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Introduction to the

Foundations of Quantum Theory

* Why the quanta? How do we make sense of the
occurrence of quantum phenomena.

- What are the properties of a phenomena that makes
it quantum?

— What kind of physical process can possibly account
for such properties?

- How does the everyday classical world co-exist with
quantum phenomena?

— ...and could it be different?

* With conceptual c/arity and precision!
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A superposition is not a statistical ensembie

Arsniepduction To Young Researchers Conference Page 15/148
Quantum Foundations



Quantum phenomena : interferometry

-l fim
T = - =
— - I
- - -
:.F--:'“ -
o -
2 - o
.>_'/ - -
- - - 'ﬂ
--. L
iy o
- - -

Arsaniopduction To Young Researchers Conference Page 16/148
Quantum Foundations



Quantum phenomena : interferometry

i ol Hiaiadd T
- K e
=" -
T T - - s
._f}-- H"i._'" i - e
= s -
" o L
=4 i I
. ; - e N = -
- o =
Aisaloifoerduction To Young Researchers Conference Page 17/148

Quantum Foundations



Quantum phenomena : interferometry

--------
-------
- i
- e

fld—ob,)
=<| . ._.-"' ' i d |
.>\'_. ----- . - ' f
oF
Arsniopduction To Young Researchers Conference Page 18/148

Quantum Foundations



Quantum phenomena : interferometry

v, O =T - -
<" il j b —P }
g || ./_T_.i - I d !

“In any attempt of a pictorial representation of the behaviour of the photon
we would, thus, meet with the difficuity: to be obliged to say, on the one hand.
that the photon always chooses one of the two ways and, on the other hand,

that it behaves as if it had passed both ways.” Bohr
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Information about which path destroys interference.
. . -parti ity?
Optical QED Cavity Wave-particle duality”
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Delayed choice as to whether the quanta is a particle or wave?
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Wave and particle at the same time?
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Delayed choice as to whether the quanta is a particle or wave?
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Wave and particle at the same time?
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Delayed choice as to whether the quanta is a particle or wave?
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Low intensity
coherent lasers

One photon
at a time
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How to test a for dud bombs
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Low intensity
coherent lasers

One photon
at a time
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How to test a for dud bombs
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.. without destroying a good bomb?
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Superposition is still not a statistical ensemble, even when it's an entangled superposition.
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Suppose we prepare a system to be in a particular quantum state: ‘I [

A measuring device is intended to tell us it is in that state.
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Suppose we prepare a system to be in a particular quantum state: ‘I [

A measuring device is intended to tell us it is in that state.

It starts in some reference state: ‘O

Arsalniopduction To Young Researchers Conference Page 67/148
Quantum Foundations



The Measurement Problem!

Suppose we prepare a system to be in a particular quantum state: ‘I [

A measuring device is intended to tell us it is in that state.

It starts in some reference state: 0
then interacts 11 ‘0 — ‘ 11 ‘ [/
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Suppose we prepare a system to be in a particular quantum state: ‘I [

A measuring device is intended to tell us it is in that state.

It starts in some reference state: 0
then interacts 1/ ‘() — ‘ 11 ‘ LS
so that the measuring device state corresponds to ‘ []

something like a big pointer pointing at the letter “U”
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The Measurement Problem!

Suppose we prepare a system to be in a particular quantum state: ‘I [

A measuring device is intended to tell us it is in that state.

It starts in some reference state: 0
then interacts 1/ ‘() — ‘ 11 ‘ [/
so that the measuring device state corresponds to ‘ []

something like a big pointer pointing at the letter “U”

We also want it to interact with a different state: ‘d
so that the measuring device output state corresponds to
something like a big pointer pointing at the letter “D” ‘d ‘0 —3 ‘d ‘D |
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The Measurement Problem!

Suppose we prepare a system to be in a particular quantum state: ‘I [

A measuring device is intended to tell us it is in that state.

It starts in some reference state: 0
then interacts 1/ ‘() — ‘ 11 ‘ [/
so that the measuring device state corresponds to ‘ []

something like a big pointer pointing at the letter “U”

We also want it to interact with a different state: ‘d
so that the measuring device output state corresponds to
something like a big pointer pointing at the letter “D” |d ‘0 —3 ‘d ‘D

But unitary evolution is linear. so that means:
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The Measurement Problem!

Suppose we prepare a system to be in a particular quantum state: ‘l [

A measuring device is intended to tell us it is in that state.

It starts in some reference state: 0
then interacts 1/ ‘() — ‘ 14 ‘ [/
so that the measuring device state corresponds to ‘ []

something like a big pointer pointing at the letter “U

We also want it to interact with a different state: ‘d
so that the measuring device output state corresponds to
something like a big pointer pointing at the letter “D” |d ‘0 —3 ‘d ‘D

But unitary evolution is linear. so that means:

—L‘u —f—‘d +‘O — — ‘u ‘U —i—‘d ‘D
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The Measurement Problem!

Suppose we prepare a system to be in a particular quantum state: ‘I [

A measuring device is intended to tell us it is in that state.

It starts in some reference state: 0
then interacts 1/ ‘0 ‘E —% ‘ 1/ ‘LT ‘E d
so that the measuring device state corresponds to ‘ []

something like a big pointer pointing at the letter “U

We also want it to interact with a different state: ‘d
so that the measuring device output state corresponds to

something like a big pointer pointing at the letter "D~ ‘d ‘0 ‘E 5 ‘d ‘D ‘E r o
But unitary evolution is linear. so that means:

—1‘11 +|d))|0)| E)—— ‘u U

E')+|d)|D|E"")
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The Measurement Problem!
| P

Unitary evolution gives: | ‘” ‘LT 55 ‘d ‘D "| (which is not a statistical mix)

P —

v 2
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The Measurement Problem!
|

Unitary evolution gives: i ‘LT £ ]d ‘D | (which is not a statistical mix)

What occurs is |£f ‘C‘r or d ‘D (which /s a statistical mix)
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The Measurement Problem!
|

Unitary evolution gives: iy ‘LT A )d ‘D | (which is not a statistical mix)

What occurs is ltf ‘C‘r or d ‘D (which is a statistical mix)

The superposition really is the actual state of the world. Both ocutcomes do occur.
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The Measurement Problem!
|

Unitary evolution gives: 14 ‘LT kS ’d ‘D | (which is not a statistical mix)

What occurs is ‘H ‘L‘r or d ‘D (which /s a statistical mix)

Arlnteoduction to Young Researchers Conference Page 77/148
Quantum Foundations



The Measurement Problem!
| BF

Unitary evolution gives: | ‘” ‘LT 3 [d ‘D "| (which is not a statistical mix)
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The Measurement Problem!
|

Unitary evolution gives: ay ‘LT A ]d ‘D | (which is not a statistical mix)

What occurs is 1!! ‘L‘r or d ‘D (which is a statistical mix)

* The superposition really is the actual state of the world. Both cutcomes do occur.
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The Measurement Problem!

1

Unitary evolution gives: |

V2

What occurs is ‘H ‘C‘r or

1/ ‘[] +jd ‘D | (which is not a statistical mix)

d ‘D (which /s a statistical mix)

* The superposition really is the actual state of the world. Both cutcomes do occur.

* Many Worlds. Qur perception splits inte two, one perceiving U, one D.
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The Measurement Problem!
|

Unitary evolution gives: [z ‘LT A Id ‘D | (which is not a statistical mix)

What occurs is ‘Ef ‘[x‘r or d ‘D (which is a statistical mix)

* The superposition really is the actual state of the world. Both cutcomes do occur.
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The Measurement Problem!
|

Unitary evolution gives: 1 ‘LT ES ld ‘D ] (which is not a statistical mix)

V2

What occurs is |H ‘C‘r or d ‘D (which is a statistical mix)

The superposition really is the actual state of the world. Both ocutcomes do occur.

* Many Worlds. Qur perception splits inte two, one perceiving U, one D.
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The Measurement Problem!
|

Unitary evolution gives: 1 ‘LT 3 id ‘D | (which is not a statistical mix)

P T—

V2

What occurs is |H ‘C‘r or d ‘D (which /s a statistical mix)

* The superposition really is the actual state of the world. Both cutcomes do occur.

* Many Worlds. Qur perception splits inte two, one perceiving U, one D.

* The superposition really is the actual state of the world, but there is extra structure as well.
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The Measurement Problem!
|

Unitary evolution gives: E 24 ‘LT 3 |d ‘D | (which is not a statistical mix)
N

What occurs is |Z! ‘[/r or d ‘D (which is a statistical mix)

* The superposition really is the actual state of the world. Both cutcomes do occur.

* Many Worlds. Qur perception splits inte two, one perceiving U, one D.

* The superposition really is the actual state of the weorld, but there is extra structure as well.

* Hidden Variables. The hidden variables determines whether the U or D outcome has
occurred.
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The Measurement Problem!
|

Unitary evolution gives: 14 ‘LT E3 }d ‘D | (which is not a statistical mix)

What occurs is ilf ‘[/r or d ‘D (which is a statistical mix)

* The superposition really is the actual state of the world. Both outcomes do occur.

* Many Worlds. QOur perception splits intec two, one perceiving U, one D.

* The superposition really is the actual state of the werld, but there is extra structure as well.

* Hidden Variables. The hidden variables determines whether the U or D outcome has
occurred.

*  Unitary evolution is not right, so that the state of the world is actually U or D.
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The Measurement Problem!
|

Unitary evolution gives: 14 ‘LT ES 16{ | ‘D ] (which is not a statistical mix)

What occurs is lli ‘Cr or d ‘D (which is a statistical mix)

* The superposition really is the actual state of the world. Both outcomes do occur.

* Many Worlds. Qur perception splits intec two, one perceiving U, one D.

* The superposition really is the actual state of the werld, but there is extra structure as well.

* Hidden Variables. The hidden variables determines whether the U or D outcome has
occurred.

* Unitary evolution is not right, se that the state of the world is actually U or D

* Objective collapse. In principle leads to different predictions to quantum theory.
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The Measurement Problem!
|

Unitary evolution gives: i ‘LT ES l d ‘ D | (which is not a statistical mix)

What occurs is IH ‘U or d ‘D (which /s a statistical mix)

* The superposition really is the actual state of the world. Both cutcomes do occur.

* Many Worlds. Qur perception splits inte two, one perceiving U, one D.

* The superposition really is the actual state of the weorld, but there is extra structure as well.

* Hidden Variables. The hidden variables determines whether the U or D outcome has
occurred.

* Unitary evolution is not right, so that the state of the world is actually U or D

* Objective collapse. In principle leads to different predictions to quantum theory.

* The wavefunction does not represent the state of the world, at all.

Arsniopduction To Young Researchers Conference Page 87/148
Quantum Foundations



The Measurement Problem!
|

Unitary evolution gives: i ‘LT S l d ‘ D ] (which is not a statistical mix)

What occurs is IH ‘[/r or d ‘D (which /s a statistical mix)

* The superposition really is the actual state of the world. Both cutcomes do occur.

* Many Worlds. Qur perception splits inte two, one perceiving U, one D.

* The superposition really is the actual state of the werld, but there is extra structure as well.

* Hidden Variables. The hidden variables determines whether the U or D outcome has
occurred.

* Unitary evolution is not right, so that the state of the world is actually U or D

* Objective collapse. In principle leads to different predictions to quantum theory.

* The wavefunction does not represent the state of the world, at all.

* No microscopic reality at all. Just observers and measuring apparatus, (which is actually
pointing to U or D).
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The Measurement Problem!
|

Unitary evolution gives: 1" ‘LT A I d ‘ D | (which is not a statistical mix)

R N—

V2

What occurs is lt! ‘Cr or d ‘D (which is a statistical mix)

* The superposition really is the actual state of the world. Both outcomes do occur.

* Many Worlds. QOur perception splits intc two, one perceiving U, one D.

* The superposition really is the actual state of the werld, but there is extra structure as well.

* Hidden Variables. The hidden variables determines whether the U or D outcome has
occurred.

* Unitary evolution is not right, so that the state of the world is actually U or D

» Objective collapse. In principle leads to different predictions to quantum theory.

* The wavefunction does notrepresent the state of the world, at all.

* No microscopic reality at all. Just observers and measuring apparatus, (which is actually
pointing to U or D).

* There is a microscopic reality but inaccessible. The microscopic reality determines whether
the U or D outcome has occurred.
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The non-locality question

1935: Einstein Podolsky and Rosen point out the following:

Arsalriopduction To Young Researchers Conference Page 90/148
Quantum Foundations



The non-locality question

1935: Einstein Podolsky and Rosen point out the following:

Aralnteoduction to Young Researchers Conference Page 91/148
Quantum Foundations



The non-locality question

1935: Einstein Podolsky and Rosen point out the following:
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The non-locality question

1935: Einstein Podolsky and Rosen point out the following:
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If | measure the left location (v or d) of the left hand particle, it is always
correlated to the location (d or u) of the right hand particle.
If | find the left hand particle in the v channel,
the right hand particle is determinately in the d channel.
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The non-locality question
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If | measure the left location (v or d) of the left hand particle, it is always
correlated to the location (d or u) of the right hand particle.
If | find the left hand particle in the v channel,
the right hand particle is determinately in the d channel.

Either:
The right hand particle was already determinately to be found in the d channel
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The non-locality question

1935: Einstein Podolsky and Rosen point out the following:
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If | measure the left location (v or d) of the left hand particle, it is always
correlated to the location (d or u) of the right hand particle.
If | find the left hand particle in the u channel,
the right hand particle is determinately in the d channel.

Either:
The right hand particle was already determinately to be found in the d channel

Or:

The act of measuring the left hand particle makes it determinate
that the right hand particle is to be found in the d channel.
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The non-locality question

1935: Einstein Podolsky and Rosen point out the following:
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If | measure the left location (v or d) of the left hand particle, it is always
correlated to the location (d or u) of the right hand particle.
If | find the left hand particle in the u channel.
the right hand particle is determinately in the d channel.

Either:
The right hand particle was already determinately to be found in the d channel

Or:

The act of measuring the left hand particle makes it determinate
that the right hand particle is to be found in the d channel.

As the second possibility is non-focal. EPR opt for the first
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The non-locality question

1963: Bell points out the following:
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The non-locality question

1963: Bell points out the following:

Any theory that reproduces the perfect anti-correlations of quantum theory
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The non-locality question

1963: Bell points out the following:

Any theory that reproduces the perfect anti-correlations of quantum theory
AND
has locally predetermined outcomes
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The non-locality question

1963: Bell points out the following:

Any theory that reproduces the perfect anti-correlations of quantum theory
AND
has locally predetermined outcomes
MUST
satisfy an inequality of the form:
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The non-locality question

1963: Bell points out the following:

Any theory that reproduces the perfect anti-correlations of quantum theory
AND
has locally predetermined outcomes
MUST
satisfy an inequality of the form:

1+ P(b,c)=|P(a.b)+P(a,c)
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The non-locality question

1963: Bell points out the following:
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Any theory that reproduces the perfect anti-correlations of quantum theory
AND
has locally predetermined outcomes
MUST

satisfy an inequality of the form:

14+ P(b,c)=|P(a,b)+Pl(a,c)

As quantum theory does not satisfy this equality for the singlet state, Bell concludes
from this and EPR that quantum theory is irreducibly, ineliminably, unequivocally
non-local.
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The non-locality question

1969: Clauser, Holt, Horne, Shimony derive a more general inequality,
also violated by the singlet state in quantum theory:

\E(a.b)+E(a,b')|+|E(a’,b)—E(a’,b’)

=2
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The non-locality question

1969: Clauser, Holt, Horne, Shimony derive a more general inequality,
also violated by the singlet state in quantum theory:

\E(a,b)+E(a,b’)|+|E(a’.b)—E(a’.b’)

<=7

Derivations of the CHHS inequality have been made using a variety of separate assumptions:
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The non-locality question

1969: Clauser, Holt, Horne, Shimony derive a more general inequality,
also violated by the singlet state in quantum theory:

\E{a.b)+E(a,b")|+|E(a’,b)—E(a’,b’)

<2

Derivations of the CHHS inequality have been made using a variety of separate assumptions:

- Locality and Completeness
- Local Realism

- Local Causality

- Stochastic Einstein Locality
cle.....
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The non-locality question

1969: Clauser, Holt, Horne, Shimony derive a more general inequality,
also violated by the singlet state in quantum theory:

\E{a.b)+E(a,b")|+|E(a’,b)—E(a’,b')|<2

Derivations of the CHHS inequality have been made using a variety of separate assumptions:

- Locality and Completeness (Of particular note, in 1976

- Local Realism __ Bell rederived the CHSH

- Local Causality «————— inequality without reference to

- Stochastic Einstein Locality quantum theory, hidden

etc.. .. variables or anything like that)
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The non-locality question

1969: Clauser, Holt, Horne, Shimony derive a more general inequality,
also violated by the singlet state in quantum theory:

|E(a,b)+E(a,b’)|+|E(a’,b)—E(a’,b'")|<2

Derivations of the CHHS inequality have been made using a variety of separate assumptions:

- Locality an.d Completeness (Of particular note. in 1976

- Local Realism _ Bell rederived the CHSH

- Local Causality «————— inequality without reference to
- Stochastic Einstein Locality guantum theory, hidden
etc.. .. variables or anything like that)

Quantum mechanics is incompatible with each of these conjunctions of assumptions!
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The non-locality question

1969: Clauser, Holt, Horne, Shimony derive a more general inequality,
also violated by the singlet state in quantum theory:

\E{a.b)+E(a,b')|+|E(a’.,b)—E(a’,b’)

=7

Derivations of the CHHS inequality have been made using a variety of separate assumptions:

- Locality and Completeness (Of particular note, in 1976
- Local Realism __ Bell rederived the CHSH

- Local Causality «————— inequality without reference to
- Stochastic Einstein Locality quantum theory, hidden
etc.. .. variables or anything like that)

Quantum mechanics is incompatible with each of these conjunctions of assumptions!
more importantly....
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The non-locality question

1969: Clauser, Holt, Horne, Shimony derive a more general inequality,
also violated by the singlet state in quantum theory:

\E(a,b)+E(a,b’)|+|E(a’,b)—E(a’,b")|<2

Derivations of the CHHS inequality have been made using a variety of separate assumptions:

- Locality and Completeness (Of particular note, in 1976
- Local Realism __ Bell rederived the CHSH

- Local Causality «————— inequality without reference to
- Stochastic Einstein Locality quantum theory, hidden
etc.. .. variables or anything like that)

Quantum mechanics is incompatible with each of these conjunctions of assumptions!
more impaortantly....

Experiment shows nature is incompatible with each of these conjunctions of assumptions!
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The non-locality question

1969: Clauser, Holt, Horne, Shimony derive a more general inequality,
also violated by the singlet state in quantum theory:

\E(a.b)+E(a,b')|+|E(a’,b)—E(a’,b’)|<2

Derivations of the CHHS inequality have been made using a variety of separate assumptions:

- Locality and Completeness (Of particular note, in 1976

- Local Realism _ Bell rederived the CHSH

- Local Causality «————— inequality without reference to
- Stochastic Einstein Locality guantum theory, hidden
etc.. .. variables or anything like that)

Quantum mechanics is incompatible with each of these conjunctions of assumptions!
more importantly....

Experiment shows nature is incompatible with each of these conjunctions of assumptions!
Loopholes?
Logical: superdeterminism, retrocausality, exotic spacetimes, splitting universes...
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The non-locality question

1969: Clauser, Holt, Horne, Shimony derive a more general inequality,
also violated by the singlet state in quantum theory:

\E{a.b)+E(a,b")|+|E(a’,b)—E(a’,b')|<2

Derivations of the CHHS inequality have been made using a variety of separate assumptions:

- Locality an.d Completeness (Of particular note, in 1976

- Local Realism __ Bell rederived the CHSH

- Local Causality «———— inequality without reference to
- Stochastic Einstein Locality guantum theory, hidden
etc.. .. variables or anything like that)

Quantum mechanics is incompatible with each of these conjunctions of assumptions!
more impaortantly....

Experiment shows nature is incompatible with each of these conjunctions of assumptions!
Loopholes?
Logical: superdeterminism, retrocausality, exotic spacetimes, splitting universes...

Emprical: detector efficiency, noise, time coincidence, memory, fair sampling...
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Interpretation,

. Many worlds, R&formulation or Replacement?
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The non-locality question

1969: Clauser, Holt, Horne, Shimony derive a more general inequality,
also violated by the singlet state in quantum theory:

\E{a.b)+E(a,b")|+|E(a’,b)—E(a’,b')|<2

Derivations of the CHHS inequality have been made using a variety of separate assumptions:

- Locality and Completeness (Of particular note, in 1976

- Local Realism _ Bell rederived the CHSH

- Local Causality «————— inequality without reference to
- Stochastic Einstein Locality quantum theory, hidden
etc.. .. variables or anything like that)

Quantum mechanics is incompatible with each of these conjunctions of assumptions!
more importantly....

Experiment shows nature is incompatible with each of these conjunctions of assumptions!
Loopholes?
Logical: superdeterminism, retrocausality, exotic spacetimes, splitting universes...

Emprical: detector efficiency, noise, time coincidence, memory, fair sampling...
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Interpretation,

. Many worlds, R&formulation or Replacement?
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Interpretation,

. Many worlds, R&Tormulation or Replacement?

— Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the Everettian
interpretation to succeed, our perceptions must divide in a particular basis. Generally considered
to be solved by decoherence.
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Interpretation,

. Many worlds, R&formulation or Replacement?

— Preferred basis. Hilbert spaces do net prefer any particular basis, yet for the Everettian
interpretation to succeed, our perceptions must divide in a particular basis. Generally considered
to be solved by decoherence.

— Probability. How to make sense of normal probabilistic assertions in a universe in which all
possible outcomes do actually occur? Recent work has suggested a resclution, but it is still
controversial.

— Locality. It has been argued that branching universes do not require any non-locality. This makes
reconciliation between quantum theory and general relativity easier to achieve.
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Interpretation,

. Many worlds, R&formulation or Replacement?

— Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the Everettian
interpretation to succeed, our perceptions must divide in a particular basis. Generally considered
to be sclved by decoherence.

— Probability. How to make sense of normal probabilistic assertions in a universe in which all
possible outcomes do actually occur? Recent work has suggested a resclution, but it is still
controversial.

— Locality. It has been argued that branching universes do not require any non-locality. This makes
reconciliation between quantum theory and general relativity easier to achieve.

* Collapse models
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Interpretation,

. Many worlds, R&formulation or Replacement?

— Preferred basis. Hilbert spaces do net prefer any particular basis, yet for the Everettian
interpretation to succeed, our perceptions must divide in a particular basis. Generally considered
to be scolved by decoherence.

— Probability. How to make sense of normal probabilistic assertions in a universe in which all
possible outcomes do actually occur? Recent work has suggested a resclution, but it is still
controversial.

— Locality. It has been argued that branching universes do not require any non-locality. This makes
reconciliation between quantum thecry and general relativity easier to achieve.

* Collapse models

— Non-conservation of energy. Objective collapse models, that produce localised states, generically
viclate the conservation of energy, even on average.

Arsalriopduction To Young Researchers Conference Page 118/148
Quantum Foundations



Interpretation,

. Many worlds, R&TOrmulation or Replacement?

— Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the Everettian
interpretation to succeed, ocur perceptions must divide in a particular basis. Generally considered
to be seclved by decoherence.

— Probability. How to make sense of normal probabilistic assertions in a universe in which all
possible outcomes do actually occur? Recent work has suggested a resclution, but it is still
controversial.

— Locality. It has been argued that branching universes do not require any non-locality. This makes
reconciliation between quantum theory and general relativity easier to achieve.

* Collapse models
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Interpretation,

. Many worlds, R&Tormulation or Replacement?

— Preferred basis. Hilbert spaces do net prefer any particular basis, yet for the Everettian
interpretation to succeed, our perceptions must divide in a particular basis. Generally considered
to be sclved by decoherence.

— Probability. How to make sense of normal probabilistic assertions in a universe in which all
possible outcomes do actually occur? Recent work has suggested a resclution, but it is still
controversial.

— Locality. It has been argued that branching universes do not require any non-locality. This makes
reconciliation between quantum theory and general relativity easier to achieve.

* Collapse models

— Non-conservation of energy. Objective collapse models, that produce localised states, generically
viclate the conservation of energy, even on average.
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* Many worlds.

Interpretation,
Reformulation or Replacement?

Preferred basis. Hilbert spaces do not prefer any particular basis, yet for the Everettian
interpretation te succeed, our perceptions must divide in a particular basis. Generally considered
to be solved by decoherence.

Probability. How to make sense of normal probabilistic assertions in a universe in which all
possible outcomes do actually occur? Recent work has suggested a resclution, but it is still
controversial.

Locality. It has been argued that branching universes do not require any non-locality. This makes
reconciliation between quantum thecry and general relativity easier to achieve.

* Collapse models

Non-conservation of energy. Objective collapse models, that produce localised states, generically
violate the conservation of energy, even on average.

Relativistic invariance. Explicit collapse models have generally been non-relativistic. Making a
relativistically invariant collapse model presents difficulties. Recent progress has been made for
non-interacting systems.
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Interpretation,

. Many worlds, R&formulation or Replacement?

— Preferred basis. Hilbert spaces do net prefer any particular basis, yet for the Everettian
interpretation to succeed, our perceptions must divide in a particular basis. Generally considered
to be solved by decoherence.

— Probability. How to make sense of normal probabilistic assertions in a universe in which all
possible outcomes do actually occur? Recent work has suggested a resclution, but it is still
controversial.

— Locality. It has been argued that branching universes do not require any non-locality. This makes
reconciliation between quantum theory and general relativity easier to achieve.

* Collapse models

— Non-conservation of energy. Objective collapse models, that produce localised states, generically
viclate the conservation of energy, even on average.

— Relativistic invariance. Explicit collapse models have generally been non-relativistic. Making a
relativistically invariant collapse model presents difficulties. Recent progress has been made for
non-intferacting systems.

— Empirical predictions. Wavefunction collapse models generically produce situations where
different predictions can be made to quantum theory. Experimentally probing these situations
are hard, as environmental decoherence must be excluded.
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Interpretation,

Reformulation or Replacement?
* Hidden Variables
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Interpretation,

Reformulation or Replacement?
* Hidden Variables

—  Quantum field theory. Although Bohm presented a field ontelogy for the electromagnetic field in
1952, most work has been on non-relativistic particle theories. Recent work has shown how de
Broglie-Bohm hidden variables can be constructed for general interacting field theories.
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Interpretation,

Reformulation or Replacement?
* Hidden Variables

Quantum field theory. Although Bohm presented a field ontclogy for the electromagnetic field in
1952, most work has been on non-relativistic particle theories. Recent work has shown how de
Broglie-Bohm hidden variables can be constructed for general interacting field theories.

Different choices of hidden variable. Particle and field configuration hidden variables present
intuitively clear routes to distinct outcomes. Alternative hidden variables - spin, orientation,
momentum, matrix valued, grassman number valued - may or may not be feasible.
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Interpretation,

Reformulation or Replacement?
* Hidden Variables

—  Quantum field theory. Although Bohm presented a field ontelogy for the electromagnetic field in
1952, most work has been on non-relativistic particle theories. Recent work has shown how de
Broglie-Bohm hidden variables can be censtructed for general interacting field theories.

— Different choices of hidden variable. Particle and field configuration hidden variables present
intuitively clear routes to distinct outcomes. Alternative hidden variables - spin, orientation,
momentum, matrix valued, grassman number valued - may or may not be feasible.

— Empty waves. In de Broglie-Bohm theories, the portions of the wavefunction that correspond to
the outcomes that did net occur, still exist. It can be argued that these outcomes are just as
real and that hidden variable theorists are Everettians "in a chronic state of denial”.
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Interpretation,

Reformulation or Replacement?
* Hidden Variables

—  Quantum field theory. Although Bohm presented a field ontelogy for the electromagnetic field in
1952, most work has been on non-relativistic particle theories. Recent work has shown how de
Broglie-Bohm hidden variables can be constructed for general interacting field theories.

— Different choices of hidden variable. Particle and field configuration hidden variables present
intuitively clear routes to distinct outcomes. Alternative hidden variables - spin, orientation,
momentum, matrix valued, grassman number valued - may or may not be feasible.

— Empty waves. In de Broglie-Bohm theories, the portions of the wavefunction that correspond to
the outcomes that did net occur, still exist. It can be argued that these outcomes are just as
real and that hidden variable theorists are Everettians "in a chronic state of denial”.

— Non-equilibrium. Hidden variable theories reproduce quantum mechanics for particular probability
distributions over the hidden variable state. This distribution is often referred to as "quantum
equilibrium”, as it's justifications is similar to thermal equilibrium. The possibility of systems
with non-equilibrium distributions would lead to novel experimental results and peossibilities.
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Interpretation,

Reformulation or Replacement?
* Hidden Variables

—  Quantum field theory. Although Bohm presented a field ontelogy for the electromagnetic field in
1952, most work has been on non-relativistic particle theories. Recent work has shown how de
Broglie-Bohm hidden variables can be constructed for general interacting field theories.

— Different choices of hidden variable. Particle and field configuration hidden variables present
intuitively clear routes to distinct outcomes. Alternative hidden variables - spin, orientation,
momentum, matrix valued, grassman number valued - may or may not be feasible.

— Empty waves. In de Broglie-Bohm theories, the portions of the wavefunction that correspond to
the outcomes that did not occur, still exist. It can be argued that these outcomes are just as
real and that hidden variable theorists are Everettians "in a chronic state of denial”.

— Non-equilibrium. Hidden variable theories reproduce quantum mechanics for particular probability
distributions over the hidden variable state. This distribution is often referred to as "quantum
equilibrium”, as it's justifications is similar to thermal equilibrium. The possibility of systems
with non-equilibrium distributions would lead to novel experimental results and pessibilities.

* ) epistemic theories
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Interpretation,

Reformulation or Replacement?
* Hidden Variables

—  Quantum field theory. Although Bohm presented a field ontelogy for the electromagnetic field in
1952, most work has been on non-relativistic particle theories. Recent work has shown how de
Broglie-Bohm hidden variables can be constructed for general interacting field theories.

— Different choices of hidden variable. Particle and field configuration hidden variables present
intuitively clear routes to distinct outcomes. Alternative hidden variables - spin, orientation,
momentum, matrix valued, grassman number valued - may or may not be feasible.

— Empty waves. In de Broglie-Bohm theories, the portions of the wavefunction that correspond to
the outcomes that did not occur, still exist. It can be argued that these outcomes are just as
real and that hidden variable theorists are Everettians "in a chronic state of denial”.

— Non-equilibrium. Hidden variable theories reproduce quantum mechanics for particular probability
distributions over the hidden variable state. This distribution is often referred to as "quantum
equilibrium”, as it's justifications is similar to thermal equilibrium. The possibility ef systems
with non-equilibrium distributions would lead to novel experimental results and pessibilities.

* ) epistemic theories

— The wavefunction shares some properties with classical probability distributions. de Broglie-
Bohm hidden variable models treat the wavefunction as a real entity. Is it possible to construct
models in which the wavefunction is only a probability distribution over a microscopic reality?
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Interpretation,

Reformulation or Replacement?
* Information as fundamental
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Interpretation,

Reformulation or Replacement?
* Information as fundamental

— Can quantum mechanics be better understood as a theory of information? Quantum theory has
always seemed to present restrictions upon what can be known about a system. Perhaps quantum
theory is simply about information itself, not information about something - the process of
acquiring information creating the very information that is acquired. Restrictions on how much
information may be known means that new information acquisition must invalidate old information.
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Interpretation,

Reformulation or Replacement?
* Information as fundamental

— Can quantum mechanics be better understood as a theory of information? Quantum theory has
always seemed to present restrictions upon what can be known about a system. Perhaps quantum
theory is simply about information itself, not information about something - the process of
acquiring information creating the very information that is acquired. Restrictions on how much
information may be known means that new information acquisition must invalidate old information.

* Emergent classicality
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Interpretation,

Reformulation or Replacement?
* Information as fundamental

— Can quantum mechanics be better understood as a theory of information? Quantum theory has
always seemed to present restrictions upon what can be known about a system. Perhaps quantum
theory is simply about information itself, not information about something - the process of
acquiring information creating the very information that is acquired. Restrictions on how much
information may be known means that new information acquisition must invalidate old information.

* Emergent classicality

— If the world is fundamentally quantum in behaviour, why does the everyday world behave so
classically? Decoherence and restrictions on observability.
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Interpretation,

Reformulation or Replacement?
* Information as fundamental

— Can guantum mechanics be better understood as a theory of information? Quantum theory has
always seemed to present restrictions upon what can be known about a system. Perhaps quantum
theory is simply about information itself, not information about something - the process of
acquiring information creating the very information that is acquired. Restrictions on how much
information may be known means that new information acquisition must invalidate old information.

* Emergent classicality

— If the world is fundamentally quantum in behaviour, why does the everyday world behave so
classically? Decoherence and restrictions on observability.

* Toy models

— Constructs which do not reproduce all of quantum theory but which can reproduce some
characteristic quantum effects.

* E.g. local hidden variable models which can simulate teleportation or dense coding, despite
the fact that quantum theory requires entanglement to do so.
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Interpretation,

Reformulation or Replacement?
* Information as fundamental

— Can guantum mechanics be better understood as a theory of information? Quantum theory has
always seemed to present restrictions upon what can be known about a system. Perhaps quantum
theory is simply about information itself, not information about something - the process of
acquiring information creating the very information that is acquired. Restrictions on how much
information may be known means that new information acquisition must invalidate old information.

* Emergent classicality

— If the world is fundamentally quantum in behaviour, why does the everyday world behave so
classically? Decoherence and restrictions on observability.

* Toy models

— Constructs which do not reproduce all of quantum theory but which can reproduce some
characteristic quantum effects.

* E.g. local hidden variable models which can simulate teleportation or dense coding, despite
the fact that quantum theory requires entanglement to do so.

— Constructs which do things quantum mechanics cannot do.

* E.g. Popescu-Rohrlich non-lecal boxes, which are more non-lecal than quantum theory,
although still do not permit signalling.
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Interpretation,
Reformulation or Replacement?

* Perhaps the mathematical formulation of quantum theory is wrong?
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Interpretation,
Reformulation or Replacement?

* Perhaps the mathematical formulation of quantum theory is wrong?

- Histories formalism, path integrals, algebraic quantum theory, time symmetric quantum theory,
quantization schemes.
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Interpretation,
Reformulation or Replacement?

* Perhaps the mathematical formulation of quantum theory is wrong?

- Histories formalism, path integrals, algebraic quantum theory, time symmetric quantum theory,
quantization schemes.

* Axiomatic approaches. What is different to classical theories?
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Interpretation,
Reformulation or Replacement?
* Perhaps the mathematical formulation of quantum theory is wrong?

- Histories formalism, path integrals, algebraic quantum theory, time symmetric quantum theory,
quantization schemes.

* Axiomatic approaches. What is different to classical theories?

— Principle theories, such as relativity and thermodynamics, constructed from prohibitions. CBH use
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Relationships to other fields

* Quantum information

- Bell tests, entanglement, operational formulations, quantum parallelism, no-
cloning, many early researchers and many early results came from the study
of quantum foundations.

* Quantum gravity

- Collapse theories, hidden variables, causal frameworks and other
reformulations may help. Any quanium theory of gravity will face the same
challenges for understanding observed quantum phenomena.

- Relativistic causality is empirically falsified. Understanding the causal
structure of quantum theory may help.

 Statistical mechanics, cosmology

- Arrow of time and irreversibility of wavefunction collapse.
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