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Abstract: There has been much interest, in the past few years, in the kappa-Poincare\'/kappa-Minkowski framework as a possible scenario for a
deformation of Poincare\' symmetries at Planck scale. | will show how it is possible to give a physical characterization of the concept of quantum
symmetries described by a nontrivial Hopf algebra. In particular, 1 will discuss the generalization of the Noether analysis for a scalar field in
kappa-Minkowski space-time and derive conserved charges associated with each generator of the kappa-Poincare\' Hopf-algebra. Then | will report
on a recent proposal for the quantization of a scalar field enjoying kappa-Poincare\' symmetries, which consists in a construction of the Fock-space
of the theory consistent with the structure of deformed symmetries. Finally | will comment on possible applications of deformed symmetries
scenariosin cosmology.

Pirsa: 07120047 Page 1/27



@ Motwvations:

o quantum s-Minkowski space-time and modification or breakdown of
Paincaré symmetries

e the fate of Poincaré symmetries at Planck scale and g-dS space-time

from a cosmological perspective

@ Translation and Lorentz sector symmetries of x-Minkowski NCST and
Noether charges (classical fields)

@ Quantum fields in s-Minkowski

e quantization and compatibilty with quantum symmetries
o Noether charges

@ Outlook

e theory
e phenomenology




Quantum space-time and relativistic symmetries

@ Planck length L, and quantum space-time — S-T symmetries broken or deformed?

(lengths transfarm non-trivially under boosts in Minkowski spacetime. About L,7)

@ Various studies support the idea of L, as a lower bound to any distance
measurement. Various pictures of space-time at the Planck-scale:

NON-COMMUTATIVE. “FOAMY", DISCRETE...

Modification of classical symmetries could appear in the space-time quantization
Deformation of the Poincaré algebra in one parameter proportional to the Planck scale

some arguments within LQG N.C. 5T Some strings scenarios

NOT MERELY ACADEMIC

Low energy limit and first order correction ta the symmetries (zero order test).
Phenomenalogy at the Planck scale (UHECR and GRB)




NCST and algebraic deformation: from Lie to Hopf algebras

An intuitive characterization

Algebra of functions on commutative S-T NC algebra of functions on NC S-
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Deformed Lie algebras of S-T coordinates are linked to
Hopf algebras of symmetries (deformed Lie algebras).

S-T (deformed Lie algebra) (deformed) Hopf algebra
of symmetries

@ Early %'s (Lukierski et al): use “quantum groups” (nom-co-commutative Hopf algebra) o describe
‘quantization” of standard relativistic symmetries (analogous to Moyal quantizztion of Poissen manifolds:
CM—QM)

@ 1994 (Majid and Ruegg): <-Poincaré and its relation o x-Minkowski NCST




k-Poincare and s-Minkowski NCST

NCST: a vast literature using the x-Minkowski /x-Poincaré framework

Starting from NC complex expanential e reguarded as a Fourier basis

@ Fix a normal ordering for the coordinates (e.g. all time coordinates to the right)
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@ Complex exponentials combine in 3 non-trivial way: using the BCH formula

iqyE tqy T

_ (L JiaE . i(ertea)E
] - ) € Bt ‘B

i |
= .. S

where g1+92 = (g1 +92; 1 —€¢ = 3

@ Different orderings: equivalent descriptions of the same field!
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@ Field on x-Minkowski .

: ®(z) = / d*qflq) : ' :

Ordering prescription is fixed. drop =~ from now on...




k-Poincaré symmetries

The action of Poincaré symmetries on such fields are well defined:
@ Translations are “classical” on a single plane wave ie.
B b: g o= Pu - e’

b

Different x-Poincaré basis acts on the same field in a different way...
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What is going on?

@ Boost are “deformed” and the same "ambiguity” in defining the action of
generators appears

@ Rortations are “classical”

. S Majid. B Ruegg, Phys Let. B334: 348-354,1004.
A. Agostimi, G. Ameline-Camelia, F. D'Andrea Int. | Mod.Phys. A19: 5187-5220, 2004




Translations and Noether charges for classical fields

Symmetries are characterized in terms of the infinitesimal vanations of the fields

@ In the x-deformed case we also need to specify dr,s which must cbey
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@ Insisting on the Leibnitz rule
”Ef = !I-f.;'?‘rr_,[ P.'___' j- xI)

Different P, bases leads” to the same d7!
@ r-Klein-Gardon e.om. Cg(F,)® =0

Noether analysis for translations = 4 independent conserved charges (1.e. constants)
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mni, G. Amelino-Camelia, M. Arzano, A. M., B. A. Tacchi, Mod.Phws Lett. AZ2 17791786,




Translations and Noether charges for classical fields

Symmetries are characterized in terms of the infinitesimal vanations of the fields

@ In the x-deformed case we also need to specify dx,s which must cbey
1 +dz;, x5 + :'f;r_.: —
@ Insisting on the Leibnitz rule
l‘l{f = }.:-l'.;!r\r'u P,'_; j- I)

Different P, bases leads” to the same df!
@ r-Klein-Gardon e.om. Ci(F,)® =10

Noether analysis for translations = 4 independent conserved charges (1.e. constants)
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= A. Agostni. G. Amelino-Camelia. M. Arzano, A. M., R. A. Tacchi, Mod.Phys Lett. A22: 17791786, 2006



Translations and Noether charges for classical fields

Symmetries are characterized in terms of the infinitesimal vanations of the fields

@ In the x-deformed case we also need to specify dr,s which must abey
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@ Insisting on the Leibnitz rule
af =ndx.Fi j{x)

Different F, bases leads” to the same d7f!
@ s-Klein-Gardon e.om. Ci(F,)® =10

Noether analysis for translations — 4 independent conserved charges (1.e. constants)




k-Poincaré symmetries

The action of Poincaré symmetries on such fields are well defined:
@ Translations are “classical” on a single plane wave ie.
P“: | = f‘i':r =Py E-'.p,: :

Different x-Poincaré basis acts on the same field in a different way...

ipd
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What is going on?

@ Boost are “deformed” and the same "ambiguity” in defining the action of
generators appears

@ Rortations are “classical”

. S.Majid. B Rusgg, Phys. Letr. B334: 348-354,1004.
A. Agostini, G. Ameline-Camelia, F. D' Andrea Int. | Mod.Phys. A10: 5187-5220. 2004




k-Poincare and s-Minkowski NCST

NCST: a vast literature using the x-Minkowski /x-Poincaré framework

Starting from NC complex expanential e reguarded as a Fourier basis

@ Fix a normal ordering for the coordinates (e.g. all time coordinates to the right)
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@ Complex exponentials combine in 3 non-trivial way: using the BCH formula
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@ Different orderings: equivalent descriptions of the same field!
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@ Field on s-Minkowski

~

- @z} = / d*qf(g) : ' :

Ordering prescription is fixed. drop ~ from now on...




k-Poincaré symmetries

The action of Poincaré symmetries on such fields are well defined’:

@ Translations are “classical” on a single plane wave ie.
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Different x-Poincaré basis acts on the same field in a different way...

ipd

Pi:e™ £ Pupre
What is going on?

@ Boost are “deformed” and the same "ambiguity” in defining the action of
generators appears

@ Rortations are “classical”

. 5. Majid. H Ruegg Phys Letr. B334: 3483541004
A. Agostini, G. Ameline-Camelia, F. D' Andrea Int. | Mod.Phys. A19: 5187-5220, 2004




Translations and Noether charges for classical fields

Symmetries are characterized in terms of the infinitesimal vanations of the fields

@ In the x-deformed case we also need to specify dx,s which must cbey

Ti T ar:, Tj T AT

@ Insisting on the Leibnitz rule
df =udzaFi j(x)

Different P, bases leads” to the same d7'!
@ x-Klein-Gordon e.o.m. Ci(P,)® =0

Noether analysis for translations = 4 independent conserved charges (1.e. constants)
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m, G. Amelimo-Camelia, M. Arzano, A. M., B. A. Tacchi, Mod_Phes Lett. AZZ 1779<1786, 2006




Symmetries and symplectic geometry of x-fields

As an alternative strategy [ M. Arzano and A.M., Phys. Rev. D 75, 081701 (2007)]

@ Key point: {o(z);x(z)} T ® = S identify the phase space I with the
space of solutions of the equation of motion S

@ On S is defined a symplectic 2-form w

Qur strategy:
(i) use a map m between S and S to define a symplectic structure on S-

(i) express the conserved charges associated with ~-symmetries through the
symplectic structure

Noether charges associated with translations can be written as

Q= +(8.P. > &)

-

One gets the same »-Noether charges Q} ! with 3 bonus... an inner product’
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Lorentz sector and Noether charges for classical fields

@ Rotation transformations act as classically (trivial co-algebraic structure)
o Infinitesimal parameters o; commute with z,,
o None ambuity in the definition of infinitesimal rotations

o Noether analysis = 3 independent conserved charges”

= 2 g fh I T Aea T j<
QF = & [ &k BP0 §(—ko, 0 B)eimbm 25

20 ak

@ Boosts transformations are highly non-trivial (action and co-algebra
“deformed” )

o No infinitesimal parameters 7;'s acting by associative multiplication on
the z,'s. No pure boost

o Consider whole Lorentz sector (7; and o, noncommutative)

o Noether analysis = 3 independent conserved charges
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Intermission

Mast interest in x-Minkowski/ x-Poincaré scenarios from the “phenomenological”
side: deformations of energy-momentum dispersion relation and deformed
Casimir

7

'D'ﬁ\\,-
L

= 4 - .‘ .Ir.- ] I-I
C. = (2xsinh | |
\ "|| "-.:] |

v 2/

testable predictions (e.g. time-of-flight tests using GRB..)

HOWEVER ambiguity in defining the action for generators of translations has
been cause for concern in the recent past...

First results in defining translations un-ambigously and the Noether charges
obeying deformed dispersion relation’

At least two different choices: 4D and 5D differential calculus. Discussion on still
vivid. Key point: covariance under Hopf-algebras of symmetries: bi-covariance

@ All this was done with classical fields...need quantum fields...

A. Agostini, G. Amelino-Camelia, M. Arzano, AM., R. A. Tacchi, Mod.Phys.Letr. A22=1779-1786, 2007




Quantization: k-Fock space and k-Poincare-symmetries

Based on [M. Arzano and AM, Phys. Rev. D 76, 125005 (2007 )]

-
[
= B

L

Assume the physical Hilbert space to be a deformation of the standard bosonic

"One-particle” «-Hilbert space of a free quantum (scalar) field theory:

@ Complexification of the solutions' space of the x-deformed EOM S&

@ Turn S; into a Hilbert Space by “x-deformed’ inner product

@ For modes on the “positive energy” mass-shell (™ (k)) with |k| > & the inner
product is no longer positive definite! Restrict to the subspace ST~ < S™.

|kl <k

Mode components are truncated at the Planck scale < . Our x-one particle Hilbert
space H, will be defined by the completion of S — S in the inner product.

B<K

o Consider the (normalized) plane wave basis {¢”} of " C §".

o Characterize b' and b relative to this specific basis in terms of their
action on the vacuum state they single out in F.(H).




Quantization: k-Fock space and k-Poincare-symmetries ||

rx-bosonic Fock space: consider first the two-mode tensor product states

Compatibility with symmetries:

I ~I A
'—-_‘.
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@ Look for momentum labels o75(p) and o5(§) such that

D 2 - : _'-. P : _'_- —_— oy
By 00, ® bogy@] = (P9 [6o,a

No standard “flip” of momentum |abels

@ Verify that is unique!
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Action of twa creation operators on the vacuum: s-symmetrized two-particle state
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Quantum fields, symplectic-geometry, quantum charges

Deformed field operator acting on the Hilbert space: & =%

@ Symplectic-geometry charges as operators on F.(H)

: ¥ 3 3w T (/K

~ K

@ Mean value over |p >=b;|0 >= (0, 9. 0...)

o Energy-momentum dispersion-relation is modified

—
—

i
Q| = s tanh (=
E T

o Vacuum energy-momentum turns out to be finite.
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: 07120047




Toward a quantum FRW Universe: g-dS algebra and NCI

Flat noncommutative Classical curved space-time

space-time + Planck-scale noncommutativity

I
Planck-scale-induced energy no-interplay between Planck scale
dependence of speed of light effects and curvature effects
[m* = p"nuwd” + Fitat(Lp.p™)] (m* = p guup” + F(Lp.p")]

|

Noncommutative inflation

Interplay between curvature and Planck scale °

)

m= = p’gup” + F(A. Ly, p” )|

Quantization of a curved spacetime (dS) = quantization of symmetries (g-dS algebra)

. 0712004%
5

A. Amelino-Camelia, N.R. Bruno, G. Mandamici and A.M., to appear A.M. Caxhosiovak . P wol 55,1479 (2005).



Quantum fields, symplectic-geometry, quantum charges

Deformed field operator acting on the Hilbert space: & ="

e

@ Symplectic-geometry charges as operators on JF.(H)

: ¥ .3 —Xa " (i)

~ K

@ Mean value over |p >=b;|0 >= (0, ¢p, 0...)

o Energy-momentum dispersion-relation is modified

~ w il t;;,x
— K Tanh [ —
.

o Vacuum energy-momentum turns out to be finite.
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Toward a quantum FRW Universe: g-dS algebra and NCI

Flat noncommutative Classical curved space-time

space-time + Planck-scale noncommutativity

!
Planck-scale-induced energy no-interplay between Planck scale
dependence of speed of light effects and curvature effects
[m* = pP*uup” + Frtat(Lp. p")] [m* = P guup” + F(Lp.p")]

[l

4

Noncommutative inflation

Interplay between curvature and Planck scale °

by
m” = p’gup” + F(A. Ly, p%)|

Quantization of a curved spacetime (dS) = quantization of symmetries (g-dS algebra)

:0711()“4/5_
- A. Ameline-Camelia. N.R. Bruno, G. Mandanici and A.M., to appear; A.M. Czexhoslovak J.P wol.55,1479 (2005).




Inonu-Wigner contraction of g-dS in 2+1D

Q Assuming the relation between deformation parameter =, Planck-scale L, and dS
constant of curvature H

singular limit
in the zeroth order in H one obtains the

. f - I . i
x-Poincaré algebra in bicrossproduct basis
Poincare algebra in the zeroth order in H

(Classical de Sitter algebra up to second
order in H

Q@ Assuming the relation®

2IGE — ———
L&) +,_.1l

the s-Poincaré algebra is recovered in the limit of “flat space-time’” H — 0.

07120047 _ ].Lukierski, A.Nowicki, H Ruegg hep-th,9108018; S. Majid, H Ruegg PLE 334 1904
G. Amelino-Cameliz L Smelin A.Starodubtsev. Class. Quant. Grav.21 3005-3110, 2004




Conclusions

Physical characterization of x-Poincaré transformations in terms of Noether
charges for classical fields.

Fock space constructed. Next step: interacting theory. (See recent quantum
gravity models...)

Further developments of the quantization scheme...

Developing applications to cosmology. ..

: 07120047




