Title: Moment Problem and Homodyne Detection

Date: Dec 05, 2007 02:45 PM

URL: http://pirsa.org/07120029

Abstract: We describe the measurement statistics of the balanced homodyne detection scheme in terms of the moment operators of the associated positive operator measures. In particular, we give a mathematically rigorous proof for the fact that the high amplitude limit in the local oscillator leads to a measurement of a rotated quadrature operator of the signal _eld. Using these results, we also show that each covariant phase space observable can be measured with the eight-port homodyne detector.

Pirsa: 07120029 Page 1/119

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4436

Department of Physics, University of Turku, Finland

YRC Perimeter Institute 5. December 2007

Pirea: 07120020

Contents

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4436

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

- 1 Introduction
- Balanced homodyne detector observables and their moment operators
- 3 Limit of strong auxiliary field
- 4 An application to eight-port homodyne detector

Pirea: 07120020

TO PROPERTY OF STREET

(e'a + = '6a)

(sie a + xiea)

, 8 = (0,21.)

(sie a + ziea) , 8 = (9,21.) Page 6/119 Pirsa: 07120029

(e'a + 1 (a) , 0 = (4,21) Page 7/119

07120029

Contents

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.443

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector 1 Introduction

Balanced homodyne detector observables and their moment operators

3 Limit of strong auxiliary field

4 An application to eight-port homodyne detector

Pires: 07120020

resident de la compa de la compa

Contents

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.443

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

1 Introduction

2 Balanced homodyne detector observables and their moment operators

3 Limit of strong auxiliary field

4 An application to eight-port homodyne detector

Pirea: 07120020

Page 10/119

residence de la compansa del compansa de la compansa della compans

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

- is an established measurement technique in quantum optics (first introduced by Yuen & Chan 1983).
- used e.g. in quantum state reconstruction.
- The technique:
 - signal beam mixed with an auxiliary coherent beam via a beam splitter
 - photons counted at the output ports ~ n₁, n₂
 - The scaled difference $(n_1 n_2)/|z|$ recorded, |z| being the aux field amplitude.
 - result depends on the phase difference θ between the input beams.
- Claim: For strong aux field (large |z|), this amounts to measuring the rotated quadrature operators $Q_{\theta} = \frac{1}{\sqrt{6}}(e^{-i\theta}a + e^{i\theta}a^*)$ of the signal field.
- The purpose of this talk is to give a rigorous mathematical meaning to this claim.

1000 E (E) (E)

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

- is an established measurement technique in quantum optics (first introduced by Yuen & Chan 1983).
- used e.g. in quantum state reconstruction.
- The technique:
 - signal beam mixed with an auxiliary coherent beam via a beam splitter
 - photons counted at the output ports → n₁, n₂
 - The scaled difference (n₁ − n₂)/|z| recorded, |z| being the aux field amplitude.
 - result depends on the phase difference θ between the input beams.
- Claim: For strong aux field (large |z|), this amounts to measuring the rotated quadrature operators $Q_{\theta} = \frac{1}{\sqrt{n}} (e^{-i\theta} a + e^{i\theta} a^*)$ of the signal field.
- The purpose of this talk is to give a rigorous mathematical meaning to this claim.

(2°00"+ =:60), 0 =(0,21.)

BEAM
SPLITTER

(2° a" + = "6a) , 8 = (9,21.) BEAM SPLITTER

Page 14/119

(sie a + = :6a) BEAM SPLITTER

, 0 = (9,21.)

(sie a + i iea)

, 8 = (921.)

BEAM SPLITTER

(00 a + 1:6a) , 8 = (a 2 i.) BEAM CO SIGUAL

Pirsa: 0712002

Page 18/119

Pirsa: 0712002

Page 19/119

(200 a + = 16a) , 8 = (a 2 i.) BEAM U SIGUAL SPLITTER

irsa: 07120029

Page 20/119

(000 a" + = 16a) , 8 = (9,21.) ٨ BEAM U SIGUAL SPLITTER

Page 21/119

(200 a + 1:6a) , 8 = (921.) ٨ 121 BEAM SIGUAL SPLITTER COHERENT >1176

07120029

Page 22/119

(2° a" + 1° a) , 8 = (9,21.) ۸, 121 BEAM SIGUAL SPLITTER

Pirsa: 0 120029

Page 23/119

(200 a + 1:6a) , 8 = (9,2%) 2= 1212:0 ٨ 121 BEAM SIGUAL SPLITTER

Pirsa: 07120029

Page 24/119

(200 a + 1:6a) , 8 = (921.) 2=1212 ٨, AMPLITUDE (121 BEAM SIGUAL SPLITTER

Pirsa: 07120029

Page 25/119

(e'a + =:6a) , 8 = (921.) 2=1212 ٨ AMPLITUDE (De) 121 SIGUAL SPLITTER

(e'a + =:6a) , 8 = (921.) 2= 1212 1 AMPLITUDE (Do SIGUAL SPLITTER

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

- is an established measurement technique in quantum optics (first introduced by Yuen & Chan 1983).
- used e.g. in quantum state reconstruction.
- The technique:
 - signal beam mixed with an auxiliary coherent beam via a beam splitter
 - photons counted at the output ports → n₁, n₂
 - The scaled difference (n₁ − n₂)/|z| recorded, |z| being the aux field amplitude.
 - result depends on the phase difference θ between the input beams.
- Claim: For strong aux field (large |z|), this amounts to measuring the rotated quadrature operators $Q_{\theta} = \frac{1}{\sqrt{2}}(e^{-i\theta}a + e^{i\theta}a^*)$ of the signal field.
- The purpose of this talk is to give a rigorous mathematical meaning to this claim.

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

- is an established measurement technique in quantum optics (first introduced by Yuen & Chan 1983).
- used e.g. in quantum state reconstruction.
- The technique:
 - signal beam mixed with an auxiliary coherent beam via a beam splitter
 - photons counted at the output ports → n₁, n₂
 - The scaled difference (n₁ − n₂)/|z| recorded, |z| being the aux field amplitude.
 - result depends on the phase difference θ between the input beams.
- Claim: For strong aux field (large |z|), this amounts to measuring the rotated quadrature operators $Q_{\theta} = \frac{1}{\sqrt{2}}(e^{-i\theta}a + e^{i\theta}a^*)$ of the signal field.
- The purpose of this talk is to give a rigorous mathematical meaning to this claim.

Pirsa: 07120029

Page 29/119

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

The signal field (with annihilation operator a) is coupled via 50-50-beam splitter with the auxiliary field (b), which is in a coherent state |z>.

■ Detection observable is the amplitude-scaled photon difference $D_z := \frac{1}{1+1/2}(I \otimes b^*b - a^*a \otimes I)$.

The beam splitter, a unitary operator U, transforms Dz into

$$U^*D_zU = \frac{1}{\sqrt{2|z|}}(a \otimes b^* + a^* \otimes b) =: |z|^{-1}A$$

Heuristic argument: When the amplitude |z| is large, the auxiliary field is classical; $b \sim |z|e^{i\theta}$. Then $|z|^{-1}A \sim \frac{1}{\sqrt{2}}(e^{-i\theta}a + e^{i\theta}a^*)$, so quadrature is

residents in a second

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

- The signal field (with annihilation operator a) is coupled via 50-50-beam splitter with the auxiliary field (b), which is in a coherent state |z>.
- Detection observable is the amplitude-scaled photon difference $D_z := \frac{1}{|z|\sqrt{2}}(\overline{I \otimes b^*b} \overline{a^*a \otimes I}).$
- The beam splitter, a unitary operator U, transforms Dz into

$$U^*D_zU = \frac{1}{\sqrt{2|z|}}(a \otimes b^* + a^* \otimes b) =: |z|^{-1}A$$

Heuristic argument: When the amplitude |z| is large, the auxiliary field is classical; $b \sim |z|e^{i\theta}$. Then $|z|^{-1}A \sim \frac{1}{\sqrt{2}}(e^{-i\theta}a + e^{i\theta}a^*)$, so quadrature is

TO PART TO THE STATE OF THE STA

(000 a + 1:6a) , 8 = (9,2%) 2= 1212 AMPLITUDE SIGUAL SPLITTER

Pirsa: 07

Page 32/119

一(gio a'+ xioa) , の =(の2に) N = b b - a a SIGUAL SPLITTER

ge 33/119

Pirsa: 071

(e'a + 1:6a) , 0 = (42:) SPLITTER SIGUAL

Ng - N = bbb-da

Pirsa: 07120029

Page 35/119

 $\frac{\sqrt{|u|}}{\sqrt{|u|}} = \sqrt{n+1} \frac{|u+1|}{\sqrt{|u|}}$ $\frac{\sqrt{|u|}}{\sqrt{|u|}} = \sqrt{n+1} \frac{|u+1|}{\sqrt{|u|}}$ $\frac{\sqrt{|u|}}{\sqrt{|u|}} = \sqrt{n+1} \frac{|u+1|}{\sqrt{|u|}}$

N, - N

Pirsa: 0712002

Page 37/119

(down'this u)

Page 38/119

(down'thisou) Pirsa: 07120029

down'this u Page 40/119 Pirsa: 07120029

a lus = Natiluto = LL [IND INGAN? a 147 = Ja 14-17 , 0 = (azi.) 127 AMPLAUTE SPLITTER Idan, ty a

A INT ENATIONAL - LL SIND INGAR 4 147 = Jm 14-17 (sie a + 1:6a) , 0 -(921) SPLITTER S) COMEGENT 1 (dou'th's)

Pirsa. 07120029

Page 42/119

AUX >1420

ACU D(X)

Page 43/119

AUX STATE

ACU L(X)

Page 44/119

AUX STAZA ACU DE (X) ISI-20 Dar Page 45/119

Some notations (and standard conventions)

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

- H a complex separable Hilbert space.
- $L(\mathcal{H})$ the set of bounded operators on \mathcal{H} .
- \overline{A} the closure of a symmetric operator A on \mathcal{H} .
- lacksquare $\mathcal{B}(\mathbb{R})$ the Borel σ -algebra of \mathbb{R} .
- Observable (or measurement) a normalized POM (positive operator (valued) measure) E : B(R) → L(H).
- State of a quantum system positive operator T ∈ L(H) of trace one (density operator).
- Measurement outcome statistics of E in state T the probability measure X → Tr[TE(X)].
- P^A: B(R) → L(H) the spectral measure of a selfadjoint operator A (projection valued measurement).

Pirsa: 07120029

Page 46/119

10 × (40 × 13 × 13 × 3 × 00 0

Some notations (and standard conventions)

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

- H a complex separable Hilbert space.
- $L(\mathcal{H})$ the set of bounded operators on \mathcal{H} .
- \overline{A} the closure of a symmetric operator A on \mathcal{H} .
- $\mathbb{B}(\mathbb{R})$ the Borel σ -algebra of \mathbb{R} .
- Observable (or measurement) a normalized POM (positive operator (valued) measure) E : B(R) → L(H).
- State of a quantum system positive operator T ∈ L(H) of trace one (density operator).
- Measurement outcome statistics of E in state T the probability measure X → Tr[TE(X)].
- P^A: B(R) → L(H) the spectral measure of a selfadjoint operator A (projection valued measurement).

Pirsa: 07120029

Page 49/119

contractor and the contractor of the contractor

POVM [a,... a, s Pirsa: 07120029 Page 50/119 POVM

(a, ... ans

な(E,て)

a; E;

POVM

/ (a,... ans

な(E,て)

a; E;

POVM a; ち(E,て) E: 2(11)—Lau 5[E&17)

07120029

Page 53/119

POVM

[a,... a, s

th[Es, T)

th[Es, T)

POVIM

(th[E, T)

E: Sin)—Lau

th[EasT)

ZE, =I

POVM $\begin{cases}
\{a_1 \dots a_n\} \\
b_j \in \{\xi\} \\
b_j \in \{\xi\} \}
\end{cases}$ $E : X(m) \quad (a_j \dots a_n) \quad (a_j \dots$

POVM $\begin{cases}
(a_1 ... a_n) \\
(b_1 \in J)
\end{cases}$ $E: \Sigma(N) - L(Q)$ $E: \Sigma(N) - L(Q)$

Normalized POM

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

Definition

A set function $E: \mathcal{B}(\mathbb{R}) \to L(\mathcal{H})$ is a (normalized) POM, if

- $\mathbf{E}(\emptyset) = 0, \, \mathbf{E}(\mathbb{R}) = 1;$
- $0 \le E(X) \le I \text{ for all } X \in \mathcal{B}(\mathbb{R});$
- $E(\bigcup_{n\in\mathbb{N}} X_n) = \sum_{n\in\mathbb{N}} E(X_n)$ in the weak operator topology, for each disjoint sequence $(X_n) \subset \mathcal{B}(\mathbb{R})$.

For $\varphi, \psi \in \mathcal{H}$, denote $E_{\psi,\varphi}(X) := \langle \psi | E(X) \varphi \rangle$, $X \in \mathcal{B}(\mathbb{R})$. $E_{\psi,\varphi}$ is a complex measure.

CONTRACTOR SOLD

The moment operators of a POM

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector ■ The kth moment operator $\int x^k dE$ of a POM $E : \mathcal{B}(\mathbb{R}) \to L(\mathcal{H})$ is defined by

$$\langle \psi | (\int x^k dE) \varphi \rangle = \int x^k dE_{\psi,\varphi}(x) \quad \psi \in \mathcal{H}, \varphi \in D(x^k, E),$$

on the domain

$$D(\int x^k dE) := \{ \varphi \in \mathcal{H} | x^k \text{ is } E_{\psi,\varphi} \text{-integrable for all } \psi \in \mathcal{H} \}.$$

Pirea: 07120020

CONTRACTOR DE CO

POVM a; ち(E,て) Z E; = I E; ≥ 0 E: ZIN)-LOW ちにめて Sx -dE Page 60/119

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector For any input state T, the detection statistics are

$$\operatorname{Tr}[(UT \otimes |z)\langle z|U^*)P^{D_z}(X)], X \in \mathcal{B}(\mathbb{R}).$$

This is of the form Tr[TEZ(X)], with POM EZ defined as

$$E^{z}(X):=V_{z}^{*}P^{|z|^{-1}A}(X)V_{z},\ X\in\mathcal{B}(\mathbb{R}),$$

where
$$V_z: \mathcal{H} \ni \varphi \mapsto \varphi \otimes |z\rangle \in \mathcal{H} \otimes \mathcal{H}_{aux}$$
.

In the limit $r \to \infty$, $z = re^{i\theta}$, POM E^z should become the spectral measure P^{Q_θ} of the quadrature $Q_\theta = \frac{1}{\sqrt{2}}(e^{-i\theta}a + e^{i\theta}a^*)$. But in what sense?

Pirsa: 07120029

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4436

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector For any input state T, the detection statistics are

$$\operatorname{Tr}[(UT \otimes |z\rangle\langle z|U^*)P^{D_z}(X)], X \in \mathcal{B}(\mathbb{R}).$$

■ This is of the form Tr[TE²(X)], with POM E² defined as

$$E^{z}(X):=V_{z}^{*}P^{|z|^{-1}A}(X)V_{z}, X\in \mathcal{B}(\mathbb{R})$$

where
$$V_z: \mathcal{H} \ni \varphi \mapsto \varphi \otimes |z\rangle \in \mathcal{H} \otimes \mathcal{H}_{aux}$$

In the limit $r \to \infty$, $z = re^{i\theta}$, POM E^z should become the spectral measure P^{Q_θ} of the quadrature $Q_\theta = \frac{1}{\sqrt{2}}(e^{-i\theta}a + e^{i\theta}a^*)$. But in what sense?

TO A MODEL STATE OF MAN

-T 1000, 44,00 a, な(E,て) E: SEMO-LOW FLEGUT) Z E = I irsa: 0712002

15/ \$6-50 BEAM SIGUAL SPLITTER CPHERENT X 21476 Pirsa: 0712002

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector For any input state T, the detection statistics are

$$\operatorname{Tr}[(UT \otimes |z\rangle\langle z|U^*)P^{D_z}(X)], X \in \mathcal{B}(\mathbb{R}).$$

■ This is of the form Tr[TE²(X)], with POM E² defined as

$$E^{z}(X):=V_{z}^{*}P^{|z|^{-1}A}(X)V_{z}, X\in \mathcal{B}(\mathbb{R}),$$

where
$$V_z: \mathcal{H} \ni \varphi \mapsto \varphi \otimes |z\rangle \in \mathcal{H} \otimes \mathcal{H}_{aux}$$
.

In the limit $r \to \infty$, $z = re^{i\theta}$, POM E^z should become the spectral measure P^{Q_θ} of the quadrature $Q_\theta = \frac{1}{\sqrt{2}}(e^{-i\theta}a + e^{i\theta}a^*)$. But in what sense?

THE REPORT OF THE PARTY OF THE

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector For any input state T, the detection statistics are

$$\operatorname{Tr}[(UT \otimes |z\rangle\langle z|U^*)P^{D_z}(X)], X \in \mathcal{B}(\mathbb{R}).$$

■ This is of the form $Tr[TE^z(X)]$, with POM E^z defined as

$$E^{z}(X):=V_{z}^{*}P^{|z|^{-1}A}(X)V_{z}, X\in \mathcal{B}(\mathbb{R}),$$

where
$$V_z : \mathcal{H} \ni \varphi \mapsto \varphi \otimes |z\rangle \in \mathcal{H} \otimes \mathcal{H}_{aux}$$
.

In the limit $r \to \infty$, $z = re^{i\theta}$, POM E^z should become the spectral measure P^{Q_θ} of the quadrature $Q_\theta = \frac{1}{\sqrt{2}}(e^{-i\theta}a + e^{i\theta}a^*)$. But in what sense?

A DELL'ARTE DELL'ARTER DELL'ARTER

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.443

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector For any input state T, the detection statistics are

$$\operatorname{Tr}[(UT \otimes |z\rangle\langle z|U^*)P^{D_z}(X)], X \in \mathcal{B}(\mathbb{R}).$$

■ This is of the form $Tr[TE^z(X)]$, with POM E^z defined as

$$E^z(X):=V_z^*P^{|z|^{-1}A}(X)V_z, X\in \mathcal{B}(\mathbb{R}),$$

where $V_z : \mathcal{H} \ni \varphi \mapsto \varphi \otimes |z\rangle \in \mathcal{H} \otimes \mathcal{H}_{aux}$.

In the limit $r \to \infty$, $z = re^{i\theta}$, POM E^z should become the spectral measure $P^{Q_{\theta}}$ of the quadrature $Q_{\theta} = \frac{1}{\sqrt{2}}(e^{-i\theta}a + e^{i\theta}a^*)$. But in what sense?

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector E. Vogel argued (basing on the method of characteristic functions) that for each state T,

$$\lim_{r\to\infty} \mathrm{Tr}[TE^{re^{i\theta}}(X)] = \mathrm{Tr}[TP^{Q_{\theta}}(X)],$$

if $X \in \mathcal{B}(\mathbb{R})$ is such that $\text{Tr}[TP^{Q_{\theta}}(\partial X)] = 0$ (E. Vogel, Operationale Untersuchung von quantenoptischen Meßprozessen, Shaker Verlag, Aachen, 1996).

Pirea: 07120020

ID - IM - IB - IB - AQA

Observables measured by the detector

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector E. Vogel argued (basing on the method of characteristic functions) that for each state T,

$$\lim_{r\to\infty} \mathrm{Tr}[TE^{re^{i\theta}}(X)] = \mathrm{Tr}[TP^{Q_{\theta}}(X)],$$

if $X \in \mathcal{B}(\mathbb{R})$ is such that $\text{Tr}[TP^{Q_{\theta}}(\partial X)] = 0$ (E. Vogel, Operationale Untersuchung von quantenoptischen Meßprozessen, Shaker Verlag, Aachen, 1996).

Pirea: 07120020

ID A MARKET BARRAGE MOOR

ACU DE (X) ISI-20 DA(X)

Pires: 07120020

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

 $\blacksquare \int x dE^z \supset Q_\theta |_{D(a)}, \quad z = |z|e^{i\theta}$

$$\int x^2 dE^z \supset (Q_\theta|_{D(a)})^2 + \frac{1}{2} \frac{1}{|z|^2} N.$$

$$\int x^k dE^z)|_{D(a^k)} = (Q_\theta|_{D(a)})^k + \frac{1}{|z|^2} C_k(z)$$

 $C_k(z)$ is an operator such that $D(a^k) \subset D(C_k(z))$, and $z \mapsto \langle \psi | C_k(z) \varphi \rangle$ is bounded in the region $|z| \geq 1$ for each $\psi \in \mathcal{H}$, $\varphi \in D(a^k)$.

Each moment converges in the high amplitude limit

$$\lim_{r\to\infty} \langle \psi | (\int x^k dE^{re^{i\theta}}) \varphi \rangle = \langle \psi | Q_{\theta}^k \varphi \rangle,$$

for $\theta \in [0, 2\pi)$, $k \in \mathbb{N}$, $\psi \in \mathcal{H}$, $\varphi \in \bigcap_{m=0}^{\infty} D(a^m)$

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4436

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

 $\blacksquare \int x dE^z \supset Q_\theta |_{D(a)}, \quad z = |z| e^{i\theta}$

$$\int x^k dE^z|_{D(a^k)} = (Q_\theta|_{D(a)})^k + \frac{1}{|z|^2} C_k(z).$$

 $C_k(z)$ is an operator such that $D(a^k) \subset D(C_k(z))$, and $z \mapsto \langle \psi | C_k(z) \varphi \rangle$ is bounded in the region $|z| \geq 1$ for each $\psi \in \mathcal{H}$, $\varphi \in D(a^k)$.

Each moment converges in the high amplitude limit

$$\lim_{r\to\infty} \langle \psi | (\int x^k dE^{re^{i\theta}}) \varphi \rangle = \langle \psi | Q_{\theta}^k \varphi \rangle$$

for $\theta \in [0, 2\pi)$, $k \in \mathbb{N}$, $\psi \in \mathcal{H}$, $\varphi \in \bigcap_{m=0}^{\infty} D(a^m)$

Observables measured by the detector

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4436

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector For any input state T, the detection statistics are

$$\operatorname{Tr}[(UT \otimes |z\rangle\langle z|U^*)P^{D_z}(X)], X \in \mathcal{B}(\mathbb{R}).$$

■ This is of the form $Tr[TE^z(X)]$, with POM E^z defined as

$$E^{z}(X):=V_{z}^{*}P^{|z|^{-1}A}(X)V_{z}, X\in \mathcal{B}(\mathbb{R}),$$

where
$$V_z : \mathcal{H} \ni \varphi \mapsto \varphi \otimes |z\rangle \in \mathcal{H} \otimes \mathcal{H}_{aux}$$
.

In the limit $r \to \infty$, $z = re^{i\theta}$, POM E^z should become the spectral measure P^{Q_θ} of the quadrature $Q_\theta = \frac{1}{\sqrt{2}}(e^{-i\theta}a + e^{i\theta}a^*)$. But in what sense?

THE REPORT OF THE PROPERTY OF

Observables measured by the detector

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4436

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector E. Vogel argued (basing on the method of characteristic functions) that for each state T,

$$\lim_{r\to\infty} \mathrm{Tr}[TE^{re^{i\theta}}(X)] = \mathrm{Tr}[TP^{Q_{\theta}}(X)],$$

if $X \in \mathcal{B}(\mathbb{R})$ is such that $\text{Tr}[TP^{Q_{\theta}}(\partial X)] = 0$ (E. Vogel, Operationale Untersuchung von quantenoptischen Meßprozessen, Shaker Verlag, Aachen, 1996).

Pirsa: 07120020

(D) (A) (B) (B) (B) (O)

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

$$\int x^2 dE^z \supset (Q_\theta|_{D(a)})^2 + \frac{1}{2} \frac{1}{|z|^2} N.$$

 $\int x^k dE^z|_{D(a^k)} = (Q_\theta|_{D(a)})^k + \frac{1}{|z|^2} C_k(z).$

 $C_k(z)$ is an operator such that $D(a^k) \subset D(C_k(z))$, and $z \mapsto \langle \psi | C_k(z) \varphi \rangle$ is bounded in the region $|z| \geq 1$ for each $\psi \in \mathcal{H}$, $\varphi \in D(a^k)$.

Each moment converges in the high amplitude limit

$$\lim_{r\to\infty} \langle \psi | (\int x^k dE^{re^{i\theta}}) \varphi \rangle = \langle \psi | Q_{\theta}^k \varphi \rangle,$$

for $\theta \in [0, 2\pi)$, $k \in \mathbb{N}$, $\psi \in \mathcal{H}$, $\varphi \in \bigcap_{m=0}^{\infty} D(a^m)$

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

$$(\int x^k dE^z)|_{D(a^k)} = (Q_\theta|_{D(a)})^k + \frac{1}{|z|^2} C_k(z)$$

 $C_k(z)$ is an operator such that $D(a^k) \subset D(C_k(z))$, and $z \mapsto \langle \psi | C_k(z) \varphi \rangle$ is bounded in the region $|z| \ge 1$ for each $\psi \in \mathcal{H}$, $\varphi \in D(a^k)$.

Each moment converges in the high amplitude limit

$$\lim_{r \to \infty} \langle \psi | (\int x^k dE^{re^{i\theta}}) \varphi \rangle = \langle \psi | Q_{\theta}^k \varphi \rangle,$$

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

$$(\int x^k dE^z)|_{D(a^k)} = (Q_\theta|_{D(a)})^k + \frac{1}{|z|^2}C_k(z),$$

 $C_k(z)$ is an operator such that $D(a^k) \subset D(C_k(z))$, and $z \mapsto \langle \psi | C_k(z) \varphi \rangle$ is bounded in the region $|z| \ge 1$ for each $\psi \in \mathcal{H}$, $\varphi \in D(a^k)$.

Each moment converges in the high amplitude limit:

$$\lim_{r\to\infty} \langle \psi | (\int x^k dE^{re^{j\theta}}) \varphi \rangle = \langle \psi | Q_{\theta}^k \varphi \rangle,$$

Li EIN> INGINZ 2=1218 AMPLITUDE BEAM SIGUAL SPLITTER COHERENT

a: 07120029

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector $(\int x^k dE^z)|_{D(a^k)} = (Q_\theta|_{D(a)})^k + \frac{1}{|z|^2}C_k(z),$

 $C_k(z)$ is an operator such that $D(a^k) \subset D(C_k(z))$, and $z \mapsto \langle \psi | C_k(z) \varphi \rangle$ is bounded in the region $|z| \ge 1$ for each $\psi \in \mathcal{H}$, $\varphi \in D(a^k)$.

Each moment converges in the high amplitude limit:

$$\lim_{r\to\infty} \langle \psi | (\int x^k dE^{re^{i\theta}}) \varphi \rangle = \langle \psi | Q_{\theta}^k \varphi \rangle,$$

for $\theta \in [0, 2\pi)$, $k \in \mathbb{N}$, $\psi \in \mathcal{H}$, $\varphi \in \bigcap_{m=0}^{\infty} D(a^m)$.

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

Theorem

Let $E^n : \mathcal{B}(\mathbb{R}) \to L(\mathcal{H})$ be a POM for each $n \in \mathbb{N}$, and let $\mathcal{D} \subset \mathcal{H}$ be a dense subspace. Assume that

$$\lim_{n\to\infty} \langle \varphi | (\int x^k dE^n) \varphi \rangle$$
 exists for all $k \in \mathbb{N}, \varphi \in \mathcal{D}$.

Then there exists a POM E such that

$$\lim_{n\to\infty} \langle \varphi | (\int x^k dE^n) \varphi \rangle = \langle \varphi | (\int x^k dE) \varphi \rangle, \ k \in \mathbb{N}, \varphi \in \mathcal{D}. \ (1)$$

- (1) E is the only POM with the property (1).
- (2) $\lim_{n\to\infty} E^n(X) = E(X)$ (weak op. top.) whenever $X \in \mathcal{B}(\mathbb{R})$, and $E(\partial X) = 0$.

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4436

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

Theorem

Let $E^n : \mathcal{B}(\mathbb{R}) \to L(\mathcal{H})$ be a POM for each $n \in \mathbb{N}$, and let $\mathcal{D} \subset \mathcal{H}$ be a dense subspace. Assume that

$$\lim_{n\to\infty}\langle\varphi|(\int x^k\,dE^n)\varphi\rangle \text{ exists for all }k\in\mathbb{N},\varphi\in\mathcal{D}.$$

Then there exists a POM E such that

$$\lim_{n\to\infty} \langle \varphi | (\int x^k dE^n) \varphi \rangle = \langle \varphi | (\int x^k dE) \varphi \rangle, \ k \in \mathbb{N}, \varphi \in \mathcal{D}. \ (1)$$

Page 85/119

- (1) E is the only POM with the property (1).
- (2) $\lim_{n\to\infty} E^n(X) = E(X)$ (weak op. top.) whenever $X \in \mathcal{B}(\mathbb{R})$, and $E(\partial X) = 0$.

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

Theorem

Let $E^n : \mathcal{B}(\mathbb{R}) \to L(\mathcal{H})$ be a POM for each $n \in \mathbb{N}$, and let $\mathcal{D} \subset \mathcal{H}$ be a dense subspace. Assume that

$$\lim_{n\to\infty}\langle\varphi|(\int x^k\,dE^n)\varphi\rangle \text{ exists for all }k\in\mathbb{N},\varphi\in\mathcal{D}.$$

Then there exists a POM E such that

$$\lim_{n\to\infty} \langle \varphi | (\int x^k dE^n) \varphi \rangle = \langle \varphi | (\int x^k dE) \varphi \rangle, \ k \in \mathbb{N}, \varphi \in \mathcal{D}. \ (1)$$

- (1) E is the only POM with the property (1).
- (2) $\lim_{n\to\infty}E^n(X)=E(X)$ (weak op. top.) whenever Page 86/119

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

Theorem

Let $E^n : \mathcal{B}(\mathbb{R}) \to L(\mathcal{H})$ be a POM for each $n \in \mathbb{N}$, and let $\mathcal{D} \subset \mathcal{H}$ be a dense subspace. Assume that

$$\lim_{n\to\infty}\langle\varphi|(\int x^k\,dE^n)\varphi\rangle \text{ exists for all }k\in\mathbb{N},\varphi\in\mathcal{D}.$$

Then there exists a POM E such that

$$\lim_{n\to\infty} \langle \varphi | (\int x^k dE^n) \varphi \rangle = \langle \varphi | (\int x^k dE) \varphi \rangle, \ k \in \mathbb{N}, \varphi \in \mathcal{D}. \ (1)$$

Page 87/119

If measures $X \mapsto \langle \varphi | E(X)\varphi \rangle$, $\varphi \in \mathcal{D}$ are determinate, then

E is the only POM with the property (1).

(2)
$$\lim_{n\to\infty} E^n(X) = E(X)$$
 (weak op. top.) whenever $X \in \mathcal{B}(\mathbb{R})$, and $E(\partial X) = 0$.

E,T) ZE,=I M:X(R)-N(O,W) E;20 (F 1) DETERMINATE: IF E: ZIN)—LOU SX8-DE IN DETERMINED STATES ち(EO)て)

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

Theorem

Let $E^n : \mathcal{B}(\mathbb{R}) \to L(\mathcal{H})$ be a POM for each $n \in \mathbb{N}$, and let $\mathcal{D} \subset \mathcal{H}$ be a dense subspace. Assume that

$$\lim_{n\to\infty}\langle\varphi|(\int x^k\,dE^n)\varphi\rangle \text{ exists for all }k\in\mathbb{N},\varphi\in\mathcal{D}.$$

Then there exists a POM E such that

$$\lim_{n\to\infty} \langle \varphi | (\int x^k dE^n) \varphi \rangle = \langle \varphi | (\int x^k dE) \varphi \rangle, \ k \in \mathbb{N}, \varphi \in \mathcal{D}. \ (1)$$

Page 89/119

- E is the only POM with the property (1).
- (2) $\lim_{n\to\infty} E^n(X) = E(X)$ (weak op. top.) whenever $X \in \mathcal{B}(\mathbb{R})$, and $E(\partial X) = 0$.

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4436

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

Theorem

Let $E^n : \mathcal{B}(\mathbb{R}) \to L(\mathcal{H})$ be a POM for each $n \in \mathbb{N}$, and let $\mathcal{D} \subset \mathcal{H}$ be a dense subspace. Assume that

$$\lim_{n\to\infty}\langle\varphi|(\int x^k\,dE^n)\varphi\rangle \text{ exists for all }k\in\mathbb{N},\varphi\in\mathcal{D}.$$

Then there exists a POM E such that

$$\lim_{n\to\infty} \langle \varphi | (\int x^k dE^n) \varphi \rangle = \langle \varphi | (\int x^k dE) \varphi \rangle, \ k \in \mathbb{N}, \varphi \in \mathcal{D}. \ (1)$$

Page 90/119

- E is the only POM with the property (1).
- (2) $\lim_{n\to\infty} E^n(X) = E(X)$ (weak op. top.) whenever $X \in \mathcal{B}(\mathbb{R})$, and $E(\partial X) = 0$.

抗(E;て) U , M: R(R)-を: 32(M)-ち(E&) で) Page 91/119

丸(E;て) ノ (M: R(R)-E: Z(m)-丸(E&) て)

Page 92/119

九(E;て) U , M: R(R)-E: 2(m)-九(EOUT)

九(E;て) ノ (R)-E: 3(m)-ち(EOUT)

Pirsa: 07120029

Page 94/119

Moment problem and homodyne detection

J. Klukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector Theorem

Let $E^n : \mathcal{B}(\mathbb{R}) \to L(\mathcal{H})$ be a POM for each $n \in \mathbb{N}$, and let $\mathcal{D} \subset \mathcal{H}$ be a dense subspace. Assume that

$$\lim_{n\to\infty}\langle\varphi|(\int x^k\,dE^n)\varphi\rangle \text{ exists for all }k\in\mathbb{N},\varphi\in\mathcal{D}.$$

Then there exists a POM E such that

$$\lim_{n\to\infty} \langle \varphi | (\int x^k dE^n) \varphi \rangle = \langle \varphi | (\int x^k dE) \varphi \rangle, \ k \in \mathbb{N}, \varphi \in \mathcal{D}. \ (1)$$

Page 95/119

- E is the only POM with the property (1).
- (2) $\lim_{n\to\infty} E^n(X) = E(X)$ (weak op. top.) whenever $X \in \mathcal{B}(\mathbb{R})$, and $E(\partial X) = 0$.

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4436

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector Fix $\theta \in [0, 2\pi)$, and take $z_n(\theta) = r_n e^{i\theta}$, with $\lim_{n\to\infty} r_n = \infty$.

Then

For all $k \in \mathbb{N}$, $\varphi \in \mathcal{D}_{coh}$, we have

■ For any $\varphi \in \mathcal{D}_{coh}$, the measure $X \mapsto \langle \varphi | P^{Q_{\theta}}(X) \varphi \rangle$ is determined by its moments.

Hence, the preceding theorem can be applied, with $E^n = E^{z_n(\theta)}$, $\mathcal{D} = \mathcal{D}_{coh}$, and $E = P^{Q_\theta}$.

ID > IMD I E I IE > E OQO

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4436

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector Fix $\theta \in [0, 2\pi)$, and take $z_n(\theta) = r_n e^{i\theta}$, with $\lim_{n\to\infty} r_n = \infty$. Denote $\mathcal{D}_{coh} = \text{span } \{ |\alpha\rangle \mid \alpha \in \mathbb{C} \}$.

Then

For all $k \in \mathbb{N}$, $\varphi \in \mathcal{D}_{coh}$, we have

 $\lim_{n\to\infty} \langle \varphi | (\int x^k dE^{z_n(\theta)}) \varphi \rangle = \langle \varphi | Q_n^k \varphi \rangle,$

■ For any $\varphi \in \mathcal{D}_{coh}$, the measure $X \mapsto \langle \varphi | P^{Q_{\theta}}(X) \varphi \rangle$ is determined by its moments.

Hence, the preceding theorem can be applied, with $E^n = E^{z_n(\theta)}$, $\mathcal{D} = \mathcal{D}_{coh}$, and $E = P^{Q_\theta}$.

CONTRACTOR S ORGA

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector Fix $\theta \in [0, 2\pi)$, and take $z_n(\theta) = r_n e^{i\theta}$, with $\lim_{n\to\infty} r_n = \infty$. Denote $\mathcal{D}_{coh} = \text{span } \{ |\alpha\rangle \mid \alpha \in \mathbb{C} \}$.

Then

For all $k \in \mathbb{N}$, $\varphi \in \mathcal{D}_{coh}$, we have

$$\lim_{n\to\infty} \langle \varphi | (\int x^k dE^{z_n(\theta)}) \varphi \rangle = \langle \varphi | Q_{\theta}^k \varphi \rangle,$$

For any φ ∈ D_{coh}, the measure X → ⟨φ|P^{Qθ}(X)φ⟩ is determined by its moments.

Hence, the preceding theorem can be applied, with $E^n = E^{z_n(\theta)}$, $\mathcal{D} = \mathcal{D}_{coh}$, and $E = P^{Q_\theta}$.

A DIRECT OF THE STATE OF THE ST

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.443

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector Fix $\theta \in [0, 2\pi)$, and take $z_n(\theta) = r_n e^{i\theta}$, with $\lim_{n\to\infty} r_n = \infty$. Denote $\mathcal{D}_{coh} = \text{span } \{ |\alpha\rangle \mid \alpha \in \mathbb{C} \}$.

Then

For all $k \in \mathbb{N}$, $\varphi \in \mathcal{D}_{coh}$, we have

$$\lim_{n\to\infty} \langle \varphi | (\int x^k dE^{z_n(\theta)}) \varphi \rangle = \langle \varphi | Q_{\theta}^k \varphi \rangle,$$

For any $\varphi \in \mathcal{D}_{coh}$, the measure $X \mapsto \langle \varphi | P^{Q_{\theta}}(X) \varphi \rangle$ is determined by its moments.

Hence, the preceding theorem can be applied, with $E^n = E^{z_n(\theta)}$, $\mathcal{D} = \mathcal{D}_{coh}$, and $E = P^{Q_\theta}$.

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4436

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector Fix $\theta \in [0, 2\pi)$, and take $z_n(\theta) = r_n e^{i\theta}$, with $\lim_{n\to\infty} r_n = \infty$. Denote $\mathcal{D}_{coh} = \text{span } \{ |\alpha\rangle \mid \alpha \in \mathbb{C} \}$.

Then

For all $k \in \mathbb{N}$, $\varphi \in \mathcal{D}_{coh}$, we have

$$\lim_{n\to\infty} \langle \varphi | (\int x^k dE^{z_n(\theta)}) \varphi \rangle = \langle \varphi | Q_{\theta}^k \varphi \rangle,$$

For any $\varphi \in \mathcal{D}_{coh}$, the measure $X \mapsto \langle \varphi | P^{Q_{\theta}}(X) \varphi \rangle$ is determined by its moments.

Hence, the preceding theorem can be applied, with $E^n = E^{z_n(\theta)}$, $\mathcal{D} = \mathcal{D}_{coh}$, and $E = P^{Q_{\theta}}$.

CONTRACTOR S COLO

Conclusion on the high amplitude limit

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

The convergence of moments

$$\lim_{n\to\infty} \langle \varphi | (\int x^k dE^{z_n(\theta)}) \varphi \rangle = \langle \varphi | Q_{\theta}^k \varphi \rangle, \ \ \varphi \in \mathcal{D}_{coh},$$

determines uniquely the limiting observable as Q_{θ} .

■ $\lim_{n\to\infty} E^{z_n(\theta)}(X) = P^{Q_{\theta}}(X)$ (weakly) for all $X \in \mathcal{B}(\mathbb{R})$ with $\lambda(\partial X) = 0$ (λ Lebesgue measure.)

In other words

- The limits on the moments of the measurement statistics for the (superpositions of) coherent states determine the limiting observable as Q_θ.
- For any state T, the quadrature probability $Tr[TP^{Q_g}(X)]$ is obtained as the limit of a sequence of actual measurement outcome probabilities, provided to Page 101/119

Conclusion on the high amplitude limit

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector The convergence of moments

$$\lim_{n\to\infty} \langle \varphi | (\int x^k dE^{z_n(\theta)}) \varphi \rangle = \langle \varphi | Q_{\theta}^k \varphi \rangle, \quad \varphi \in \mathcal{D}_{coh},$$

determines uniquely the limiting observable as Q_{θ} .

■ $\lim_{n\to\infty} E^{z_n(\theta)}(X) = P^{Q_{\theta}}(X)$ (weakly) for all $X \in \mathcal{B}(\mathbb{R})$ with $\lambda(\partial X) = 0$ (λ Lebesgue measure.)

In other words,

- The limits on the moments of the measurement statistics for the (superpositions of) coherent states determine the limiting observable as Q_θ.
- For any state T, the quadrature probability Tr[TP^{Qθ}(X)] is obtained as the limit of a sequence of actual measurement outcome probabilities, provided that ∂X has zero Lebesque measure.

Pirsa: 07120029

 $Y \subset R$ $P_{\tau}^{z}(X)$ $\xrightarrow{|z|-\infty} P_{\tau}^{u_{r}}(\underline{x})$ $\lim_{n\to\infty} P_{\tau}^{z_{n}}(\underline{x})$

Pirsa: 07120029

Page 103/119

 $\operatorname{ACR} P_{L}^{s}(X) \stackrel{|z| \to a}{\longrightarrow} P_{L}^{q_{s}}(X)$ $\lim_{N \to a} P_{L}^{s}(X) = P_{L}^{q_{s}}(X)$

Pirsa: 07120029

Page 104/119

=1 1000

$$P_{L}(R) = P_{L}(R) \xrightarrow{|S|-20} P_{L}(R) \xrightarrow{|S|-20} P_{L}(R)$$

$$P_{L}(R) = P_{L}(R) \xrightarrow{|S|-20} P_{L}(R)$$

$$P_{\tau}^{r}(s) = P$$

6.0

 $P_{T}^{2}(X) \stackrel{|z| \to 0}{\longrightarrow} P_{T}^{4}(X) \xrightarrow{|z| \to 0} P_{T}^{4}(X)$ $\lim_{N \to \infty} P_{T}^{2}(X) = P_{T}^{4}(X) \xrightarrow{|z| \to 0} P_{T}^{4}(X)$

7-(a, u) JY = la, u)

Conclusion on the high amplitude limit

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector The convergence of moments

$$\lim_{n\to\infty} \langle \varphi | (\int \mathbf{x}^k \, d\mathbf{E}^{\mathbf{z}_n(\theta)}) \varphi \rangle = \langle \varphi | \mathbf{Q}_{\theta}^k \varphi \rangle, \ \ \varphi \in \mathcal{D}_{coh},$$

determines uniquely the limiting observable as Q_{θ} .

■ $\lim_{n\to\infty} E^{z_n(\theta)}(X) = P^{Q_{\theta}}(X)$ (weakly) for all $X \in \mathcal{B}(\mathbb{R})$ with $\lambda(\partial X) = 0$ (λ Lebesgue measure.)

In other words,

- The limits on the moments of the measurement statistics for the (superpositions of) coherent states determine the limiting observable as Q_θ.
- For any state T, the quadrature probability Tr[TP^{Qθ}(X)] is obtained as the limit of a sequence of actual measurement outcome probabilities, provided that ∂X has zero Lebesque measure.

Pirsa: 07120029

An application to eight-port homodyne detector

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector Define the Weyl operators $W(q,p) = e^{i\frac{1}{2}qp}e^{-iqP}e^{ipQ}$, $(q,p) \in \mathbb{R}^2$, in terms of quadratures $Q = \frac{1}{\sqrt{2}}\overline{(a^* + a)}$, $P = \frac{1}{\sqrt{2}}i\overline{(a^* - a)}$.

Eight-port homodyne detector is argued to provide a way to measure covariant phase space observables

$$E^S(Z)=\int_Z W(q,p)SW(q,p)^*\,dqdp,\,\,\,Z\in\mathcal{B}(\mathbb{R}^2).$$

We make this statement precise.

- Input 4 is in a coherent state $|\sqrt{2}z\rangle$, and we have two detection observables: $|z|^{-1}(a_3^*a_3-a_1^*a_1)$ and $|z|^{-1}(a_4^*a_4-a_5^*a_2)$.
- Page 108/119

CONTRACTOR S CONTRACTOR

Summary

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4436

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

- Moments of the observables measured in the balanced homodyne detector converge to the moments of a quadrature operator, in the high amplitude limit of the auxiliary oscillator.
- According to a general theorem, this ensures that (most of) the POM elements of the observables converge weakly to the corresponding elements of the quadrature spectral measure. --> quadrature measurement is indeed achieved.
- Each covariant phase space observable is obtained similarly as the high amplitude limit in the eight-port homodyne detector.

Pirea: 07120020

Page 109/119

CONTRACTOR DE CO

An application to eight-port homodyne detector

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector Define the Weyl operators $W(q,p) = e^{i\frac{1}{2}qp}e^{-iqP}e^{ipQ}$, $(q,p) \in \mathbb{R}^2$, in terms of quadratures $Q = \frac{1}{\sqrt{2}}\overline{(a^* + a)}$, $P = \frac{1}{\sqrt{2}}i\overline{(a^* - a)}$.

 Eight-port homodyne detector is argued to provide a way to measure covariant phase space observables

$$E^{S}(Z) = \int_{Z} W(q,p)SW(q,p)^{*} dqdp, \ Z \in \mathcal{B}(\mathbb{R}^{2}).$$

We make this statement precise.

- Input 4 is in a coherent state $|\sqrt{2}z\rangle$, and we have two detection observables: $|z|^{-1}(a_3^*a_3-a_1^*a_1)$ and $|z|^{-1}(a_4^*a_4-a_2^*a_2)$.
- Feed states T and S to inputs 1 and 2 (input 3 is left empty).
 Page 110/119

Conclusion on the high amplitude limit

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

The convergence of moments

$$\lim_{n\to\infty} \langle \varphi | (\int \mathbf{x}^k \, d\mathbf{E}^{\mathbf{z}_n(\theta)}) \varphi \rangle = \langle \varphi | \mathbf{Q}_{\theta}^k \varphi \rangle, \ \ \varphi \in \mathcal{D}_{coh},$$

determines uniquely the limiting observable as Q_{θ} .

■ $\lim_{n\to\infty} E^{z_n(\theta)}(X) = P^{Q_{\theta}}(X)$ (weakly) for all $X \in \mathcal{B}(\mathbb{R})$ with $\lambda(\partial X) = 0$ (λ Lebesgue measure.)

In other words

- The limits on the moments of the measurement statistics for the (superpositions of) coherent states determine the limiting observable as Q_θ.
- For any state in the quadrature probability in Televice)
 is obtained as the limit as sequence of actual
 Page 111/119

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector Fix $\theta \in [0, 2\pi)$, and take $z_n(\theta) = r_n e^{i\theta}$, with $\lim_{n\to\infty} r_n = \infty$. Denote $\mathcal{D}_{coh} = \text{span } \{ |\alpha\rangle \mid \alpha \in \mathbb{C} \}$.

Then

For all $k \in \mathbb{N}$, $\varphi \in \mathcal{D}_{coh}$, we have

$$\lim_{n\to\infty} \langle \varphi | (\int x^k dE^{z_n(\theta)}) \varphi \rangle = \langle \varphi | Q_{\theta}^k \varphi \rangle,$$

For any $\varphi \in \mathcal{D}_{coh}$, the measure $X \mapsto \langle \varphi | P^{Q_{\theta}}(X) \varphi \rangle$ is determined by its moments.

Hence, the preceding theorem can be applied, with $E^n = E^{z_n(\theta)}$, $\mathcal{D} = \mathcal{D}_{coh}$, and $E = P^{Q_{\theta}}$.

Conclusion on the high amplitude limit

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector The convergence of moments

$$\lim_{n\to\infty} \langle \varphi | (\int \mathbf{x}^k \, d\mathbf{E}^{\mathbf{z}_n(\theta)}) \varphi \rangle = \langle \varphi | \mathbf{Q}_{\theta}^k \varphi \rangle, \ \ \varphi \in \mathcal{D}_{coh},$$

determines uniquely the limiting observable as Q_{θ} .

■ $\lim_{n\to\infty} E^{z_n(\theta)}(X) = P^{Q_{\theta}}(X)$ (weakly) for all $X \in \mathcal{B}(\mathbb{R})$ with $\lambda(\partial X) = 0$ (λ Lebesgue measure.)

In other words,

- The limits on the moments of the measurement statistics for the (superpositions of) coherent states determine the limiting observable as Q_θ.
- For any state T, the quadrature probability Tr[TP^{Qθ}(X)] is obtained as the limit of a sequence of actual measurement outcome probabilities, provided that ∂X has zero Lebesque measure.

An application to eight-port homodyne detector

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector Define the Weyl operators $W(q,p) = e^{i\frac{1}{2}qp}e^{-iqP}e^{ipQ}$, $(q,p) \in \mathbb{R}^2$, in terms of quadratures $Q = \frac{1}{\sqrt{2}}\overline{(a^* + a)}$, $P = \frac{1}{\sqrt{2}}i\overline{(a^* - a)}$.

Eight-port homodyne detector is argued to provide a way to measure covariant phase space observables

$$E^S(Z)=\int_Z W(q,p)SW(q,p)^*\,dqdp,\,\,\,Z\in\mathcal{B}(\mathbb{R}^2).$$

We make this statement precise

- Input 4 is in a coherent state $|\sqrt{2z}\rangle$, and we have two detection observables: $|z|^{-1}(a_3^*a_3-a_1^*a_1)$ and $|z|^{-1}(a_4^*a_4-a_2^*a_2)$.
- Page 114/119

10 × (40 × 3 × 43 × 3 × 00 0

Conclusion on the high amplitude limit

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector The convergence of moments

$$\lim_{n\to\infty} \langle \varphi | (\int \mathbf{x}^k \, d\mathbf{E}^{\mathbf{z}_n(\theta)}) \varphi \rangle = \langle \varphi | \mathbf{Q}_{\theta}^k \varphi \rangle, \ \ \varphi \in \mathcal{D}_{coh},$$

determines uniquely the limiting observable as Q_{θ} .

■ $\lim_{n\to\infty} E^{z_n(\theta)}(X) = P^{Q_{\theta}}(X)$ (weakly) for all $X \in \mathcal{B}(\mathbb{R})$ with $\lambda(\partial X) = 0$ (λ Lebesgue measure.)

In other words

- The limits on the moments of the measurement statistics for the (superpositions of) coherent states determine the limiting observable as Q_θ.
- Page 115/119

a lus = Nat ACLU DE (X) ISI-20 De (X) $\lim_{N\to\infty} P_{\infty}^{T}(x) = P_{\infty}^{T}(x) = P_{\infty}^{T}(x) = 0$ 7-(a, a) JY = 2a, u) min to (T E'a(E)) = to (T P QE(E))

Page 116/119

LY (R) Y(RX) Y = (a, u) $\partial Y = \{a, u\}$ min to (T E'n(x)) = to (T P QE(x))

17 (8), MOXI-7-(a, a) JY = 2a, us min to (T E'n(x)) - to (T P QE(x))

Conclusion on the high amplitude limit

Moment problem and homodyne detection

J. Kiukas (with P. Lahti) arXiv:0706.4438

Introduction

Balanced homodyne detector observables and their moment operators

Limit of strong auxiliary field

An application to eight-port homodyne detector

The convergence of moments

$$\lim_{n\to\infty} \langle \varphi | (\int \mathbf{x}^k \, d\mathbf{E}^{\mathbf{z}_n(\theta)}) \varphi \rangle = \langle \varphi | \mathbf{Q}_{\theta}^k \varphi \rangle, \ \ \varphi \in \mathcal{D}_{coh},$$

determines uniquely the limiting observable as Q_{θ} .

■ $\lim_{n\to\infty} E^{z_n(\theta)}(X) = P^{Q_{\theta}}(X)$ (weakly) for all $X \in \mathcal{B}(\mathbb{R})$ with $\lambda(\partial X) = 0$ (λ Lebesgue measure.)

In other words

- The limits on the moments of the measurement statistics for the (superpositions of) coherent states determine the limiting observable as Q_θ.
- Page 119/119