Title: Quantum fields and Noether charges for kappa-Minkowski

Date: Dec 07, 2007 11:00 AM

URL: http://pirsa.org/07120047

Abstract: There has been much interest, in the past few years, in the kappa-Poincare\'/kappa-Minkowski framework as a possible scenario for a deformation of Poincare\' symmetries at Planck scale. I will show how it is possible to give a physical characterization of the concept of quantum symmetries described by a nontrivial Hopf algebra. In particular, I will discuss the generalization of the Noether analysis for a scalar field in kappa-Minkowski space-time and derive conserved charges associated with each generator of the kappa-Poincare\' Hopf-algebra. Then I will report on a recent proposal for the quantization of a scalar field enjoying kappa-Poincare\' symmetries, which consists in a construction of the Fock-space of the theory consistent with the structure of deformed symmetries. Finally I will comment on possible applications of deformed symmetries scenarios in cosmology.

Pirsa: 07120047 Page 1/27

Outline

Motivations:

- quantum κ-Minkowski space-time and modification or breakdown of Poincaré symmetries
- the fate of Poincaré symmetries at Planck scale and q-dS space-time from a cosmological perspective
- Translation and Lorentz sector symmetries of κ-Minkowski NCST and Noether charges (classical fields)
- Quantum fields in κ-Minkowski
 - quantization and compatibilty with quantum symmetries
 - Noether charges
- Outlook
 - theory
 - phenomenology

Quantum space-time and relativistic symmetries

- Planck length L_p and quantum space-time S-T symmetries broken or deformed? (lengths transform non-trivially under boosts in Minkowski spacetime. About L_p ?)
- Various studies support the idea of L_p as a lower bound to any distance measurement. Various pictures of space-time at the Planck-scale:

NON-COMMUTATIVE, "FOAMY", DISCRETE...

1

Modification of classical symmetries could appear in the space-time quantization Deformation of the Poincaré algebra in one parameter proportional to the Planck scale

. ↓ ↓

some arguments within LQG N.C. S-T

V.C. S-T Some strings scenarios

NOT MERELY ACADEMIC

Low energy limit and first order correction to the symmetries (zero order test).

Phenomenology at the Planck scale (UHECR and GRB)

NCST and algebraic deformation: from Lie to Hopf algebras

An intuitive characterization

Algebra of functions on commutative S-T

NC algebra of functions on NC S-T

$$f(x) \cdot g(x) = g(x) \cdot f(x)$$

$$f(x) \cdot g(x) \neq g(x) \cdot f(x)$$

$$T[f(x) \cdot g(x)] = T[f(x)] \cdot g(x) + f(x) \cdot T[g(x)]$$

$$T[f(x) \cdot g(x)] = \sum_{i} [T_i^{(1)} f(x)] \cdot [T_i^{(2)} g(x)]$$

Deformed Lie algebras of S-T coordinates are linked to Hopf algebras of symmetries (deformed Lie algebras).

S-T (deformed Lie algebra)

< >

(deformed) Hopf algebra of symmetries

- Early 90's (Lukierski et al): use "quantum groups" (non-co-commutative Hopf algebra) to describe
 "quantization" of standard relativistic symmetries (analogous to Moyal quantization of Poisson manifolds:
 CM→QM)
- 1994 (Majid and Ruegg): κ-Poincaré and its relation to κ-Minkowski NCST

κ -Poincaré and κ -Minkowski NCST

NCST: a vast literature using the κ -Minkowski $/\kappa$ -Poincaré framework

$$[x_m, t] = \frac{i}{\kappa} x_m , \quad [x_m, x_l] = 0$$

Starting from NC complex exponential $e^{ip\hat{x}}$ reguarded as a Fourier basis

Fix a normal ordering for the coordinates (e.g. all time coordinates to the right)

$$: e^{ip\hat{x}} :_{R} \equiv e^{ip_{m}\hat{x}_{m}} e^{-ip_{0}\hat{x}_{0}}$$

Complex exponentials combine in a non-trivial way: using the BCH formula

$$(:e^{iq_1\hat{x}}:_R)(:e^{iq_2\hat{x}}:_R) =:e^{i(q_1+q_2)\hat{x}}:_R$$

where
$$q_1 \dot{+} q_2 = (q_1^0 + q_2^0; \vec{q}_1 + e^{-\frac{q_1^0}{\kappa}} \vec{q}_2)$$

Different orderings: equivalent descriptions of the same field!

$$: e^{ik\hat{x}} :_{S} = e^{-i\frac{k_{0}}{2}\hat{x}_{0}} e^{ik_{m}\hat{x}_{m}} e^{-i\frac{k_{0}}{2}\hat{x}_{0}} \qquad (k^{0}; \vec{k}) = (p^{0}; \vec{p}e^{+\frac{p^{0}}{2\kappa}})$$

Field on κ-Minkowski

:
$$\Phi(\hat{x}) := \int d^4q \tilde{f}(q) : e^{iq\hat{x}} :$$

κ -Poincaré symmetries

The action of Poincaré symmetries on such fields are well defined1:

Translations are "classical" on a single plane wave i.e.

$$P_{\mu} \triangleright : e^{ip\hat{x}} := p_{\mu} : e^{ip\hat{x}} :$$

Different κ -Poincaré basis acts on the same field in a different way...

$$P^s_{\mu} \triangleright : e^{ip\hat{x}} : \neq P_{\mu} \triangleright : e^{ip\hat{x}} :$$

What is going on?

- Boost are "deformed" and the same "ambiguity" in defining the action of generators appears
- Rotations are "classical"

¹ S. Majid, H. Ruegg, Phys. Lett. B334: 348-354,1994.

7 / 1 2 / 1 2

9.0-

Symmetries are characterized in terms of the infinitesimal variations of the fields

• In the κ -deformed case we also need to specify dx_{μ} s which must obey

$$[x_j + dx_j, x_0 + dx_0] = \frac{i}{\kappa} (x_j + dx_j), \quad [x_i + dx_i, x_j + dx_j] = 0$$

Insisting on the Leibnitz rule

$$df = idx_{\mu}P_{\mu}f(x)$$

Different P_{μ} bases leads² to the same df!

• κ -Klein-Gordon e.o.m. $C_{\kappa}(P_{\mu})\Phi=0$

Noether analysis for translations \Rightarrow 4 independent conserved charges (i.e. constants)

$$Q_{\mu}^{\kappa} = \int d^4p \, \frac{e^{3p_0/\kappa}}{2} p_{\mu} \tilde{\Phi}(p_0, \vec{p}) \tilde{\Phi}(-p_0, -e^{p_0/\kappa} \vec{p}) \frac{p_0}{|p_0|} \delta(C_{\kappa}(p_{\mu}))$$

0047

Symmetries are characterized in terms of the infinitesimal variations of the fields

• In the κ -deformed case we also need to specify dx_{μ} s which must obey

$$[x_j + dx_j, x_0 + dx_0] = \frac{i}{\kappa} (x_j + dx_j), \quad [x_i + dx_i, x_j + dx_j] = 0$$

Insisting on the Leibnitz rule

$$df = idx_{\mu}P_{\mu}f(x)$$

Different P_{μ} bases leads² to the same df!

• κ -Klein-Gordon e.o.m. $C_{\kappa}(P_{\mu})\Phi=0$

Noether analysis for translations \Rightarrow 4 independent conserved charges (i.e. constants)

$$Q_{\mu}^{\kappa} = \int d^4p \, \frac{e^{3p_0/\kappa}}{2} p_{\mu} \tilde{\Phi}(p_0, \vec{p}) \tilde{\Phi}(-p_0, -e^{p_0/\kappa} \vec{p}) \frac{p_0}{|p_0|} \delta(C_{\kappa}(p_{\mu}))$$

Symmetries are characterized in terms of the infinitesimal variations of the fields

• In the κ -deformed case we also need to specify dx_{μ} s which must obey

$$[x_j + dx_j, x_0 + dx_0] = \frac{i}{\kappa} (x_j + dx_j), \quad [x_i + dx_i, x_j + dx_j] = 0$$

Insisting on the Leibnitz rule

$$df = idx_{\mu}P_{\mu}f(x)$$

Different P_{μ} bases leads² to the same df!

• κ -Klein-Gordon e.o.m. $C_{\kappa}(P_{\mu})\Phi=0$

Noether analysis for translations \Rightarrow 4 independent conserved charges (i.e. constants)

$$Q_{\mu}^{\kappa} = \int d^4p \, \frac{e^{3p_0/\kappa}}{2} p_{\mu} \tilde{\Phi}(p_0, \vec{p}) \tilde{\Phi}(-p_0, -e^{p_0/\kappa} \vec{p}) \frac{p_0}{|p_0|} \delta(C_{\kappa}(p_{\mu}))$$

A. Agostini, G. Amelino-Camelia, M. Arzano, A. M., R. A. Tacchi, Mod. Phys. Lett. A22: 1779-1786, 2006.

κ -Poincaré symmetries

The action of Poincaré symmetries on such fields are well defined1:

Translations are "classical" on a single plane wave i.e.

$$P_{\mu} \triangleright : e^{ip\hat{x}} := p_{\mu} : e^{ip\hat{x}} :$$

Different κ -Poincaré basis acts on the same field in a different way...

$$P^s_{\mu} \triangleright : e^{ip\hat{x}} : \neq P_{\mu} \triangleright : e^{ip\hat{x}} :$$

What is going on?

- Boost are "deformed" and the same "ambiguity" in defining the action of generators appears
- Rotations are "classical"

1 S. Majid, H. Ruegg, Phys. Lett. B334: 348-354,1994.
A. Agostini, G. Amelino-Camelia, F. D'Andrea Int. J. Mod. Phys. A19: 5187-5220, 2004

Page

A CONTRACTOR OF THE CONTRACTOR

κ -Poincaré and κ -Minkowski NCST

NCST: a vast literature using the κ -Minkowski $/\kappa$ -Poincaré framework

$$[x_m, t] = \frac{i}{\kappa} x_m , \quad [x_m, x_l] = 0$$

Starting from NC complex exponential $e^{ip\hat{x}}$ reguarded as a Fourier basis

Fix a normal ordering for the coordinates (e.g. all time coordinates to the right)

$$: e^{ip\hat{x}} :_{R} \equiv e^{ip_{m}\hat{x}_{m}} e^{-ip_{0}\hat{x}_{0}}$$

Complex exponentials combine in a non-trivial way: using the BCH formula

$$(:e^{iq_1\hat{x}}:_R)(:e^{iq_2\hat{x}}:_R) =:e^{i(q_1+q_2)\hat{x}}:_R$$

where
$$q_1 \dot{+} q_2 = (q_1^0 + q_2^0; \vec{q}_1 + e^{-\frac{q_1^0}{\kappa}} \vec{q}_2)$$

Different orderings: equivalent descriptions of the same field!

$$: e^{ik\hat{x}} :_{S} \equiv e^{-i\frac{k_{0}}{2}\hat{x}_{0}} e^{ik_{m}\hat{x}_{m}} e^{-i\frac{k_{0}}{2}\hat{x}_{0}} \qquad (k^{0}; \vec{k}) = (p^{0}; \vec{p}e^{+\frac{p^{0}}{2\kappa}})$$

Field on κ-Minkowski

$$:\Phi(\hat{x}):=\int d^4q\tilde{f}(q):e^{iq\hat{x}}:$$

κ -Poincaré symmetries

The action of Poincaré symmetries on such fields are well defined¹:

Translations are "classical" on a single plane wave i.e.

$$P_{\mu} \triangleright : e^{ip\hat{x}} := p_{\mu} : e^{ip\hat{x}} :$$

Different κ -Poincaré basis acts on the same field in a different way...

$$P^s_{\mu} \triangleright : e^{ip\hat{x}} : \neq P_{\mu} \triangleright : e^{ip\hat{x}} :$$

What is going on?

- Boost are "deformed" and the same "ambiguity" in defining the action of generators appears
- Rotations are "classical"

1 S. Majid, H. Ruegg, Phys. Lett. B334: 348-354,1994. A. Agostini, G. Amelino-Camelia, F. D'Andrea Int. J. Mod. Phys. A19: 5187-5220, 2004

Page

Symmetries are characterized in terms of the infinitesimal variations of the fields

• In the κ -deformed case we also need to specify dx_{μ} s which must obey

$$[x_j + dx_j, x_0 + dx_0] = \frac{i}{\kappa} (x_j + dx_j), \quad [x_i + dx_i, x_j + dx_j] = 0$$

Insisting on the Leibnitz rule

$$df = idx_{\mu}P_{\mu}f(x)$$

Different P_{μ} bases leads² to the same df!

• κ -Klein-Gordon e.o.m. $C_{\kappa}(P_{\mu})\Phi=0$

Noether analysis for translations \Rightarrow 4 independent conserved charges (i.e. constants)

$$Q_{\mu}^{\kappa} = \int d^4p \, \frac{e^{3p_0/\kappa}}{2} p_{\mu} \tilde{\Phi}(p_0, \vec{p}) \tilde{\Phi}(-p_0, -e^{p_0/\kappa} \vec{p}) \frac{p_0}{|p_0|} \delta(C_{\kappa}(p_{\mu}))$$

A. Agostini, G. Amelino-Camelia, M. Arzano, A. M., R. A. Tacchi, Mod. Phys. Lett. A22: 1779-1786, 2006

Page

2. 1119-1100, 2000.

Symmetries and symplectic geometry of κ -fields

As an alternative strategy [M. Arzano and A.M., Phys. Rev. D 75, 081701 (2007)]

- Key point: $\{\phi(x); \pi(x)\} \in \Gamma \longleftrightarrow \Phi \in S$ identify the phase space Γ with the space of solutions of the equation of motion S
- ullet On ${\mathcal S}$ is defined a symplectic 2-form ω

Our strategy:

- (i) use a map \mathfrak{m} between S and S_{κ} to define a symplectic structure on S_{κ}
- (ii) express the conserved charges associated with κ -symmetries through the symplectic structure

Noether charges associated with translations can be written as

$$Q_{\mu}^{\kappa} = \frac{1}{2}(\Phi, P_{\mu} \rhd \Phi)$$

One gets the same κ -Noether charges Q_{μ}^{κ} ! with a bonus... an inner product³

$$(\Phi_1, \Phi_2)_{\kappa} = \int \frac{d^4p}{(2\pi)^3} \; \delta(\mathcal{C}_{\kappa}(p)) \; \mathrm{sign}\Big(e^{\frac{p_0}{\kappa}} - 1\Big) \; e^{\frac{3p_0}{\kappa}} \; \tilde{\Phi^*}_1(\dot{-}p) \tilde{\Phi}_2(p) \; .$$

Where the antipode $\dot{-}p = (p_0, \vec{pe} \stackrel{p_0}{\kappa})$

Lorentz sector and Noether charges for classical fields

- Rotation transformations act as classically (trivial co-algebraic structure)
 - Infinitesimal parameters σ_j commute with x_μ
 - None ambuity in the definition of infinitesimal rotations
 - Noether analysis ⇒ 3 independent conserved charges⁴

$$Q_j^R = \frac{i}{2} \int d^4k \, \frac{\tilde{k}_0}{|\tilde{k}_0|} \, e^{2\lambda k_0} \, \tilde{\Phi}(-k_0, -e^{\lambda k_0} \vec{k}) \epsilon_{jlm} k_m \, \frac{\partial \tilde{\Phi}(k)}{\partial k_l} \delta(\tilde{k}^2)$$

- Boosts transformations are highly non-trivial (action and co-algebra "deformed")
 - No infinitesimal parameters τ_j 's acting by associative multiplication on the x_μ 's. No pure boost
 - Consider whole Lorentz sector (τ_i and σ_j noncommutative)
 - Noether analysis ⇒ 3 independent conserved charges

$$Q_j^N = \frac{i}{2} \int d^4k \frac{\tilde{k}_0 e^{\lambda k_0}}{|\tilde{k}_0|} \tilde{\Phi}(-k_0, -e^{\lambda k_0} \vec{k}) \left\{ k_j \frac{\partial \tilde{\Phi}(k)}{\partial k_0} + \frac{\partial}{\partial k_j} \left[\left(\frac{1 - e^{-2\lambda k_0}}{2\lambda} - \frac{\lambda}{2} |\vec{k}|^2 \right) \tilde{\Phi}(k) \right] - \lambda k_j \tilde{\Phi}(k) \right\}$$

G. Amelino-Camelia, G. Gubitosi, A. M., P. Martinetti, F. Mercati 0707.1863 [hep-th]

Page

Intermission

 Most interest in κ-Minkowski/κ-Poincaré scenarios from the "phenomenological" side: deformations of energy-momentum dispersion relation and deformed Casimir

$$C_{\kappa} = \left(2\kappa \sinh\left(\frac{P_0}{2\kappa}\right)\right)^2 - \vec{P}^2 e^{\frac{P_0}{\kappa}}$$

testable predictions (e.g. time-of-flight tests using GRB..)

- HOWEVER ambiguity in defining the action for generators of translations has been cause for concern in the recent past...
- First results in defining translations un-ambigously and the Noether charges obeying deformed dispersion relation⁵
- At least two different choices: 4D and 5D differential calculus. Discussion on still vivid. Key point: covariance under Hopf-algebras of symmetries: bi-covariance
- All this was done with classical fields...need quantum fields...

A. Agostini, G. Amelino-Camelia, M. Arzano, A.M., R. A. Tacchi, Mod. Phys. Lett. A22: 1779-1786, 2007.

Quantization: κ -Fock space and κ -Poincaré-symmetries I

Based on [M. Arzano and AM, Phys. Rev. D 76, 125005 (2007)]

Assume the physical Hilbert space to be a deformation of the standard bosonic $\mathcal{F}(\mathcal{H})$

"One-particle" κ -Hilbert space of a free quantum (scalar) field theory:

- Complexification of the solutions' space of the κ -deformed EOM $S_{\kappa}^{\mathbb{C}}$
- Turn $\mathcal{S}_{\kappa}^{\mathbb{C}}$ into a Hilbert Space by " κ -deformed" inner product
- For modes on the "positive energy" mass-shell $(\omega^+(\vec{k}))$ with $|\vec{k}| > \kappa$ the inner product is no longer positive definite! Restrict to the subspace $\mathcal{S}^{\kappa+}_{|\vec{k}| \leq \kappa} \subset \mathcal{S}^{\kappa}$.

Mode components are truncated at the Planck scale κ . Our κ -one particle Hilbert space \mathcal{H}_{κ} will be defined by the completion of $\mathcal{S}^{\kappa+}_{|\vec{k}| \leq \kappa} \subset \mathcal{S}^{\kappa}$ in the inner product.

- Consider the (normalized) plane wave basis $\{\phi^+_{\vec{p}}\}$ of $\mathcal{S}^{\kappa+}_{|\vec{k}|\leq\kappa}\subset\mathcal{S}^{\kappa}$.
- Characterize b^{\dagger} and b relative to this specific basis in terms of their action on the vacuum state they single out in $\mathcal{F}_{\kappa}(\mathcal{H})$.

Page

Quantization: κ -Fock space and κ -Poincaré-symmetries II

 κ -bosonic Fock space: consider first the two-mode tensor product states Compatibility with symmetries:

$$Y \blacktriangleright (a \circ b) = \circ [\Delta Y \blacktriangleright (a \otimes b)] = \sum (Y_{(1)} \blacktriangleright a) \circ (Y_{(2)} \blacktriangleright b)$$

- $P_{\mu} \triangleright \phi_{\vec{p}} \otimes \phi_{\vec{q}} = (p + q)_{\mu} \phi_{\vec{p}} \otimes \phi_{\vec{q}}$
- Look for momentum labels $\sigma_{12}^{\kappa}(\vec{p})$ and $\sigma_{12}^{\kappa}(\vec{q})$ such that

$$P_{\mu} \triangleright \left[\phi_{\sigma_{12}^{\kappa}(\vec{q})} \otimes \phi_{\sigma_{12}^{\kappa}(\vec{p})}\right] = (p + q)_{\mu} \left[\phi_{\sigma_{12}^{\kappa}(\vec{q})} \otimes \phi_{\sigma_{12}^{\kappa}(\vec{p})}\right]$$

No standard "flip" of momentum labels

Verify that is unique!

$$\sigma_{12}^{\kappa}(\vec{q}) = \tilde{q} = (\tilde{q}_0; \, \vec{q} \, e^{-p_0/\kappa})$$
 $\sigma_{12}^{\kappa}(\vec{p}) = \tilde{p} = (\tilde{p}_0; \, \vec{p} \, e^{\tilde{q}_0/\kappa})$

with
$$\tilde{q}_0 = \omega^+(\vec{q}\,e^{-\omega^+(\vec{p})/\kappa})$$
 and $\tilde{p}_0 = \omega^+(\vec{p}\,e^{\tilde{q}_0/\kappa})$ and $\omega^+(\vec{p}) = -\kappa\log(1-|\vec{p}|/\kappa)$.

Action of two creation operators on the vacuum: κ -symmetrized two-particle state

$$b_p^\dagger \star b_q^\dagger |\hspace{.06cm} 0> = (0,0,1/\sqrt{2}(\phi_p \otimes \phi_q + \phi_{\tilde{q}} \otimes \phi_{\tilde{p}}),0,\ldots) = b_{\tilde{q}}^\dagger \star b_{\tilde{p}}^\dagger |\hspace{.06cm} 0>$$

Page

No Signal VGA-1

Pirsa: 07120047 Page 19/27

No Signal VGA-1

Pirsa: 07120047 Page 20/27

No Signal VGA-1

Pirsa: 07120047 Page 21/27

Quantum fields, symplectic-geometry, quantum charges

Deformed field operator acting on the Hilbert space: $\hat{\Phi} = \sum_{\vec{p},\,|\vec{p}| \leq \kappa} \left(\phi_p b_{\vec{p}} + \bar{\phi}_p b_{\vec{p}}^{\dagger} \right)$

• Symplectic-geometry charges as operators on $\mathcal{F}_{\kappa}(\mathcal{H})$

$$\hat{Q}_{\mu} = \frac{1}{2} \sum_{\vec{p}, |\vec{p}| \le \kappa} \left[p_{\mu} b_{\vec{p}}^{\dagger} \star b_{\vec{p}} - e^{-3\omega^{+}(\vec{p})/\kappa} (\dot{-} p_{\mu}) b_{\vec{p}} \star b_{\vec{p}}^{\dagger} \right]$$

- Mean value over $|p>=b_p^{\dagger}|0>=(0, \phi_p, 0...)$
 - Energy-momentum dispersion-relation is modified

$$|\vec{Q}| = \kappa \tanh\left(\frac{Q_0}{\kappa}\right)$$

Vacuum energy-momentum turns out to be finite.

$$Q_{\mu}^{Vac} = -\frac{1}{2} \left(\sum_{\vec{k}, |\vec{k}| \le \kappa} e^{-3\frac{\omega^{+}(\vec{k})}{\kappa}} (\dot{-}k_{\mu}^{+}) \right)$$

Toward a quantum FRW Universe: q-dS algebra and NCI

Flat noncommutative space-time

1

Planck-scale-induced energy dependence of speed of light $[m^2 = p^{\mu} \eta_{\mu\nu} p^{\nu} + F_{flat}(L_p, p^{\alpha})]$

Classical curved space-time
+ Planck-scale noncommutativity

1

no-interplay between Planck scale effects and curvature effects $[m^2=p^\mu g_{\mu\nu}p^\nu+F(L_p,p^\alpha)]$

Noncommutative inflation

Interplay between curvature and Planck scale 6

$$[m^2 = p^{\mu}g_{\mu\nu}p^{\nu} + F(\Lambda, L_p, p^{\alpha})]$$

Quantization of a <u>curved</u> spacetime (dS) \Rightarrow quantization of symmetries (q-dS algebra)

Quantum fields, symplectic-geometry, quantum charges

Deformed field operator acting on the Hilbert space: $\hat{\Phi} = \sum_{\vec{p},\,|\vec{p}| \leq \kappa} \left(\phi_p b_{\vec{p}} + \bar{\phi}_p b_{\vec{p}}^{\dagger} \right)$

• Symplectic-geometry charges as operators on $\mathcal{F}_{\kappa}(\mathcal{H})$

$$\hat{Q}_{\mu} = \frac{1}{2} \sum_{\vec{p}, |\vec{p}| < \kappa} \left[p_{\mu} b_{\vec{p}}^{\dagger} \star b_{\vec{p}} - e^{-3\omega^{+}(\vec{p})/\kappa} (\dot{-} p_{\mu}) b_{\vec{p}} \star b_{\vec{p}}^{\dagger} \right]$$

- Mean value over $|p>=b_p^{\dagger}|0>=(0,\,\phi_p,\,0...)$
 - Energy-momentum dispersion-relation is modified

$$|\vec{Q}| = \kappa \tanh\left(\frac{Q_0}{\kappa}\right)$$

Vacuum energy-momentum turns out to be finite.

$$Q_{\mu}^{Vac} = -\frac{1}{2} \left(\sum_{\vec{k}, \, |\vec{k}| \le \kappa} e^{-3\frac{\omega^{+}(\vec{k})}{\kappa}} (\dot{-}k_{\mu}^{+}) \right)$$

Toward a quantum FRW Universe: q-dS algebra and NCI

Flat noncommutative space-time

1

Planck-scale-induced energy dependence of speed of light $[m^2 = p^{\mu} \eta_{\mu\nu} p^{\nu} + F_{flat}(L_p, p^{\alpha})]$

Classical curved space-time
+ Planck-scale noncommutativity

1

no-interplay between Planck scale effects and curvature effects $[m^2 = p^{\mu}g_{\mu\nu}p^{\nu} + F(L_p,p^{\alpha})]$

Ų.

Noncommutative inflation

Interplay between curvature and Planck scale 6

$$[m^2 = p^{\mu}g_{\mu\nu}p^{\nu} + F(\Lambda, L_p, p^{\alpha})]$$

1

Quantization of a <u>curved</u> spacetime (dS) \Rightarrow quantization of symmetries (q-dS algebra)

Inönü-Wigner contraction of q-dS in 2+1D

① Assuming the relation between deformation parameter z, Planck-scale L_p and dS constant of curvature H

$$z = (L_p H)^{\alpha}, \qquad \alpha \in \mathbb{R}$$

$$H \rightarrow 0$$
 limit

- $\alpha < 1$ \Rightarrow singular limit
- $\alpha = 1$ \Rightarrow in the zeroth order in H one obtains the κ -Poincaré algebra in bicrossproduct basis ⁷
- $1 < \alpha < 3$ \Rightarrow Poincaré algebra in the zeroth order in H
- $\alpha > 3$ \Rightarrow Classical de Sitter algebra up to second order in H
- Assuming the relation⁸

$$z_{LQG} = \frac{2\pi}{2 + \frac{1}{L_v H}}$$

the κ -Poincaré algebra is recovered in the limit of "flat space-time" $H \to 0$.

G. Amelino-Camelia L.Smolin A.Starodubtsev.Class.Quant.Grav.21 3095-3110, 2004

⁷ J.Lukierski, A.Nowicki, H.Ruegg hep-th/9108018; S. Majid, H.Ruegg PLB 334 ,1994

Conclusions

- Physical characterization of κ-Poincaré transformations in terms of Noether charges for classical fields.
- Fock space constructed. Next step: interacting theory. (See recent quantum gravity models...)
- Further developments of the quantization scheme...
- Developing applications to cosmology...