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Constrained systems

Scenario: We wish to implement unitary motion, but the
system is subject to constraints

Question: How does one formulate the theory of quantum
constraints?

Classical theory: One approach to constrained systems is
Dirac’'s approach, formulated on a classical phase
space (symplectic manifold)

Question: |s there an analogue of the classical phase space
description for quantum mechanics?
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Outline

® Phase-space description of qguantum mechanics

s Developed by [Kibble, Marsden, Weinberg, and
many others, in the 1970s and 1980s |

#® T[wo distinct approaches to quantum constraints

s Extension of classical theory (Kibble et. al. + Dirac
— framework for quantum constraints)

s A new approach - using metric geometry of quantum
phase space

® Mixed states
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Phase-space formulation of QM (1)

The expectation value of any observable in quantum
mechanics is independent of the norm of the state vector

|z} ~ Alz) A e C—{0}
A pure state in QM = ray through the origin in H" !

space of rays = proj.éctive Hilbert space

In real terms this is an even dimensional manifold T
equipped with Fubini-Study metric ¢, and compatible
symplectic structure
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Phase-space formulation of QM (2)

Physical observable H(r) is given by the expectation of H
at each point »r on I':

The eigenstates of H correspond to fixed points of the flow
0"V, H on I'. These are the points for which

Valf(z) =0

The eigenvalues are the values of H(r) at the
corresponding fixed points
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Phase-space formulation of QM (3)

In the phase space formulation of QM the Schrédinger
equation takes the form:
dz? K J\H \T)

— OV, H(r) where H(xr) S
d# | x|z)

Remarkably we see that this is Hamilton's equation of
classical mechanics, for the given phase space.

Thus the Schrédinger equation corresponds to a classical
Hamiltonian evolution on the symplectic manifold defined by
the quantum phase space.
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Phase-space formulation of QM (4)

We can parameterize the state «* = {¢;. p; } by writing

) — Z v p_-;-'f?_iQi _Ef =B 1 — ZE_)E‘ -Eﬂ—]_,.:
=1 \ i=1
The Hamiltonian then takes the form:

TL
H(qi.pi) = Enp J—Z w;ip; where w; =FE; —E,

=—1
Equations of motion become
. OH (q;. pi) _ OH (q;.p;)
i = = and p; — — =
Ip; dq;

with solutions ¢;(t) = ¢;(0) + w;t and p;(t) = p;(0)
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Phase-space formulation of QM (3)

In the phase space formulation of QM the Schrédinger
equation takes the form:
dxr® (x| H |x)

=Q"V,H(x)  where  H(z)=-""—
dt (z|z)

Remarkably we see that this is Hamilton's equation of
classical mechanics, for the given phase space.

Thus the Schrédinger equation corresponds to a classical
Hamiltonian evolution on the symplectic manifold defined by
the quantum phase space.
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Phase-space formulation of QM (4)

We can parameterize the state »* = {¢;. p; } by writing

T r
T) — Z vrie T EE;) + |1 — sz- Frnii)
—1 \ =—3
The Hamiltonian then takes the form:
It
H(gi.pi) = Eny1 + Z wipi where w; =FE; —FEn4,
3—1

Equations of motion become

. OH (q;. p;i) _ OH (q;.p;)

i = : and p; — — =

dp; dq;

with solutions ¢;(t) = ¢;(0) + w;t and p;(t) = p; (0)
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Constraining quantum systems

#® Recent work on extending classical theory
s Bung¢, [arXiv:0704.1359]

s Corichi, [arXiv:0801.1119]
s Brody, Gustavsson, Hughston [J. Phys. A 41 (2008)]

However, the extended version of Dirac's approach is
only applicable to a certain class of systems

® Alternative approach
s [Brody, Gustavsson, Hughston 2008]
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Terminology

» Dirac approach

— based on the symplectic geometry of the classical
phase space

— “symplectic approach”

» New approach

— relies on the metric geometry of the quantum state
space

— “metric approach”

Outline these two approaches
lllustrate some results through examples
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Constraints

Family of constraints

W,

|
=
I

' (r) =0 !

Examples:
® conserved observables

(| ®|x)

i) "' () =

EhT)
(P P! x P! e Z_ gq
# algebraic submanifold of - i Sadnad
e.g. subspace of disen- 7/ L /
___tangled states [y— \\Q_/




Terminology

» Dirac approach

— based on the symplectic geometry of the classical
phase space

— “symplectic approach’

®» New approach
— relies on the metric geometry of the quantum state
space

— “metric approach”

Outline these two approaches
lllustrate some results through examples
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Phase-space formulation of QM (4)

We can parameterize the state +* = {¢;. p; } by writing

Tt rn
r) =3 Vpie % |E;) + \ 1— Y pil Baia)
—I| =

The Hamiltonian then takes the form:

Il
H(qi.pi) = Eny1 + Z wip; where w; =FE; —E,
—1
Equations of motion become
. OH (q;. p;i) _ OH (q;. pi)
i = - and p; — — .
Ipi dq;

with solutions ¢;(t) = ¢;(0) + w;t and p;(t) = p;(0)
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Family of constraints

' (r) =0

Examples:

® conserved observables

# algebraic submanifold of

[

e.g. subspace of disen-

tangled states
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Constraints

Family of constraints

®'(x) =0 =il
Examples:
® conserved observables
x (x| ®|x)
(x|x)
rFi P'xP e -
® algebraic submanifold of v
S z /
e.g. subspace of disen- 7 sl
| tangled states TN Y
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Symplectic approach

Modified equation of motion

dz®

— = OOV, H + M0V, @
dt | |

In some cases the Lagrange multipliers \; can be obtained
explicitly by considering &' = 0

Pt = i T{I‘I)'j
= Q®V,®'V,H + \;Q%V,0'V, &’

The Lagrange multiplier is given by
\i = wjiQV, SV H
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Symplectic approach (cont’d)

The modified equation of motion becomes

dz?

dt

— OV, H

where 0“ is induced symplectic structure on the constraint
subspace:

f)_t_'{b — E‘z{-,{b ¥ E‘zfifi—zhrfw;J T{? {]-:)IT{! (I}'j

and
W9 = Qv , eV, o
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Family of constraints

' (r) =0

Examples:

® conserved observables

# algebraic submanifold of

[

e.g. subspace of disen-

tangled states
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Symplectic approach (cont’d)

Example: 2 spin-- particles constrained to subspace of
disentangled states with Hamiltonian:

H=—Jo o> —B[@'f LI +1;1 & Cﬁl'é)

™

Example of a ‘snapshot’ of the vector field on S7 when
.mation on S3 is fixed to the point /2 = 0y = 57
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Metric approach

Modified equation of motion

dr®

dt

— = QUV,H — \ig™V, @'

® remove from the unitary vector field the components
orthogonal to the constraint surface

>

with weaker condition A\,
can be solved explicitly
to obtain dynamical
equations

with stronger condition
this reduces to the sym-
plectic approach
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Metric approach (cont’d)

Modified equation of motion

4 -

dxe » | |
= - E!"EbThH - x\g_{}ubv,{}{bj
L

Find Lagrange multipliers \; by considering &/ = 0

{i)J = B Wa iV
= Q®V, IV H — \ig"V DIV, P’

Define B | |
MY = ¢°°V, &'V, &
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Metric approach (cont’d)

Note that for family of quantum observables the matrix 1/
corresponds to

MY = (®'®7) — (D) (D)
Lagrange multiplier obtainable when 1/;; exists:
A\i = M;;QV, &'V, H
Constrained equation of motion becomes

P = QY H — M0V . ®IV . H g""V , &'
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Compatibility condition

Sufficient condition under which metric equation of motion
i = QY H — M;;QV &IV 1Hg"V, &'
can be written in the same form as the symplectic approach
3% = OV, H

IS given by
C t_'f
']r_'t ']h Hed — Hab
where J;' = ¢"“(1, Is the complex structure on I' and where
we have defined

Ube “— A [gj' Th(ﬁ’! Ve o’
Page 25/39
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Metric approach: Example

Example: Single spin-= particle with Hamiltonian H=5.

(z|oLlT)

IS conserved

constrained such that 4(») =
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Mixed states

Equation of motion

d ;__;l

where p Is density matrix representing the state of the
system and H is the ordinary Hamiltonian operator
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Metric approach: Example

0 -

Example: Single spin-= particle with Hamiltonian H

(z|oLlx)

IS conserved

constrained such that 4(») =

0.5~

s 00—

1.5+

-1.0—
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Mixed states

Equation of motion

dp

where p Is density matrix representing the state of the
system and H is the ordinary Hamiltonian operator
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Mixed states: symplectic approach

Modified equation of motion

(ji ;_EJ

& —i[H. p] —i\;[®. p]

In some cases it is possible to find \; explicitly:
’\j = U}j'fl‘ (;)[H (I)l)
where 117; is the inverse of

WY =tr (;f::[*]i)‘;. tﬁj]) such that U}Jﬂ'ﬁ" — ¥
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Mixed states: metric approach

Modified equation of motion

( '_L'_EJ

P — —i[H. ;__}] + ,\J- {{t)j . P }

In some cases we can find \; explicitly and obtain
dynamical equations with

f\j = LYUT_'L‘ (;_)[(I)i. H)
where \;; is the inverse of

N =t (f-i'{fi}“ B} ) suchthat N N/% = o7
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Summary

The phase space description of QM gives us a powerful tool
for addressing questions in quantum mechanics.

It is possible to treat quantum constraints in two different
ways:

(a) The symplectic approach: This is an extension of Dirac’'s
work on constraints to quantum systems

(b) The metric approach: This is a distinct approach that
has no classical counterpart
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Summary (cont’d)

\We have derived a sufficient condition to ensure that the
two approaches are equivalent.

It is possible to treat both pure and mixed states, working

either in the phase space description of QM or in Hilbert
space.

Would like to find an experimental setup that realises
specific constraints that can be described in the present
framework.
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Metric approach: Example

Example: Single spin-= particle with Hamiltonian H=5.

(z|oLlx)

constrained such that 4(») = IS conserved
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Compatibility condition

Sufficient condition under which metric equation of motion
i = QY H — M;;QV &V 1H g™V, @
can be written in the same form as the symplectic approach
=0, H

IS given by
‘ r_f
JaJp ted = Hab
where J;' = ¢?“(1, Is the complex structure on I' and where
we have defined

Hbe ~— J[@'j V@'V, P’
Page 36/39
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Mixed states: symplectic approach

Modified equation of motion

d ;_EJ

L - —i[H. p] — i\ [®. j]

In some cases It is possible to find \; explicitly:
\j = Wijtr ((p[H. &7)
where 117; is the inverse of

WY =t (;_}[tbf. ff}j]) such that ﬂ}jﬂ'j”" — 5*
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Mixed states: metric approach

Modified equation of motion

rjh_i

= —i[H. p] + A\ {®. p}

In some cases we can find \; explicitly and obtain
dynamical equations with

,\j — Lﬂ\i;j'[l‘ (;_}[{]Si. H)
where \;; is the inverse of

N —tr (!5{@“ iy }‘) suchthat  Nj;N7% =4}
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Summary (cont’d)

\We have derived a sufficient condition to ensure that the
two approaches are equivalent.

It is possible to treat both pure and mixed states, working

either in the phase space description of QM or in Hilbert
space.

Would like to find an experimental setup that realises
specific constraints that can be described in the present
framework.
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