1)
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Hidden Variables

¥ (x,y,0)=¥(x,y,0)e”""" mumpme
With two degrees of freedom: | e
P(x,y|t=t)=|¥(x,y.t)[

6P(x, y

B N
(o8 §

the probability current:

produces two coupled equations:

dcx h O dy h O
.: - S(X,_]*,f) e = S(*Y3,1'?3r)
dt mdx dt mdy

In general there is an instantaneous interaction between the two degrees of freedom.

Butif ¥(x,y.f)=wl(x,t)®(y,f) then S(x,y,.1)=§,(x.1)+Ss(y.7)
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Hidden Variables

¥(x,y,t)=|¥(x,py,t)e” """ mmmim
Plx, yjt=t, ) (x.».6}f

6P(x, y

=

cr

With two degrees of freedom:

the probability current: ), N0

produces two coupled equations:

dcx h © dv h C©
< S(x,y.t) L=P G gk g0
dt mdx dt mady

In general there is an instantaneous interaction between the two degrees of freedom.

Butif ¥Y(x,y,.f)=wl(x,f)®(y,r) then S(x,y.1)=S,(x,1)+Ss(y.1

l_p'

de h ©
= S (x 1]
dt mcéx
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Hidden Variables

o W — L 4 J',f)|€mx"v'ﬂ .
P(x, y|t=t)=|¥(x,y,t,)f

éP(x,y,t)

cr

With two degrees of freedom:

the probability current: N - F—@

produces two coupled equations:

dc« h ¢ dy h O
S{x,y,t) ——= S{x, y. 1)
dt méox dt mady "

In general there is an instantaneous interaction between the two degrees of freedom.

Butif ¥(x,y.f)=wl(x,f)®(y,f) then S(x,y,1)=§,(x,1)+Ss(y,7)

dx h © dv h O .
= S,‘{;(T r) = -~ S‘I'(J?’r)
dt mdcx dt mdcy
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¥ix,v) —% @, (x)D,(v)+w,(x)D,(y) RRREBATI
\
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Hidden Variables I

Yix,y) —%l W, (x)D,(v)+w,(x)D,(y) R
\

o Six, ¥ dx 3, dy 0
Y=, == plld™" =5 S(x,y) y_hB S(x,»)
dt mdodx dt mdy
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Hidden Variables I

F(x, )= 0, () B+ 0 (x)0y(y))
\

¥ (x, y)=|¥(x, y)|s? A “ S(x,) C 8 —S(x,¥)

¥ (x, vIF+¥,(x, v)F+2|F,(x, ¥¥,(x, v)lcos(S,(x, v)—S(x,¥))

¥(x, v }|:\‘

(R
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Hidden Variables I

Fx,y) — L (@, (x)D,(v)+yw,(x)P,(v) R S

\
- .- Six, ¥ dx h © dv _h 0 .
¥(x, y)=|¥(x,y)|" " — — Sz ¥ < == " Siz )
dt mdx dt mdy
N, I HE alx, w2 x, YN ol x, p)lcos(S,(x, ¥)—Si(x, ¥))
¥ (x, p)l= -
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Hidden Variables
b

¥(x, y)= % | (pu( x) (15”( % )+ (Vn’( v )(pd ( y )) Fom TREORETICAL PRISICS

V

x dx 3, dy 3
¥ie v )=F(x, plle™=" = — 8= ¥) y_nh S(x, y)

dt mdx di md)
N, ¥IF+H lx, »IFH2|F, (x, ¥IIF A x, y)lcos(S,(x, ¥)—S:(x. ¥))

‘F-T-.TWZ\' 2
¥ (x,v)=g,.lx)P, (¥ ¥ (x, y)lsinS, (x, y)HT (x, ¥)lsinS,(x, ) |
' 3 = Slx, yl=arctan

¥Y.(x,v)=p,ix)® (¥v) | (x, ¥)lcos S, (x, ¥)H T (x, ¥)|cosS,(x, ¥) |

ArPiEntegdaction to Quantum Foundations

New Horkae #é9h
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Fundamental Physics



Hidden Variables

'% ( X, ¥ }— % l w“( x) (p”{ % )+ (,Ud'( v ) qud( v ]) Foa THEORETIEAL PHASICS

. .
¥ix, 2= (=, p)jd™" o 5 ~ S(x,v) _ A < S(x,v)
df mdx - di m o :

. ¥, (x, vIF+|¥, (x, v)F+2|F,(x, ¥I¥,(x, ¥)lcos(S,(x, ¥v)—S,(x,¥))
‘f’:r.v1*1|:\‘

~y

Y. ix,vI=yp,x)® (y)

¥, (x, v)sinS, (x, y)HF (x, ¥)|sinS (x, v)
Six, y)=arctan - : : '
TuiI,}}:lﬁ’aiI'q)'{}! B

| [P (x, ¥)lcos S, (x, ¥)H ¥ ix, ¥)|lcosS,(x, ¥)

If, at some positiony’ |®_ (v')|=0 or |&,
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Hidden Variables I

¥ (- X,V ) _% l w“ (- x) (15”( y )_J'_ wd( x ) (pd ( y ]) FoR THEORETTCM PHYSICS
\

Tl:xr}_.;:;]f;{xl}_}|er'5|x,_rl d:r: i ﬁf) D) d}f: A :'_." )
dt mdx i dt mdy ;

¥ (= v1"r|1——|‘f’§[.r: v }|1+2|?P'H: x, Y WFx, ¥)

cos{ S (x, y)—Six,¥))

T:r.jr}|:\ 3
¥.(x,.y)=w.x)2,(¥) Slx 1":arctanl ¥, (x, v)|sinS, (x, y)HF (=, ¥)|sinS, (x, y)
¥.(x,y)=w,;(x)D (y) B [P, (x, v)|cos S, (x, v)+|¥,(x, v)|cosS,(x, ¥},

If, at some positiony’ |®_ (v')|=0 or |®,(y')|=0

i

¥ix, v =y (x]D, (¥

then
dx = O .
8 {x)
dr wmdx ™
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Hidden Variables

l PERIMETER INSTITUTE

¥i(x , J,‘):—El (p“(_x’)(p”( 1:)+ (tUn’( x)(pd( v )) e eI T

Lo -

\
i i r 3 X ¥ dT 5 7 {:‘I
¥(x, )=¥(x, p)|™" - —S(x, y) e —S(x, y)
dt mdx dt mdady
| ¥, (x, ¥ )F P x, v)F+2|, (x, ¥IIF A x, ¥)lcos(S,(x, ¥)—S,(x, ¥))
IT-,:-;‘,_1*}|—\‘_ >
¥ (x,¥)=p.(x)P,(¥) S| Hrctanl ¥, (x, v)lsinS, (x, y)+|¥ x, ¥)|sinS (x, v)
| | x,¥y)= . . M | .
¥.(x,y)=w,(x)®,(v) : | |[¥.(x, y)lcos S, (x, ¥)+H ¥ i(x, ¥)|cosS,(x, y)

If, at some positiony’ [®_ (v')|=0 or |®_.(3')=0

¥i{x,y')~¢ (x)P (V') ¥ix, ¥ )= x)P,;(y")

then or
d« h © S () dx _h ¢© S ()
dt méox ¥ & mdx Y
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Hidden Variables 1

PERIMETER [:?m\‘lﬁl['i
* Quantum field theory. Although Bohm presented a field ontology for the electromagnetic
field in 1952, most work has been on non-relativistic particle theories. Recent work has
shown how de Broglie-Bohm hidden variables can be constructed for general interacting

field theories.
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Hidden Variables 1

PERIMETER t:?mﬂﬁ;
* Quantum field theory. Although Bohm presented a field ontology for the electromagnetic
field in 1952, most work has been on non-relativistic particle theories. Recent work has
shown how de Broglie-Bohm hidden variables can be constructed for general interacting

field theories.

e Different choices of hidden variable. Particle and field configuration hidden variables
present intuitively clear routes to distinct outcomes. Alternative hidden variables - spin,
orientation, momentum, mafrix valued, grassman number valued - may or may not be
feasible.
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Hidden Variables

PERIMETER E:?Ll;‘r_[lalﬁ
* Quantum field theory. Although Bohm presented a field ontology for the electromagnetic
field in 1952, most work has been on non-relativistic particle theories. Recent work has
shown how de Broglie-Bohm hidden variables can be constructed for general interacting

field theories.

e Different choices of hidden variable. Particle and field configuration hidden variables
present intuitively clear routes to distinct outcomes. Alternative hidden variables - spin,
orientation, momentum, matrix valued, grassman number valued - may or may not be
feasible.

* Empty waves. In de Broglie-Bohm theories, the portions of the wavefunction that
correspond to the outcomes that did not occur, still exist. It can be argued that these
outcomes are just as real and that hidden variable theorists are Everettians "in a chronic
state of denial”.
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Hidden Variables

PERIMETER ENSTITUTE
FOR THEGFIETIC AL PRYSICS

*  Quantum field theory. Although Bohm presented a field ontology for the electromagnetic
field in 1952, most work has been on non-relativistic particle theories. Recent work has
shown how de Broglie-Bohm hidden variables can be constructed for general interacting
field theories.

e Different choices of hidden variable. Particle and field configuration hidden variables
present intuitively clear routes to distinct outcomes. Alternative hidden variables - spin,
orientation, momentum, mafrix valued, grassman number valued - may or may not be
feasible.

* Empty waves. In de Broglie-Bohm theories, the portions of the wavefunction that
correspond to the outcomes that did not occur, still exist. It can be argued that these
outcomes are just as real and that hidden variable theorists are Everettians "in a chronic
state of denial”.

* Non-equilibrium. Hidden variable theories reproduce quantum mechanics for particular
probability distributions over the hidden variable state. This distribution is often
referred to as “"quantum equilibrium”, as it's justifications is similar to thermal equilibrium.

The possibility of systems with non-equilibrium distributions would lead to novel
experimental results and possibilities.
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T:%[ wu {pu_l_wcf q)d j

\
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* The wavefunction is real and does represent the state of a

physical object.

* Linear evolution is not right
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* The wavefunction is real and does represent the state of a

physical object.
* Linear evolution is not right

* The state of the world is actually
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- As there is a difference between the empirical predictions of the uncollapsed and collapsed
wavefunctions, any unambiguous model for how it happens leads to definite empirical predictions.
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- Macroscopic, classical, observed, irreversible, conscious?

- As there is a difference between the empirical predictions of the uncollapsed and collapsed
wavefunctions, any unambiguous model for how it happens leads to definite empirical predictions.

* Ghirardi, Rimini, Weber (1986)

- For each degree of freedom, there is a random chance of a spontaneous collapse taking place, with
a probability: ]/t per unit time.
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- As there is a difference between the empirical predictions of the uncollapsed and collapsed
wavefunctions, any unambiguous model for how it happens leads to definite empirical predictions.

* Ghirardi, Rimini, Weber (1986)

- For each degree of freedom, there is a random chance of a spontaneous collapse taking place, with
a probability: ]/t per unit time.

- When a collapse takes place the wavefunction changes from: Tg (\x, ¥, z..)
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- Macroscopic, classical, ocbserved, irreversible, conscious?

- As there is a difference between the empirical predictions of the uncollapsed and collapsed
wavefunctions, any unambiguous model for how it happens leads to definite empirical predictions.

* Ghirardi, Rimini, Weber (1986)

- For each degree of freedom, there is a random chance of a spontaneous collapse taking place, with

a probability: 1/t per unit time.

- When a collapse takes place the wavefunction changes from: Tg (x, ¥, z..)

(x"—x) .
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to N = Nix) o :
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- Macroscopic, classical, observed, irreversible, conscious?

- As there is a difference between the empirical predictions of the uncollapsed and collapsed
wavefunctions, any unambiguous model for how it happens leads to definite empirical predictions.

* Ghirardi, Rimini, Weber (1986)

- For each degree of freedom, there is a random chance of a spontaneous collapse taking place, with
a probability: ]/t per unit time.

- When a collapse takes place the wavefunction changes from: ]f/g (x,¥,z..)

(x"'—
P |

T bt 9 o= = W
Lo o i Nix) '

Where: f(x’'—.x) is a function sharply peaked around (x"=x)
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- Macroscopic, classical, cbserved, irreversible, conscious?

- As there is a difference between the empirical predictions of the uncollapsed and collapsed
wavefunctions, any unambiguous model for how it happens leads to definite empirical predictions.

* Ghirardi, Rimini, Weber (1986)

- For each degree of freedom, there is a random chance of a spontaneous collapse taking place, with
a probability: 1/t per unit time.

- When a collapse takes place the wavefunction changes from: ]f/g \x, 5, =)

= T in y, = =

Where: f ( x "—x ) is a function sharply peaked around (X" —x)

Nix}:y"J‘r,I}_J;“ | F(x"—x)¥ (=", y, = dx"dyd=.

Neormalisation requires:
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- Macroscopic, classical, cbserved, irreversible, conscious?

- As there is a difference between the empirical predictions of the uncollapsed and collapsed
wavefunctions, any unambiguous model for how it happens leads to definite empirical predictions.

* Ghirardi, Rimini, Weber (1986)

- For each degree of freedom, there is a randem chance of a spontaneous collapse taking place, with
a probability: ]/t per unit time.

- When a collapse takes place the wavefunction changes from: H‘/g \x, ¥, z..)

_ f{x"—x)
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- R W, 2 ) s w7z}

Where: f(x’—x) is a function sharply peaked around (x"=x)

Nix}:\-'J‘I,J_J:_|f: x'—x)¥ (x',y, = fdx'dyd-=.

Nermalisation requires:

P(x")=|N(x")dx’
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Nix)

T ix) ¥ tx
t=10"s In 1 second probability of a collapse inxis p~10 "

z 15
Average time for collapse: v.=~10"s

W (x)+yg,lx)

p

Fix"=xlp iz} f(x"—x)qge i x")

Nixiv2

¥, (x)=

collapses to: ¥, (x]

1o |

Provided ¢ _(x)w  (x)=0 for all values of x and flx'—x)=0 for x'#x
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t=10"s In 1 second probability of a collapse inxis p~10 "
Average time for collapse: T,~10"s

@, (x)+y, (x) flix"—x)gpe ="} f(x"—x)gplx")

¥ ix— 3 r ixl=—
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t=10"s In 1 second probability of a collapse inxis p~10 "
Average time for collapse: T,~10"s
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¥ (x)— : Y _lx)="
ol collapses to: ~ N(x)V2
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\

Provided ¢ (x)p (x)=~0 forallvaluesofxand £(x'—x)=~0 for x’'#x

either: f(x'—x)g (x)=~0 or flx"—x)y@,;(x)=0
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Now take: ¥ (x, v, z..) =
V2

Provided
P y,z,.. )P y,z,...)=0 forallvaluesofyand f{y'—yi=0y'#y

either:

fly'™—y)@ly,z,..)=0 o fly'—y)®,;y, =z, ..)=~0

f \ foosie ) A= |7 i | Eoa ) o |

\ ; o, .I_U'!“I..T_qul_"l- 1 ,I‘I’HI_". e fiif‘_fllj'[‘.lLf,} 3 IH:'E?:{;.} ]
SO F-,.—l.‘t',_*l B B —
' : Niyv)Iv2

W) fly'"— )Py .=, ) . ) fly'—y)®ly’, =z, )
Pulx,y.z..)~ = or: ¥ulx, y,.z.. )~ : —
i Niy)v2 ' ' Niy)v2

ArPEntedaction to QQuantum Foundations New HorPae 89
Lecture 4: Interpretation, Reformulation or Replacement? Fundamental Physics



Collapse models

' / - ) ! " SERIMETER INSTITUTE
@ Ax)P,(y,z, )@ x) Py, =, .. i DU

Now take: ¥, (x,v,z..) =
Ill'l —
Provided
@y, z,..)P,y,z,...)=0 forallvaluesofyand f(y ' —yi=0y'#y
either:

fly'—y)@ly,z,.-)=0 o fly'—y)P,;,(y, z,..)=0

¥ | . pix) fly"—y)E iy, e dAx) iy — ) ey, =, )
SO EL P, I = ———
Niy)Iv2

tﬂ“I.Ilj‘::r'_.1.-'.'¢“|::i.r.:,.....I . : {i-fﬁ':x:-j‘i.-‘n'_-‘sjjﬁa_{ Il-"‘:l‘__:l
Patx. y.z . ) — or: Yolx.v.z.. )= _ ==
' N(y)V2 - i N(v)V2

ArPiEntdaction to Quantum Foundations MNew HorPae 8649
Lecture 4: Interpretation, Reformulation or Replacement? Fundamental Physics



Collapse models

PERIMETER INSTITUTE
FOR THEGRETICAL PHYSICS

* Non-conservation of energy. Objective collapse models, that produce localised states, generically
violate the conservation of energy, even on average.
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* Non-conservation of energy. Objective collapse models, that produce localised states, generically
violate the conservation of energy, even on average.

* Reldtivistic invariance. Explicit collapse models have generally been non-relativistic. Making a
relativistically invariant collapse model presents difficulties. Recent progress has been made for non-
inferacting systems.
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* Non-conservation of energy. Objective collapse models, that produce localised states, generically
violate the conservation of energy, even on average.

* Reldtivistic invariance. Explicit collapse models have generally been non-relativistic. Making a
relativistically invariant collapse model presents difficulties. Recent progress has been made for non-
inferacting systems.

* Empirical predictions. Wavefunction collapse models generically produce situations where different
predictions can be made to quantum theory. Experimentally probing these situations are hard, as
environmental decoherence must be excluded.
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* Non-conservation of energy. Objective collapse models, that produce localised states, generically
violate the conservation of energy, even on average.

* Reldtivistic invariance. Explicit collapse models have generally been non-relativistic. Making a
relativistically invariant collapse model presents difficulties. Recent progress has been made for non-
inferacting systems.

* Empirical predictions. Wavefunction collapse models generically produce situations where different
predictions can be made to quantum theory. Experimentally probing these situations are hard, as
environmental decoherence must be excluded.

* Tails and signalling Collapse models leave "tails” that include uncollapsed traces of unobserved
outcomes. Eliminating these traces leads to viclations of no-signalling.
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Non-conservation of energy. Objective collapse models, that produce localised states, generically
violate the conservation of energy, even on average.

Relativistic invariance. Explicit collapse models have generally been non-relativistic. Making a
relativistically invariant collapse model presents difficulties. Recent progress has been made for non-
inferacting systems.

Empirical predictions. Wavefunction collapse models generically produce sitfuations where different
predictions can be made te quantum theory. Experimentally probing these situations are hard, as
envirenmental decoherence must be excluded.

Tails and signalling Collapse models leave "tails” that include uncollapsed traces of unobserved
outcomes. Eliminating these traces leads to vielations of no-signalling.

What is the ontology?

- Bare theory : Everettian?
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* Non-conservation of energy. Objective collapse models, that produce localised states, generically

violate the conservation of energy, even on average.

e Reldtivistic invariance. Explicit collapse models have generally been non-relativistic. Making a
relativistically invariant collapse model presents difficulties. Recent progress has been made for non-
inferacting systems.

* Empirical predictions. Wavefunction collapse models generically produce situations where different
predictions can be made to quantum theory. Experimentally probing these situations are hard, as
envircnmental decoherence must be excluded.

* Tails and signalling Collapse models leave "tails” that include uncollapsed traces of unobserved
outcomes. Eliminating these traces leads to viclations of no-signalling.

*  What is the ontology?

- Bare theory : Everettian?
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Non-conservation of energy. Objective collapse models, that produce localised states, generically
violate the conservation of energy, even on average.

Relativistic invariance. Explicit collapse models have generally been non-relativistic. Making a
relativistically invariant collapse model presents difficulties. Recent progress has been made for non-
inferacting systems.

Empirical predictions. Wavefunction collapse models generically produce situations where different
predictions can be made to guantum theory. Experimentally probing these situations are hard, as
envirenmental decoherence must be excluded.

Tails and signalling Collapse models leave "tails” that include uncollapsed traces of unobserved
outcomes. Eliminating these traces leads to viclations of ne-signalling.

What is the ontology?

- Bare theory : Everettian?

- Flash ontology : moments of experience? What is real is only the event at the moment of the
collapse.
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Non-conservation of energy. Objective collapse models, that produce localised states, generically
violate the conservation of energy, even on average.

Relativistic invariance. Explicit collapse models have generally been non-relativistic. Making a
relativistically invariant collapse model presents difficulties. Recent progress has been made for non-
inferacting systems.

Empirical predictions. Wavefunction collapse models generically produce situations where different
predictions can be made to quantum theory. Experimentally probing these situations are hard, as
environmental decoherence must be excluded.

Tails and signalling Collapse models leave "tails” that include uncollapsed traces of unobserved
outcomes. Eliminating these traces leads to vielations of ne-signalling.

What is the ontology?
- Bare theory : Everettian?

- Flash ontology : moments of experience? What is real is only the event at the moment of the
collapse.

- Mafter field : extra structure to the world in addition to the wavefunction
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* de Broglie-Bohm hidden variable models treat the wavefunction as a real entity.
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Non-conservation of energy. Objective collapse models, that produce localised states, generically
violate the conservation of energy, even on average.

Relativistic invariance. Explicit collapse models have generally been non-relativistic. Making a
relativistically invariant collapse model presents difficulties. Recent progress has been made for non-
inferacting systems.

Empirical predictions. Wavefunction collapse models generically produce situations where different
predictions can be made to quantum theory. Experimentally probing these situations are hard, as
envirenmental decoherence must be excluded.

Tails and signalling Collapse models leave "tails” that include uncollapsed traces of unobserved
outcomes. Eliminating these traces leads to vielations of no-signalling.

What is the ontology?

- Bare theory : Everettian?

- Flash ontology : moments of experience? What is real is only the event at the moment of the
collapse.

- Matter field : extra structure to the world in addition to the wavefunction
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violate the conservation of energy, even on average.

Relativistic invariance. Explicit collapse models have generally been non-relativistic. Making a
relativistically invariant collapse model presents difficulties. Recent progress has been made for non-
inferacting systems.

Empirical predictions. Wavefunction collapse models generically produce situations where different
predictions can be made to quantum theory. Experimentally probing these situations are hard, as
envirenmental decoherence must be excluded.

Tails and signalling Collapse models leave "tails” that include uncollapsed traces of unobserved
outcomes. Eliminating these traces leads to viclations of ne-signalling.

What is the ontology?

- Bare theory : Everettian?

- Flash ontology : moments of experience? What is real is only the event at the moment of the
collapse.
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Non-conservation of energy. Objective collapse models, that produce localised states, generically
violate the conservation of energy, even on average.

Relativistic invariance. Explicit collapse models have generally been non-relativistic. Making a
relativistically invariant collapse model presents difficulties. Recent progress has been made for non-
inferacting systems.

Empirical predictions. Wavefunction collapse models generically produce situations where different
predictions can be made to quantum theory. Experimentally probing these situations are hard, as
environmental decoherence must be excluded.

Tails and signalling Collapse models leave "tails” that include uncollapsed traces of unobserved
outcomes. Eliminating these traces leads to vielations of ne-signalling.

What is the ontology?
- Bare theory : Everettian?

- Flash ontology : moments of experience? What is real is only the event at the moment of the
collapse.

- Matfter field : extra structure to the world in addition to the wavefunction
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The wavefunction shares some properties with classical probability distributions.
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The wavefunction shares some properties with classical probability distributions.

Is it possible to construct models in which the wavefunction is only a probability
distribution over a microscopic reality?
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The wavefunction shares some properties with classical probability distributions.

Is it possible to construct models in which the wavefunction is only a probability
distribution over a microscopic reality?

* Wavefunction collapse might then correspond to an epistemic "updating” of
probabilities. (Although measurement would still need to be invasive)
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¥ epistemic theories
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The wavefunction shares some properties with classical probability distributions.

Is it possible to construct models in which the wavefunction is only a probability
distribution over a microscopic reality?

* Wavefunction collapse might then correspond to an epistemic "updating” of
probabilities. (Although measurement would still need to be invasive)

* Empty waves would not be real
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* Kochen Specker and non-contextuality

Do by P V(¢,)=0.1 V(g )+V (dy)+V (P.)=1

(b Pa. b Vigp,)=0.1 Vi, +V(d;)+V(gp,) =1

Value Definiteness

» All observables defined for a QM system have definite values at all times
Non Contextuality

* If a QM system possesses a property (value of an observable), then it does so
independently of any measurement context, i.e. independently of how that value is
eventually measured.
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Non Contextuality
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* Can quantum mechanics be better understood as a theory of
information?

- Quantum theory has always seemed to present restrictions upon what can be
known about a system.

- Perhaps quantum theory is simply about information itself, not information
about something - the process of acquiring information creating the very
information that is acquired.

- Restrictions on how much information may be known, or how much

information may be stored, means that new information acquisition must
invalidate old information.

* Physics as a sequence of yes-no questions (with limited storage)
* Quantum state as a disposition to provide particular answers to questions

* "Asking a question” replaces "Making a measurement” but does this help?
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- Informationally Complete Measurements (and others)
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Disturbance of a momentum value by making a position measurement (and vice versa?)

Spread in variance of position and momentum values when position and momentum
measurements are made on equivalently prepared systems?

Simultaneous measurability of position and momentum by a single experimental
arrangement?

* Reformulate as precise mathematical notions. Positive Operator Value
measurements ("unsharp” measurements)

- Informationally Complete Measurements (and others)
* What of other complementary observables?

Energy-Time uncertainty relationships

MNew HoPagedpsian

ArPEntedaction to QQuantum Foundations
Fundamental Physics

Lecture 4: Interpretation, Reformulation or Replacement?



Uncertainty and Complementarity H

PERIMETER INSTITUTE
FOR THETHIETICAL PEYSICS

* Heisenbergy Uncertainty Relations can be derived as a mathematical
consequence of Hilbert space structure. But what do they mean?

Disturbance of a momentum value by making a position measurement (and vice versa?)

Spread in variance of position and momentum values when position and momentum
measurements are made on equivalently prepared systems?

Simultaneous measurability of position and momentum by a single experimental
arrangement?

* Reformulate as precise mathematical notions. Positive Operator Value

measurements (“unsharp” measurements)

- Informationally Complete Measurements (and others)
* What of other complementary observables?

Energy-Time uncertainty relationships

Photon Phase-Number statistics
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If a consistency condition is met, all normal probability
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Axiomatic approaches.
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* What is different to classical theories?

* Principle theories, such as relativity and thermodynamics, constructed from
prohibitions.

* Clifton Bub Halvorson.

* "No cloning. No signalling. No bit commitment” to construct a principle
quantum theory

* Generalised probability.

» Weaken Kolmogorov axioms.

* Generdlised logic.

* Propositions about a system do not form a Boolean lattice.

ArPEnteesidaction to Quantum Foundations New HoPaged#d9h
Lecture 4: Interpretation, Reformulation or Replacement? Fundamental Physics



Toy models

PERIMETER INSTITUTE
FOR THEDRETRCAL PRYSICS

ArPEntedaction to Quantum Foundations MNew HoPageddh
Lecture 4: Interpretation, Reformulation or Replacement? Fundamental Physics



Toy models

PERIMETER INSTITUTE
FOR THEDRETHCAL PHYSICE

* Constructs which do not reproduce all of quantum theory but which can reproduce
some characteristic quantum effects.
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* Constructs which do not reproduce all of quantum theory but which can reproduce
some characteristic quantum effects.

Local hidden variable models which can simulate teleportation or dense coding,
despite the fact that quantum theory requires entanglement to do so.

Theories which do not violate Bell inequalities, but do violate higher order
inequalities.

Possible theories which viclate Bell inequalities but do not violate higher order
inequalities.

* Constructs which do things quantum mechanics canrnot do.

Popescu-Rohrlich non-local boxes, which are more non-local than quantum theory,
although still do not permit signalling.
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Toy models
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* Constructs which do not reproduce all of quantum theory but which can reproduce
some characteristic quantum effects.

Local hidden variable models which can simulate teleportation or dense coding,
despite the fact that quantum theory requires entanglement to do so.

Theories which do not violate Bell inequalities, but do violate higher order
inequalities.

Possible thearies which violate Bell inequalities but do not viclate higher order
inequalities.

* Constructs which do things quantum mechanics cannot do.

Popescu-Rohrlich non-local boxes, which are more non-local than quantum theory,
although still do not permit signalling.

Inequalities not violated by QT but violated by other possible theories.
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And more...
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And more...

» Emergent classicality PERINETER 1\STITLTE

FOR THEDRETECAL PHYSICS

If the world is fundamentally quantum in behaviour, why does the everyday world
behave so classically?
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If the world is fundamentally quantum in behaviour, why does the everyday world
behave so classically?

* Ehrenfest theorem, quantum chaos, decoherence, restrictions on observables and
hamiltonian

v  Relativistic Mechanics

Relationship between quantum theory and relativity

* Many body relativity, the "no-interaction theorem”, Wheeler-Feynman electrodynamics
* Hegerfeldt box paradox, localisability

Quantum Field theory

* Haag's Theorem, Dyson's Theorem, Spin-statistics and identical particles
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hamiltonian

» Relativistic Mechanics

Relationship between quantum theory and relativity

* Many body relativity, the "no-interaction theorem”, Wheeler-Feynman electrodynamics

* Hegerfeldt box paradox, localisability
Quantum Field theory

* Haag's Theorem, Dyson's Theorem, Spin-statistics and identical particles

* Axiomatic and Algebraic Quantum Field Theory
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And more...

» Emergent classicality PERIMETER INSTITUTE

FOR THEDRETVCAL PHYSICS

If the world is fundamentally quantum in behaviour, why does the everyday world
behave so classically?

* Ehrenfest theorem, quantum chaos, decoherence, restrictions on observables and
hamiltonian

» Relativistic Mechanics

Relationship between quantum theory and relativity

* Many body relativity, the "no-interaction theorem”, Wheeler-Feynman electredynamics
* Hegerfeldt box paradox, localisability
Quantum Field theory
* Haag's Theorem, Dyson's Theorem, Spin-statistics and identical particles
* Axiomatic and Algebraic Quantum Field Theory

» Experimental tests

precision testing of macroscopic interference, collapse models, non-equilibrium

hidden variables...
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Summary )
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* Quantum phenomena can be understood, but there seems no easy
or "right” way to do so.
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or "right” way to do so.
- All approaches involve something that seems, intuitively, unreasonable.

- Progress can be (and has been) made in understanding what combination of
assumptions are tenable (and what are not).

- Experiments can be (and have been) performed relevant to this.
* Inany attempt to understand quantum phenomena

- Be logically consistent

- Be conceptually clear and coherent
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Summary
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* Quantum phenomena can be understood, but there seems no easy
or "right” way to do so.
- All approaches involve something that seems, intuitively, unreasonable.

- Progress can be (and has been) made in understanding what combination of
assumptions are tenable (and what are not).

- Experiments can be (and have been) performed relevant to this.
* Inany attfempt to understand quantum phenomena

- Be logically consistent
- Be conceptually clear and coherent

- Be compatible with observed phenomena
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Summary I

PERIMETER INSTITUTE
FOR THEERETHCAL PEYSICE

"One way or another, God has played us a nasty trick.
The voice of nature has always been faint,
but in this case it speaks in riddles and mumbles as well.”

T. Maudlin "Quantum Non-locality and Relativity”

ArPiEntegdaction to Quantum Foundations MNew HoPagedsidin
Lecture 4: Interpretation, Reformulation or Replacement? Fundamental Physics



