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Measurement and Interpretation

PERIMETER INSTITUTE
FOR THEDRETICAL PHYSICS

"It would seem that the theory is exclusively concerned with the 'results of measurement'
and has nothing to say about anything else. When the 'system’ in question is the whole
world where is the 'measurer’ to be found? Inside, rather than outside, presumably. What
exactly gualifies some subsystems to play this role? Was the world wave function waiting
to jump for thousands of millions of years until a single-celled living creature appeared?
Or did it have to wait a little longer for some more highly qualified measurer - with a PhD?”
J. S. Bell "Quantum Mechanics for Cosmologists”
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"It would seem that the theory is exclusively concerned with the 'results of measurement’
and has nothing to say about anything else. When the 'system’ in guestion is the whole
world where is the 'measurer’ to be found? Inside, rather than outside, presumably. What
exactly gualifies some subsystems to play this role? Was the world wave function waiting
to jump for thousands of millions of years until a single-celled living creature appeared?
Or did it have to wait a little longer for some more highly qualified measurer - with a PhD2?”
J. S. Bell "Quantum Mechanics for Cosmologists”

* Interpretation and Scientific Realism
* Operational formulation of quantum theory
* Quantum theory as a fundamental theory: the measurement problem

* Some solutions to the measurement problem
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q Is the displacement of a mass of L kg

connected to a spring with Hooke's constant C
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q Is the displacement of a mass of L kg

connected to a spring with Hooke's constant C

F=—

and in a viscous medium with resistance R
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Interpretation and physics

PERIMETER INSTITUTE
FOR THEDRETICAL PHYSICS

* Anuninterpreted piece of mathematics is precisely that:
mathematics
(not physics)

» To connect to physics it is necessary that there be some physical interpretation of the
mathematics.

— This reguires a correspondance between some of the objects of the mathematical structure and

some physical objects

« At the absolute minimum, one must intferpret to make predictions at all

— Experiments make lights flash, things go click, pointers to peint at numbers on a dial, printers to

squirt ink on papers.

— Something in the the mathematics of the theory has got to be identified as telling you which lights
will or will not flash, when or how often things go click, what numbers get pointed to, what pretty

patterns get ejected from the printer.

New HoPagea#ssin
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Scientific Realism

PERIMETER INSTITUTE
FOVR THEDRETICAL PHYSICS

* Scientific realism about some mathematical object or operation is the idea that:

- the mathematical object corresponds to an actual physical object
- the mathematical operation corresponds to an actual physical process.

« There is not a question of "being a realist” per se, but of "being a realist about something"

- eg. The electromagnetic field is of fen considered rea/ while the vector potential is
considered not real.

« Are probabilities real?
Subjective uncertainty and objective chance
- Before and after coin flipped?

Before and after result seen?
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* Let us characterise our experiments in the following way:

- A Preparation process and a Measurement process

- Each distinct physical set up of an apparatus used to prepare a system
for an experiment is given an label, I.

- Each distinct physical set up for recording the results of the
experiment is given a label J.

* There are a number of distinct possible outcomes to each
measurement, which we label KX

- At the minimum a theory must tell us

P(KI|I,J)
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* Two preparations 7 and I’ are equivalent if, for all K.J (up to a

permutationof X): P(K|I.J)=P(K|I'.J)

Mathematically, equivalent preparations are represented by a density matrix
(wavefunction) W =

* Two result sets J and J’ are equivalent if for all 7 (up to a permutation in

K) P(K|I,J)=P(K|I,J’)

Mathematically, equivalent measurements are represented by a positive operator
valued measure (Hermitian operator).

* This has X distinct outcomes, which may each be represented by a wavefunction

¢ x sothat P(K]|I, J)ZU (f)*ﬁiqu;l
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* Two preparations 7 and I’ are equivalent if, for all K.J (up to a

permutationof X): P(K|I.J)=P(K|I'.J)

Mathematically, equivalent preparations are represented by a density matrix
(wavefunction) W =

* Two result sets J and J’ are equivalent if for all 7 (up to a permutation in

K) P(K\L..J)=P\K|I.,J’)

Mathematically, equivalent measurements are represented by a positive operator
valued measure (Hermitian operator).

* This has X distinct outcomes, which may each be represented by a wavefunction

¢ x sothat P(K]|I, J;]:‘J- r]b*ﬁ_:tpf;:

Evolution of prepared system is linear:
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* Two preparations 7 and I" are equivalent if, for all K.J (up to a

permutationof X): P(K|I.J)=P(K|I'.J)

Mathematically, equivalent preparations are represented by a density matrix
(wavefunction) qJI

* Two result sets J and J’ are equivalent if for all 7 (up to a permutation in

K) P K\ ,.J)=P{K|I,J’]

Mathematically, equivalent measurements are represented by a positive operator
valued measure (Hermitian operator).

* This has X distinct outcomes, which may each be represented by a wavefunction
¢ x sothat P(K|I, J;]:)J- b |

Evolution of prepared system is linear:

Lp]_ = (p 1 ’ ’
If , then &y, Tphy,—axy ', +py’,
Y,—=y,
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* In classical physics, when we look a the apparatus used to prepare and
measure a system (eg. voltmeters, batteries, rulers) they are composed
of components that can be described by the same laws as the system
they perform experiments upon.
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* In classical physics, when we look a the apparatus used to prepare and
measure a system (eg. voltmeters, batteries, rulers) they are composed
of components that can be described by the same laws as the system
they perform experiments upon.

— Of course, eventually this turns out not to be the case, whereupon we need a
new theory - quantum theory!

* The apparatus and equipment are themselves built from quantum
(atomic) objects.

— Does quantum mechanics enable us to describe apparatus, equipment, chairs
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AR BFP8RUction o Quantum Foundations New HoPageé#issin
Lecture 2: Measurement and Interpretation Fundamental Physics



il

Is Quantum theory a fundamental theory? 1

PERIMETER INSTITUTE
FOR THEDRETICAL PHYSICS

* In classical physics, when we look a the apparatus used to prepare and
measure a system (eg. voltmeters, batteries, rulers) they are composed
of components that can be described by the same laws as the system
they perform experiments upon.

— Of course, eventually this turns out not to be the case, whereupon we need a
new theory - quantum theory!

* The apparatus and equipment are themselves built from quantum
(atomic) objects.

— Does quantum mechanics enable us to describe apparatus, equipment, chairs
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— Is the process of measurement itself described by quantum theory?
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Is Quantum theory a fundamental theory?

PERIMETER INSTITUTE
FOR THEDRETICAL PHYSICS

* In classical physics, when we look a the apparatus used to prepare and
measure a system (eg. voltmeters, batteries, rulers) they are composed
of components that can be described by the same laws as the system
they perform experiments upon.

— Of course, eventually this turns out not to be the case, whereupon we need a
new theory - quantum theory!

* The apparatus and equipment are themselves built from quantum
(atomic) objects.

— Does quantum mechanics enable us to describe apparatus, equipment, chairs
etc?

— Is the process of measurement itself described by quantum theory?

— Inshort, is quantum theory a universal theory or not?
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A measuring device is intended to tell us it is in that state.
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It starts in some reference state: @0
then interacts so that Y, (po i (pu
so that the measuring device state corresponds to b
something like a big pointer pointing at the letter “U” u
We also want it to interact with a different state: Y i
so that the measuring device output state corresponds to
something like a big pointer pointing at the letter “D” P 2
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The Measurement Problem!

Suppose we prepare a system to be in a particular quantum state: (.U“

A measuring device is intended to tell us it is in that state.
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variables determines whether the U or D outcome has occurred.

— Linear evolution is not right, so that the state of the world is actually U or D. (Objective
collapse). In principle leads to different predictions to quantum theory. (There may still be extra
structure - hidden variables - to the wavefunction).
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— There is a microscopic reality. The microscopic reality determines whether the U or D outcome
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» The wavefunction does not represent the state of any part of the world, at all.

— There is a microscopic reality. The microscopic reality determines whether the U or D outcome
has occurred (hidden variablesl).

— There is no microscopic reality. Only the macroscopic world is real. Observers and measuring
apparatus.
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The wavefunction is real and does represent the state of a physical
object.
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The wavefunction is real and does represent the state of a physical
object.

Linear evolution is right and there is no extra structure to the world.
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The wavefunction is real and does represent the state of a physical
object.

Linear evolution is right and there is no extra structure to the world.
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The wavefunction is real and does represent the state of a physical
object.

Linear evolution is right and there is no extra structure to the world.

Both outcomes do occur

Many Worlds
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* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the Everettian
inferpretation to succeed, our perceptions must divide in a particular basis.
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* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the Everettian
inferpretation to succeed, our perceptions must divide in a particular basis.
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* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the Everettian
inferpretation to succeed, our perceptions must divide in a particular basis.
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* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the Everettian
inferpretation to succeed, our perceptions must divide in a particular basis.
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* Old Many Worlds Interpretation (De Witt, Graham, Deutsch)
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* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the Everettian
inferpretation to succeed, our perceptions must divide in a particular basis.
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* Old Many Worlds Interpretation (De Witt, Graham, Deutsch)

— The universe branches in a particular way. There is, in effect, extra structure to the universe
than just the wavefunction and Schrodinger evolution. This extra structure determines the basis
in which quantum events occur.
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inferpretation to succeed, our perceptions must divide in a particular basis.
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* Old Many Worlds Interpretation (De Witt, Graham, Deutsch)

— The universe branches in a particular way. There is, in effect, extra structure to the universe
than just the wavefunction and Schrodinger eveolution. This extra structure determines the basis
in which quantum events occur.

* New Everettian Interpretation (Deutsch, Saunders, Wallace)
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* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the Everettian
inferpretation to succeed, our perceptions must divide in a particular basis.
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* Old Many Worlds Interpretation (De Witt, Graham, Deutsch)

— The universe branches in a particular way. There is, in effect, extra structure to the universe
than just the wavefunction and Schrodinger eveolution. This extra structure determines the basis
in which quantum events occur.

* New Everettian Interpretation (Deutsch, Saunders, Wallace)

— Microscopic branching does not occur. There is ne such process as "branching”.
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* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the Everettian
inferpretation to succeed, our perceptions must divide in a particular basis.
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* Old Many Worlds Interpretation (De Witt, Graham, Deutsch)

— The universe branches in a particular way. There is, in effect, extra structure to the universe
than just the wavefunction and Schrodinger evolution. This extra structure determines the basis
in which quantum events occur.

* New Everettian Interpretation (Deutsch, Saunders, Wallace)

— Microscopic branching does not occur. There is ne such process as "branching”.

— Macroscopic objects emerge from large scale decoherent processes.
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inferpretation to succeed, our perceptions must divide in a particular basis.
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* Old Many Worlds Interpretation (De Witt, Graham, Deutsch)

— The universe branches in a particular way. There is, in effect, extra structure to the universe
than just the wavefunction and Schrodinger eveolution. This extra structure determines the basis
in which quanfum events occur.

* New Everettian Interpretation (Deutsch, Saunders, Wallace)

— Microscopic branching does not occur. There is no such process as "branching”.
— Macroscopic objects emerge from large scale decoherent processes.

- We perceive @, P, rather than —— Wy W5/ P, because one is a state of definite
: ; . v2
perception while the other is not.
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* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the Everettian
inferpretation to succeed, our perceptions must divide in a particular basis.
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* Old Many Worlds Interpretation (De Witt, Graham, Deutsch)

— The universe branches in a particular way. There is, in effect, extra structure to the universe
than just the wavefunction and Schrodinger evolution. This extra structure determines the basis
in which quantum events occur.

* New Everettian Interpretation (Deutsch, Saunders, Wallace)

— Microscopic branching does not occur. There is no such process as "branching”.
— Macroscopic objects emerge from large scale decoherent processes.

- We perceive @, P, rather than ) Wt WP because one is a state of definite
perception while the other is not. -

— We cannot interact with our other selves because decoherence prevents it
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* Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the Everettian
inferpretation to succeed, our perceptions must divide in a particular basis.
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* Old Many Worlds Interpretation (De Witt, Graham, Deutsch)

— The universe branches in a particular way. There is, in effect, extra structure to the universe
than just the wavefunction and Schrodinger eveolution. This extra structure determines the basis
in which quantum events occur.

* New Everettian Interpretation (Deutsch, Saunders, Wallace)

— Microscopic branching does not occur. There is ne such process as "branching”.
— Macroscopic objects emerge from large scale decoherent processes.

- We perceive @, P, rather than ) Wt WP, because one is a state of definite
perception while the other is not. -

— We cannot interact with our other selves because decoherence prevents it

» It is our perception which divides, not the universe.
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* Probability. How to make sense of normal probabilistic assertions in @  rosm=omem e
universe in which all possible outcomes do actually occur?
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* Probability. How to make sense of normal probabilistic assertions in @ s mse
universe in which all possible outcomes do actually occur?
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You prepare a quantum coin:

AR EFP9RUction o Quantum Foundations New Héorid#is5in
Lecture 2: Measurement and Interpretation Fundamental Physics



Many Worlds L

* Probability. How to make sense of normal probabilistic assertions in @  rosm=oenc mvses
universe in which all possible outcomes do actually occur?

1«3 1 | Iflview the quantum coin, there will be
You prepare a quantum coin: —~WgtWr| afuture me seeing heads and
- <~ a future me seeing tails.
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* Probability. How to make sense of normal probabilistic assertions in @  rosm=ommo e
universe in which all possible outcomes do actually occur?

_ 3 If | view the quantum coin, there will be
You prepare a quantum coin: % +— /| afuture me seeing heads and
- 2 a future me seeing tails.
1 1
You prepare a quantum coin: | — . +—,
V2 V2
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Many Worlds L

* Probability. How to make sense of normal probabilistic assertions in @  rosm=omno mses
universe in which all possible outcomes do actually occur?

If | view the quantum coin, there will be

W r) a future me seeing heads and
a future me seeing tails.

| x-g 1
y Vet

You prepare a quantum coin:

1 \ If | view the quantum coin, there will be
— g -!——; | afuture me seeing heads and
- Vo= a future me seeing tails.

You prepare a quantum coin:
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Probability. How to make sense of normal probabilistic assertions in a

universe in which all possible outcomes do actually occur?
\ If | view the quantum coin. there will be

V3 1 .
=~ Yyt =¥ r) a future me seeing heads and
<~ a future me seeing tails.

s

You prepare a quantum coin:

1 \ If | view the quantum coin, there will be

1
— Wy t—=W;| afuture me seeing heads and

You prepare a quantum coin: { —
Ly a future me seeing tails.
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You prepare 1,000 quantum coins: { P thbw
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* Probability. How to make sense of normal probabilistic assertions in @ o= mses
universe in which all possible outcomes do actually occur?

. | J3 1 If | view the quantum coin. there will be
You prepare a quantum coin: > Wyt Wr| afuture me seeing heads and
- 2 a future me seeing tails.

If | view the quantum coin, there will be
— Yy Tt——=W| afuture me seeing heads and
L a future me seeing tails.

You prepare a quantum coin:

12
-
-2

. - . There will be a future me seeing each
You prepare 1.000 quantum coins: (XY 5+ B W]  ang every possible combination of

heads and tails, regardless of the
values of &, p
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Many Worlds L

* Probability. How to make sense of normal probabilistic assertions in @  rosm=omenc mvses
universe in which all possible outcomes do actually occur?

_ 3 1 If | view the quantum coin, there will be
You prepare a quantum coin: —~WgtSWr| afuture me seeing heads and
| = 2 a future me seeing tails.

If | view the quantum coin, there will be
— Yy Tt——=W| afuture me seeing heads and
a future me seeing tails.

You prepare a quantum coin:

. . There will be a future me seeing each
You prepare 1.000 quantum coins: (X W z+BWr| a4 every possible combination of

heads and tails, regardless of the
values of &, P

How are my future selves supposed to relate the relative frequencies they see of
heads and tails to the values of &, ?
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Many Worlds I

* Probability. How to make sense of normal probabilistic assertions in @  rosm=omnc mses
universe in which all possible outcomes do actually occur?
If | view the quantum coin. there will be

- Y H+E W r) a future me seeing heads and
-~ a future me seeing tails.

e
You prepare a quantum coin: ( o

If | view the quantum coin, there will be
— Yy Tt——=W | afuture me seeing heads and
a future me seeing tails.

You prepare a quantum coin:

. . There will be a future me seeing each
You prepare 1.000 quantum coins: (XY 5z +B W] g every possible combination of

heads and tails, regardless of the
values of , p

How are my future selves supposed to relate the relative frequencies they see of
heads and tails to the values of &, ?

Recent work has suggested a resolution, but it is still controversial.
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The wavefunction is real and does represent the state of a physical
object.
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The wavefunction is real and does represent the state of a physical
object.

Linear evolution is right.
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The wavefunction is real and does represent the state of a physical
object.

Linear evolution is right.

There is extra structure to the world, which determines which
outcome has occurred.
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The wavefunction is real and does represent the state of a physical
object.

Linear evolution is right.

There is extra structure to the world, which determines which
outcome has occurred.

Hidden Variables
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* Original quantum theory! De Broglie, 1924-1927. o st
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* Original quantum theoryl De Broglie, 1924-1927. A R
- Wave or particle?

- Wave and particlel
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* Original quantum theoryl De Broglie, 1924-1927. LA R
- Wave or particle?

- Wave and particlel

EStx, 1)

g(x,t)=|yp(x,t)e
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* Original quantum theoryl De Broglie, 1924-1927. R R
- Wave or particle?

- Wave and particlel

IStx_ i)

g(x,t)=|yplx,t)e

Kk x
For a plane wave A4 E?jr '
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- Wave or particle?

- Wave and particlel
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g(x,t)=|y(x,t)e
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- Wave or particle?

- Wave and particlel

IStx 1)

g(x,t)=|y(x.t)le

For a plane wave 4 e“’x SO p:h}{ ZHVS(;‘C,I)
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* Original quantum theoryl De Broglie, 1924-1927. L R
- Wave or particle?
- Wave and particlel

IStx._f)

g (x,t)=|ly(x,t)e

For a plane wave 4 efh SO p:hk:ﬁv.g(x,ﬁ)

mx=hV S(x,1) P(x|t=t,)=|p(x,1,)f
o P\x.1)
Conservation equation ~ +V J=0
¥,
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- Wave or particle?
- Wave and particlel

IStx 1)
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Conservation equation ~ +V J=0
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wlx, t)=ly(x.t)e
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S(x,t}=arctan

ALx, 1)+ wy(x,t)|cos S, (x, 1)
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If, at some positionx* |y (x',7)|=0 or |y, (x' t)|=0
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S(x,r)=arctan ,_ _ ; .
@, (x,1)|cosS (x,1)+Huy,(x,1)|cos S,(x,1)

If, at some position x’ Ax'", t)j=0 or Ax', t)|=0
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Stx’ =3 (x'. 1)
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o wtx o He xR 2w, (x )l |w (x| cos(S, (x,1)—S 4(x, 1))
|£pl.x.r.1|—\ -
@, (x,7)|sinS (x,r)+|@, (x,1)|sinS (x, ) :

@, (x,1)|cosS (x,1)+Hy,(x,1)|cos S (x,1)

S (x,t)=arctan
If, at some positionx’ | (x',7)|=0 or |y, (x’,7)|=0

wix', t)=|p (x', 1) @ (x’, t)|=|p, (x’, 1)

then il . or , g e
Six",t)=S,(x',t) Stx’,t)=S5,(x', 1)
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Yix,v,t)=|¥(x,y,t)|le” """ mummamn
With two degrees of freedom: | | | i
Plx, ylt=t,)={¥ (2,7, 6)]
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