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Abstract: We will consider stability in the string theory landscape. A survey over several classes of flux vacuawith different characteristics indicates
that the vast mgjority of flux vacua with small cosmological constant are unstable to rapid decay to a big crunch. Only vacua with large
compactification radius or (approximately) supersymmetric configurations turn out to be long lived. We will speculate that regions of the landscape
with approximate R-symmetry, while rare, might be cosmological attractors.
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Stringy Landscape

Sad news for string theory...
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Stringy Landscape

Sad news for string theory...

10 =4 + 6
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Stringy Landscape
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Stringy Landscape

How to study these flux compactifications?
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How to study these flux compactifications?
@ 10 dimensional point of view:
study a particular 10d geometry with

particular fluxes in supergravity

eg. GKP, KKLT, DGKT,...
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Stringy Landscape

How to study these flux compactifications?
@ 10 dimensional point of view:
study a particular 10d geometry with
particular fluxes in supergravity
eg. GKP, KKLT, DGKT,...
@ 4 dimensional point of view:
Integrate out the heavy effects of the compact manifold

leaves a 4d (supersymmetric) effective theory
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Stringy Landscape

4 dimensional \" = 1 supergravity
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Stringy Landscape

4 dimensional \" = 1 supergravity
@ [heory is determined by two functions:
Kahler potential K (kinetic terms)
Superpotential W
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Stringy Landscape

4 dimensional \" = 1 supergravity
@ [heory is determined by two functions:
Kahler potential K (kinetic terms)
Superpotential W
@ The scalar fields (moduli) feel a potential:

v — &M ki pwow — 31,
T : J T MR

4

with
D;W = o; W + Wa;K /M3

and My the 4d Planck length
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r Landscape
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Stringy Landscape

Landscape of minima
Different minima means a different world:

o different masses for moduli
o different supersymmetry (susy) breaking scale

@ even more drastic, different gauge groups
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tringy Landscape
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Decay from one state to another can occur
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Stringy Landscape

Decay from one state to another can occur

@ In a generic non-susy state one has little control:

@ NO Ssusy
e no small parameters to expand in
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Stringy Landscape

Decay from one state to another can occur

@ In a generic non-susy state one has little control:
® NO susy
e no small parameters to expand in
@ Probability that tunneling amplitude is zero from one to

another vacua:

1
Prob = — 1
rob = > (1)

since there are no small parameters to tune it close to 1.
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Stringy Landscape

Decay from one state to another can occur
@ In a generic non-susy state one has little control:

@ NO susy
e no small parameters to expand in
@ Probability that tunneling amplitude is zero from one to
another vacua:

1
Prob = — 1
rob = > (1)

since there are no small parameters to tune it close to 1.

@ Probability that tunneling amplitude is zero from a certain
vacuum to any other neighboring vacuum:

: 3100

Pi‘{_;l'}{tﬁtal}le) = (%) < 1 (2)

since AN = +3 and there are of the order of 100 different
fluxes in a generic Calabi-Yau.
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Qutline:

@ loy setup: Coleman-De Luccia decay
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Qutline:

@ loy setup: Coleman-De Luccia decay

@ Stability survey over different compactifications with
small/large parameters:

o large compactification volume (geometry)
o small string coupling (geometry)
e warped setup (geometry)
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Qutline:

@ loy setup: Coleman-De Luccia decay

@ Stability survey over different compactifications with

Pirsa: 07120043

small/large parameters:

large compactification volume (geometry)
small string coupling (geometry)

warped setup (geometry)

low susy breaking scale
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Qutline:

@ loy setup: Coleman-De Luccia decay

@ Stability survey over different compactifications with

small/large parameters:

large compactification volume (geometry)
small string coupling (geometry)

warped setup (geometry)

low susy breaking scale

@ Speculation about cosmological attractors
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CdL decay

Consider the scalar field theory:

S = / d*x {%(uﬁz)f = V(z)} (3)
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CdL decay

Minkowsk:

s

Z{T)
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CdL decay

Minkowsk:

Z{r)
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CdL decay

Energetics for bubble nucleation (thin wall):

i By

=

AEr +4xTr (4)

with the tension

T— / dz+/2V(2) (5)
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CdL decay

Energetics for bubble nucleation (thin wall):

4

—3AEr +4xTr (4)

E:

with the tension

= / dz+/2V(2) (5)

Energy conservation, E = 0, gives

T

N RE

The decay probability per unit time and volume is given by

o T
AE3

s 1 4 .
— ~ e b with Sy~

\/;‘

(7)
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CdL decay

Results so far:

(8)
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Results so far:

T T

V= : AL

When the bubble is large

gravity will become important...
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CdL decay

(8)

(9)

Page 36/92



CdL decay

Results so far:

T
R 7= e
(8)
When the bubble is large
Ry ~ Raas = M4\/E (9)

gravity will become important...
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CdL decay

Results so far:

! ¥
"~ AR - e RE
(8)
When the bubble is large
T (9)
b~ IXAdS = 4\//_\',:_

gravity will become important...
The action becomes

‘ = ]‘ IV < £ ]'
5 — / d4xk —g {2§+ Ouz0,z — V(z) — 16.TGR} (10)

and the energetics change:
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CdL decay

irsa: 07120043

Results so far:

T _ T
AE3 ' T AE

Sk
(8)

When the bubble is large

i)
Rp =~ Rads = M4\/E (9)

gravity will become important...
The action becomes

J = 1 LS & e 1
S = / d*x/—g {2&:;jL a.z0.7— Wiz) lﬁrGR} (10)

and the energetics change:

@ gravitational potential energy of the bubble
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CdL decay

irsa: 07120043

Results so far:

T T

ol F TP RE

(8)

When the bubble is large

=
Rp = Rads = M4\/E (9)

gravity will become important...
The action becomes

S — / d*x Rg{;gﬁ“’é)ﬂzé)pz V(z) — - R} (10)

167G

and the energetics change:

@ gravitational potential energy of the bubble
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CdL decay

irsa: 07120043

Results so far:

¥ 1 J = T 1
AE3 (1 — (Ry/2Rsas)?)? = °  AE1— (Rb/2Raas)?

(8)

S

When the bubble is large

=
Rp =~ Rads = Md\/ﬁ (9)

gravity will become important...
The action becomes

j I ]‘ IV £ 2 ]'
S — / d*x/—g {2gjL a0z W= lﬁrGR} (10)

and the energetics change:

@ gravitational potential energy of the bubble
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Survey: geometry

Let us redo the Coleman-De Luccia exercise but with stringy input.
Let us for now take all fluxes of order N:

w [GAQ ~ N
K “3In(p+p)+... ~ InV?

(11)
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Survey: geometry

Let us redo the Coleman-De Luccia exercise but with stringy input.
Let us for now take all fluxes of order N:

W = [GAQ ~ N (11
K — —3kpi )i ~ =atr? )
This gives for a decay AN = +1
2>
V(2) ~ ¥ ool N (1)

VE
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Survey: geometry

Let us redo the Coleman-De Luccia exercise but with stringy input.
Let us for now take all fluxes of order N:

W = [GAQ ~ N

e NG s S )

This gives for a decay AN = +1

N> N 1
and, i
V< W - V
Sb~ 3 Rb ~ - < Raas ~ TN (13)
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Survey: geometry

Let us redo the Coleman-De Luccia exercise but with stringy input.
Let us for now take all fluxes of order N:

W = [GAQ ~ N 1)
K — 3{pipi... ~ IavV¥?

This gives for a decay AN = +

N? N 1
and, A
V< w = V
Sb~ 3+ Re~ 55 < Raas ~ TN (13)

Conclusion: For decay to be suppressed we need the volume V to

scale as N3/2
(note that perturbation theory breaks down for V < N)
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Survey: geometry

Let us now consider the GKP setup (type |IB)
(with p considered fixed and large):

W = MG(z)— Krz— K'th(z) (14)
K = -3ln(p+p)—In(—i(r—7)) + k(z.2) (15)

with M. K and K’ the flux quanta of F3. H3 and H3 flux

respectively.
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Survey: geometry

Let us now consider the GKP setup (type |IB)
(with p considered fixed and large):

W = MG(z)— Krz— K'th(z2) (16)
K = —3ln(p+p)—In(—i(r —7)) + k(z.2) (17)

with M. K and K’ the flux quanta of F3. H3 and H3 flux

respectively.
Imposing susy leads to

DT W — g — g =l -
: Y (18)
D Z W = 0 — rd ~ e &sM

We take M > K’ to get a small string coupling gs.
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Let us focus on the decay AM = +1:
M

y I (19)

1
V‘x 5s
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Let us focus on the decay AM = +1:

s (19)

Notes:

@ [he bubble in this string setting can be thought of as a D5 or
NS5-brane. Indeed the brane tensions match.
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Let us focus on the decay AM = +1:
M

V2 g..‘i

AE ~ 2 (21)

Notes:

@ [he bubble in this string setting can be thought of as a D5 or
NSb5-brane. Indeed the brane tensions match.

Minkowski

Zir)
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Survey: geometry

L et us focus on the decay AM = +1:

M L
AE ~ Wgs ; T ~ V\.,'gs

Notes:

(23)

@ [he bubble in this string setting can be thought of as a D5 or

NS5-brane. Indeed the brane tensions match.
@ [he tadpole constraint
1

Np3 — 2

N{):j -+ / H3 A F 3 — 0

indicates D3 brane emission since F3 changes
(estimate AE unchanged).

irsa: 07120043
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We find for the AM = +1 decay:

SR TTINES T T
M3g, ~ MK’ TP |

Sk (25)

Conclusions:
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We find for the AM = +1 decay:

V2 V2 vV V
[\/]3‘%,:5 MZKI b MR 2. << IXAGS \('M"i

-
oo

b (25)

Conclusions:

@ For decay suppression, we need the volume V to scale with
the flux quanta.
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Survey: geometry

We find for the AM = +1 decay:

T R T e Y
M3g3 ME K; ' b M ’ g: AdS \UM@‘S

Sk (25)

Conclusions:

@ For decay suppression, we need the volume V to scale with
the flux quanta.

@ Warping does not seem to suppress the decay.
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Survey: geometry

We find for the AM = +1 decay:

V2 V2 Vv vV
. Rp~——<< Rags ~ ——

~ = , _ 25
M3z.  M2K' M.z /Mg, 2

Sp

Conclusions:
@ For decay suppression, we need the volume V to scale with
the flux quanta.
@ Warping does not seem to suppress the decay.
@ Small string coupling, g. ~ K’/ M, does not suppress the

decay.
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Let us consider the DGKT setup (type lIA):

E~N3% . VNIE : Rys~N"" (26)
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Let us consider the DGKT setup (type IIA):

e ~ N—?:_.__.-zj, ; W N3 . : RAr:lEr L Ng},-d (26)

this gives,
ARE -« N—ll_,.-"2 : T N—13_,.-4 (27)

and thus
Sp ~ N'/2 (28)
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Survey: geometry

Let us consider the DGKT setup (type IIA):

s ~ N—3_._.-4 VW N3 /D : R_—‘U:lfr s NQ____.-4 (26)
this gives,
R N—ll_,.-"2 : T N—13._.-'4 (27)
and thus
Sp ~ N*/? (28)

Conclusion: decay suppression!
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Survey: susy scale

Consider a supersymmetric setup in asympt flat space:
Is stable (positive energy theorem; Grisaru; Witten; Hull)
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Survey: susy scale

Consider a supersymmetric setup in asympt flat space:
Is stable (positive energy theorem; Grisaru; Witten; Hull)

a 2 -
Example: setup with mass scale M < My (e¥/Mi =~ 1: D, =~ 9,,):

W — %M{_?z e %“_. r__'.;'3 (29)
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Survey: susy scale

Consider a supersymmetric setup in asympt flat space:
Is stable (positive energy theorem; Grisaru; Witten; Hull)

3 2
Example: setup with mass scale M < My (ef/Mi =~ 1: D, =

W = lMOz = l", (__-_}3
2 3

Imposing susy leads to

(D

;|§C}

DWW =" =s {

@
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Survey: susy scale

Consider a supersymmetric setup in asympt flat space:

Is stable (positive energy theorem; Grisaru; Witten; Hull)
a 2

Example: setup with mass scale M < M, (eX/Ma

W = l)"./l % — l*_. o3
2 3

Imposing susy leads to

@D

;|§C3

D W === {

O
Computation gives indeed:
Rb - ZR;U_-[:::; — 1 B!

consistent with the positive energy theorem:.
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Survey: susy scale

Consider a supersymmetric setup in asympt flat space:

Is stable (positive energy theorem; Grisaru; Witten; Hull)
a 2

Example: setup with mass scale M < My (eX/Mi =~ 1;: D,

W = lM{Z’Z s l"_ r_f}3
2 3

Imposing susy leads to

()

_,|§c:::

D, W =g, {

O
Computation gives indeed:
Rb = ZR;U_-[:::; 3=l —{

consistent with the positive energy theorem.
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Survey: susy scale

Let us now modify our example:

1 1 o
W = EMQE s o> + Zp® + W (32)
with 3| W|? = |u?|> M3
Imposing susy leads to
o — U
DWW — 5% =  susy broken
Computation gives then:
e E (34)

Conclusion: decay suppression!
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Survey: susy scale

Let us now modify our example:
1 1 -
W = EMQZ — §"_ &> + Zp” + Wy

with 3|W|? = |p?|> M3
Imposing susy leads to

| o — 4
D,.:_u W — O — { v B {Jf
DW = F+#0 = susybroken

Computation gives then:

e

Conclusion: decay suppression!
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(33)

(34)
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Conclusions

Conclusions:

@ Many states in the string theory landscape seem unstable
under decay:
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Conclusions

Conclusions:
@ Many states in the string theory landscape seem unstable
under decay:
@ Only states with either

e large compactification volume or
e low scale susy breaking

have parametrically suppressed decay rates.
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Compactifications with large compact volume suffer from:
@ susy breaking in these setups requires brane-antibranes

@ questions about the validity of expansion (Banks, vdB)
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Conclusions

Conclusions:
@ Many states in the string theory landscape seem unstable
under decay:
@ Only states with either

e large compactification volume or
e low scale susy breaking

have parametrically suppressed decay rates.
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Compactifications with large compact volume suffer from:
@ susy breaking in these setups requires brane-antibranes

@ questions about the validity of expansion (Banks, vdB)
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Compactifications with large compact volume suffer from:
@ susy breaking in these setups requires brane-antibranes
@ questions about the validity of expansion (Banks, vdB)

Conclusion: Stability might favor low energy supersymmetry
breaking
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) Speculations

Configurations with low energy susy breaking:
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Configurations with low energy susy breaking:

o KKLT:
W= Wy+e? (35)

where W) is tuned to be small such that sugergravity is valid
(large p).
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Configurations with low energy susy breaking:

e KKLT:

Pirsa: 07120043

W=W,+e"” (35)

where W) is tuned to be small such that sugergravity is valid
(large p).
Changing the fluxes will generically remove this property.

Thus there is no reason not to expect many AdS vacua
around the KKLT vacuum.
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Configurations with low energy susy breaking:

o KKLT:
W=W,+e?” (35)

where W) is tuned to be small such that sugergravity is valid
(large p).
Changing the fluxes will generically remove this property.

Thus there is no reason not to expect many AdS vacua
around the KKLT vacuum.

Conclusion: When you decay through the landscape, it is unlikely
that you find a path to a KKLT minima.
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Speculations

Configurations with low energy susy breaking:
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Speculations

Configurations with low energy susy breaking:

@ Discrete R-symmetry: Rare in the landscape, since all fluxes
which break the symmetry have to be zero.
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Configurations with low energy susy breaking:

@ Discrete R-symmetry: Rare in the landscape, since all fluxes
which break the symmetry have to be zero.
Turning on a small amount n of the fluxes that break the
symmetry contributes to the cosmological constant:

A ~ n?f(6;) (36)
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Configurations with low energy susy breaking:

Pirsa: 07120043

@ Discrete R-symmetry: Rare in the landscape, since all fluxes
which break the symmetry have to be zero.

Turning on a small amount n of the fluxes that break the
symmetry contributes to the cosmological constant:

A ~ n?f(6;) (36)

One might then assume that there are solid angles in the flux
lattice which all contribute in a positive way leading to many
dS vacua around the R-symmetric vacuum.
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Configurations with low energy susy breaking:

@ Discrete R-symmetry: Rare in the landscape, since all fluxes
which break the symmetry have to be zero.

Turning on a small amount n of the fluxes that break the
symmetry contributes to the cosmological constant:

A ~ n*f(6;) (36)

One might then assume that there are solid angles in the flux
lattice which all contribute in a positive way leading to many
dS vacua around the R-symmetric vacuum.

Conclusion: Cosmology might favor regions with approximate
R-symmetries.
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