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Abstract: We describe the measurement statistics of the balanced homodyne detection scheme in terms of the moment operators of the associated
positive operator measures. In particular, we give a mathematically rigorous proof for the fact that the high amplitude limit in the local oscillator
leads to a measurement of a rotated quadrature operator of the signal _eld. Using these results, we also show that each covariant phase space
observable can be measured with the eight-port homodyne detector.
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‘.T,’ The balanced homodyne detection

oroplem and m is an established measurement technique in quantum
detection optics (first introduced by Yuen & Chan 1983).

. Kiukas ®m used e.g. in quantum state reconstruction.
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introduction

The balanced homodyne detection

m is an established measurement technique in quantum
optics (first introduced by Yuen & Chan 1983).

®m used e.g. in quantum state reconstruction.
m The technique:
- signal beam mixed with an auxiliary coherent beam via
a beam splitter
- photons counted at the output ports ~ ny, n»
- The scaled difference (ny — n2)/|z| recorded, |z| being
the aux field amplitude.
- result depends on the phase difference 6 between the
Input beams.
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‘;’ The balanced homodyne detection

Introduction

m is an established measurement technique in gquantum
optics (first introduced by Yuen & Chan 1983).

®m used e.g. in quantum state reconstruction.

m The technique:
- signal beam mixed with an auxiliary coherent beam via

a beam splitter
- photons counted at the output ports ~ ny,

- The scaled difference (ny — n2)/|z| recorded, |z| being
the aux field amplitude.
- result depends on the phase difference 6 between the

input beams.
m Claim: For strong aux field (large |z|), this amounts to
measuring the rotated quadrature operators
Q = —‘\/E(e—fﬂa + e'%g*) of the signal field.
m The purpose of this talk is to give a rigorous
mathematical meaning to this claim.
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‘;’ The balanced homodyne detection

introduction

m is an established measurement technique in quantum
optics (first introduced by Yuen & Chan 1983).

m used e.g. in quantum state reconstruction.

m The technique:
- signal beam mixed with an auxiliary coherent beam via

a beam splitter
- photons counted at the output ports ~ ny,

- The scaled difference (ny — nz2)/|z| recorded, |z| being
the aux field amplitude.
- result depends on the phase difference § between the

input beams.
m Claim: For strong aux field (large |z|), this amounts to
measuring the rotated quadrature operators
Q = —‘V,E(e—fﬂa + elfg*) of the signal field.
m The purpose of this talk is to give a rigorous
mathematical meaning to this claim.
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m The balanced homodyne detection

problem and m The signal field (with annihilation operator a) is coupled
detection via 50-50-beam splitter with the auxiliary field (b), which
4 Kivkes IS in a coherent state |z).

Introduction
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q’ The balanced homodyne detection

problem and m The signal field (with annihilation operator a) is coupled
detection via 50-50-beam splitter with the auxiliary field (b), which
. Kiukas IS in a coherent state |z).
e m Detection observable is the amplitude-scaled photon
—— difference D, := E%/’EU@ b*b—aamx ).
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‘.T,’ Some notations (and standard conventions)

Introduction

m H - a complex separable Hilbert space.

m L(H) - the set of bounded operators on H.

m A - the closure of a symmetric operator A on H.
m B(R) - the Borel o-algebra of R.

m Observable (or measurement) - a normalized POM
(positive operator (valued) measure) E : B(R) — L(H).

m State of a quantum system - positive operator T € L(H)
of trace one (density operator).

m Measurement outcome statistics of E in state T - the
probability measure X — Tr|[ TE(X)].

m P4 : B(R) — L(H) - the spectral measure of a
selfadjoint operator A (projection valued measurement).
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‘;’ Some notations (and standard conventions)

introduction

m H - a complex separable Hilbert space.

m L(H) - the set of bounded operators on H.

m A - the closure of a symmetric operator A on H.
m B(R) - the Borel o-algebra of R.

m Observable (or measurement) - a normalized POM
(positive operator (valued) measure) E : B(R) — L(H).

m State of a quantum system - positive operator T € L(H)
of trace one (density operator).

m Measurement outcome statistics of E in state T - the
probability measure X — Tr[ TE(X)].

m PA: B(R) — L(H) - the spectral measure of a
selfadjoint operator A (projection valued measurement).
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‘;’ Normalized POM

A set function E : B(R) — L(H) is a (normalized) POM, if
m E(0)=0, E(R) =1
m 0 < E(X)<Ilforall X € B(R);

u E(U,cn Xn) = 2_qen E(Xn) in the weak operator
topology, for each disjoint sequence (X,) C B(R).

Introduction

For ¢,v € H, denote E,; ,(X) := (¥|E(X)y), X € B(R).
E, . is a complex measure.
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tT,’ The moment operators of a POM

e m The kth moment operator [ x* dE of a POM
6.443 E : B(R) — L(H) is defined by

Introduction
(wl( f x* dE)p) = / X< dE, ,(x) ¥ € H,p € D(x*,E),
on the domain

D(] x* dE) := {p € H| x* is E, -integrable for all v € H}.
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{T.B Observables measured by the detector

problem and

hdﬁmu: m For any input state 7, the detection statistics are
Tr(UT ® |z)(sz*)PDZ(X)]= X € B(R).
Baianced
homodyne
detector
observables
and their
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Observables measured by the detector

m For any input state T, the detection statistics are

T(UT ® |2)(z|U*)PP=(X)], X € B(R).
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q’ Observables measured by the detector

m For any input state T, the detection statistics are

T{(UT ® |2)(z|U*)PP=(X)], X € B(R).
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q’ Observables measured by the detector

m For any input state T, the detection statistics are

TH(UT ® |2)(z|U*)PP=(X)], X € B(R).

m This is of the form Tr[ TE4(X)], with POM EZ defined as

R T S e R e S
EZ(X) := V:PIZ A X)V,, X € B(R),

where V, - Hop— ¢®|2) € H @ Haux-
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‘.T,’ Observables measured by the detector

m For any input state 7, the detection statistics are

T{(UT ® |2)(z|U*)PP=(X)], X € B(R).

m This is of the form Tr[ TE4(X)], with POM EZ defined as

T S T e N T
EZ(X) := VzPIZAX)V,, X e B(R),

where V, . H3p— ¢o®|2) € HQ Hayx-
m In the limit r — oo, z = re’?, POM EZ should become

the spectral measure P% of the quadrature
Q = %(e—ff’a + e®g*). But in what sense?
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q’ Observables measured by the detector

E. Vogel argued (basing on the method of characteristic
functions) that for each state T,

Jim T TE™" (X)] = T TP (X))

if X € B(R) is such that Tr[TP%(8X)] =0
(E. Vogel, Operationale Untersuchung von quantenoptischen
MeBprozessen, Shaker Verlag, Aachen, 1996).
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‘.T,’ Observables measured by the detector

E. Vogel argued (basing on the method of characteristic
functions) that for each state T,

lim T TE"™" (X)] = T TP (X)],

if X € B(R) is such that Trf[TP“(8X)] =0
(E. Vogel, Operationale Untersuchung von quantenoptischen
MeBprozessen, Shaker Verlag, Aachen, 1996).
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m [xdEZ > 1L V;A*V,, D(a)c D(J x*dE).

Page 76/119



‘;’ Observables measured by the detector

e m For any input state T, the detection statistics are
i P Lah TH(UT ® |2)(z|U*)PP=(X)], X € B(R).
e = This is of the form Tr[ TEZ(X)], with POM EZ? defined as
detector
and their _._1
i EZ(X) := V:PIZTAX)V,, X e B(R),

where V, - H3p— ¢o®|2) € H R Hayx-
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‘.T,’ Observables measured by the detector

E. Vogel argued (basing on the method of characteristic
functions) that for each state T,

lim Te[ TE™" (X)] = Te[ TP (X)),

if X € B(R) is such that Tr[TP“(8X)] =0
(E. Vogel, Operationale Untersuchung von quantenoptischen
MeBprozessen, Shaker Verlag, Aachen, 1996).
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Moment operators

m [xdEZ > 1L V;A*V,, D(a)c D(J x*dE).
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m [xdEZ > 1L V;A*V,, D(a)c D(J x*dE).

m [xdE?D QQ|D(3), z= |zye"3
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 [xKdEZ > 1 ViAKV,, D(&)c D([x*dE).
m [xdE?D Qﬁlu(a), z= |zie"9
a

(/-Xk dE?)| pay = (Qolpea))* + Z |2 Ck(2),

C«(2) is an operator such that D(a*) c D(Ck(z)), and
z — (Y| Ck(Z)y) is bounded in the region |z| > 1 for
each v € H, ¢ € D(a").
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Moment operators

 [XKdEZ > L V:AKV,, D(a)c D([xdE).
m [xdE? D> Qulpa), z=|z|€°.

E f)(z o= 2 (Og}g(a))z + 5 |E|EN

a

(ka dE?)| pay = (Qolpea)) + Z I2 Ck(2),

C«(2) is an operator such that D(a*) c D(Ck(2)), and
Z — (Y|Ck(Z)y) is bounded in the region |z| > 1 for
each ¥ € H, ¢ € D(a").

Each moment converges in the high amplitude limit:

fim (I( [ x* dE™")g) = (wIQho).

ford € [0,2x), ke N, v € H, ¢ € [ o D(@").

Page 83/119



‘;’ A general theorem

~ooemanc |l Theorem
homodyne

detaction Let E" : B(R) — L(H) be a POM for each n € N, and let
D C 'H be a dense subspace.
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‘;’ A general theorem

wooemanc |l Theorem
homodyne

detaction Let E" : B(R) — L(H) be a POM for each n € N, and let
e D C 'H be a dense subspace. Assume that

n&mx(¢|(/ x* dE™)) exists forall k € N, ¢ € D.
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‘;’ A general theorem

Theorem

detaction Let E" : B(R) — L(H) be a POM for each n € N, and let
e D C 'H be a dense subspace. Assume that

nILm (r,o|(/x"‘ dE")y) exists forall k € N, ¢ € D.
Then there exists a POM E such that

n'Lﬂ;(saI(fX" dE")p) = (sal(/XkdE)% keN,peD. (1)
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q’ A general theorem

~ooemanc |l Theorem
homodyne

detaction Let E" : B(R) — L(H) be a POM for each n € N, and let
oo D C H be a dense subspace. Assume that

nIme(;o|(/x“ dE™)p) exists forall k € N, ¢ € D.
Then there exists a POM E such that
lim (p|( | x* dEMp) = (¢|( | X* dE)p), ke N,p € D. (1)
lim (g @) = (¢ ©)s N

If measures X — (p|E(X)y), ¢ € D are determinate, then
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‘;’ A general theorem

wooemanc |l Theorem
homodyne

detaction Let E" : B(R) — L(H) be a POM for each n € N, and let
S P Lan D C 'H be a dense subspace. Assume that

nle _(r,o|(/x"‘ dE")p) exists forall k € N, ¢ € D.
Then there exists a POM E such that

(wl('/X* dE")p) = (sal(/xk dE)p), ke N,p €D. (1)

lim
Limit of strong N—o0

If measures X — (p|E(X)y), ¢ € D are determinate, then
(1) E is the only POM with the property (1).

(2) lim,_. E"(X) = E(X) (weak op. top.) whenever
X E B(R), Hnd E(@X) — 0. Page 89/119



‘;’ A general theorem

wooemanc |l Theorem
homodyne

detaction Let E" : B(R) — L(H) be a POM for each n € N, and let
porpes D C H be a dense subspace. Assume that

nimﬁ(ﬂ(/x"‘ dE")p) exists forall k € N, ¢ € D.
Then there exists a POM E such that
lim (p|( | x* dE™)@) = (¢|( | X* dE)y), ke N,p € D. (1)
Am (@ ) = (¥ P)s 2

If measures X — (p|E(X)y), ¢ € D are determinate, then
(1) E is the only POM with the property (1).

(2) lim,_. E"(X) = E(X) (weak op. top.) whenever
X E B(R), &nd E(@X) — 0. Page 90/119















‘;’ A general theorem

wooemanc |l Theorem
homodyne

detaction Let E" : B(R) — L(H) be a POM for each n € N, and let
e D C 'H be a dense subspace. Assume that

n&mx(¢|(/x” dE™)p) exists forall k € N, ¢ € D.
Then there exists a POM E such that
lim (o|( | x* dEMp) = (¢|( | X* dE)y), ke N,p € D. (1)
lim (¢ @) = (¢ @) '

If measures X — (p|E(X)y), ¢ € D are determinate, then
(1) E is the only POM with the property (1).

(2) lim,_. E"(X) = E(X) (weak op. top.) whenever
X E B(R), and E(BX) — 0. Page 95/119



The high amplitude limit in the balanced

homodyne detector

eavbedl  Fix 0 € [0, 27), and take z,(8) = r,e?, with lim,_... r, = co.



The high amplitude limit in the balanced

homodyne detector

ikl  Fix 6 € [0,2r), and take 2,(6) = r,€, with lim,_. r, = oc.
sl Denote Dop = span {|a) | a € C}.



The high amplitude limit in the balanced

homodyne detector

pesstadl  Fix 6 € [0, 27), and take z,(8) = r,e”?, with lim,_. r, = .
e ec Denote D, = span {|a) | a € C}.

Then

m Forall k € N, ¢ € Do, We have

lim (ol [ x* E* D)) = (41 Q).
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The high amplitude limit in the balanced

homodyne detector

pessbadl  Fix 6 € [0, 27), and take z,(8) = r,e”, with lim,_. r, = .
e Denote D, = span {|a) | a € C}.

Then

m Forall k € N, ¢ € Dgop, Wwe have

lim (o1 [ x* dE* D)) = (41 Q).

ey ol m For any ¢ € Dgon, the measure X — (| P9 (X)) is
determined by its moments.
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The high amplitude limit in the balanced

homodyne detector

pessbadl  Fix 6 € [0, 27), and take z,(8) = r,e”, with lim,_. r, = .
St Denote D, = span {|a) | a € C}.

Then

m Forall k € N, ¢ € Dopn, Wwe have

lim (ol [ x* E* D)) = (41 Q).

anniiary ok m For any ¢ € Dgon, the measure X — (| P9 (X)) is
determined by its moments.

Hence, the preceding theorem can be applied, with
Eﬂ — Ezn(f?)l D — DCﬂhl and E — PGE . Page 100/119



q’ Conclusion on the high amplitude limit

m The convergence of moments

lim (¢( [ x* dE=M)p) = (4|Q¢), ¢ € Deon,

determines uniquely the limiting observable as Q.
m lim,_ EZO)(X) = P9 (X) (weakly) for all X € B(R)
with A(8X) = 0 (A Lebesgue measure.)
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‘;’ Conclusion on the high amplitude limit

i m The convergence of moments
detection
Iim (e|( / x* dE=®))p) = (p|Qfp), @ € Deon,
determines uniquely the limiting observable as Q.
m lim,_ EZO)(X) = P9 (X) (weakly) for all X € B(R)
with A(8X) = 0 (A Lebesgue measure.)
In other words,
s m The limits on the moments of the measurement
strong

auxiliary field statistics for the (superpositions of) coherent states
determine the limiting observable as Q.

m For any state T, the quadrature probability Tr[ TP% (X)]
is obtained as the limit of a sequence of actual

measurement outcome probabilities, provided that. @X
hae 7ern | ebecnilie meaciire
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‘;’ Conclusion on the high amplitude limit

e m The convergence of moments
detection
Jim (el f x* dE*)p) = (ol Q) ¢ € Deoh,
- determines uniquely the limiting observable as Qj.
m lim,_ EZO)(X) = P9 (X) (weakly) for all X € B(R)
with A(8X) = 0 (A Lebesgue measure.)
In other words,
s m The limits on the moments of the measurement
strong

auxiliary field statistics for the (superpositions of) coherent states
determine the limiting observable as Q.

m For any state T, the quadrature probability Tr{ TP (X)]
IS obtained as the limit of a sequence of actual

measurement outcome probabilities, provided thaf. @X
hae 7ern | ebeenilie meaciire



An application to eight-port homodyne detector

£ _ _
s = Define the Weyl operators W(q, p) = ¢2%eaFgPQ,
s (.p) € R?, in terms of quadratures Q = (& + a),
J. Kiukas P o \/’él’(a* a)
An application
to eight-port
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= Moments of the observables measured in the balanced
homodyne detector converge to the moments of a
quadrature operator, in the high amplitude limit of the
auxiliary oscillator.

m According to a general theorem, this ensures that (most
of) the POM elements of the observables converge
weakly to the corresponding elements of the
quadrature spectral measure. ~~ quadrature
measurement is indeed achieved.

m Each covariant phase space observable is obtained
similarly as the high amplitude limit in the eight-port
homodyne detector.
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‘.T,’ An application to eight-port homodyne detector

-1 i i
= Define the Weyl operators W(q. p) = €2%eaFgPQ,
(g, p) € R?, in terms of quadratures Q = —1‘/—5(3' + a),

= x/zf(a"' a).

m Eight-port homodyne detector is argued to provide a
way to measure covariant phase space observables

ES(2) = [ W(a.p)SW(q. p)" dadp, Z < B(R?).

We make this statement precise.

m Input 4 is in a coherent state |v/2z), and we have two
detection observables: |z|~'(a3a; — aja;) and
z| 7 (a3as — @)

m Feed states 7 and S to inputs 1 and 2 (input 3 is left
empty).



‘;’ Conclusion on the high amplitude limit

m The convergence of moments

lim (¢( [ x* dE=M)p) = (4|Q¢), ¢ € Deon

determines uniquely the limiting observable as Q.
m lim,_ EZO)(X) = P9 (X) (weakly) for all X € B(R)
with A(8X) = 0 (A Lebesgue measure.)
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The high amplitude limit in the balanced

homodyne detector

pesstadl  Fix 6 € [0, 27), and take z,(8) = r,e”?, with lim,_. r, = .
ot Denote Do = span {|a) | a € C}.

Then

m Forall k e N, ¢ € Dopn, Wwe have

lim (ol [ x* E* ) = (41 Q).

anniery ik m For any ¢ € Dgop, the measure X — (| P9 (X)) is
determined by its moments.

Hence, the preceding theorem can be applied, with
Eﬂ' — EZn(H)’ D S DCIJh! and E — PGS - Page 112/119



‘;’ Conclusion on the high amplitude limit

i m The convergence of moments
detection
: Kk lim (gl( [ x* dE*@)p) = (¢IQhp), & € Deons
— determines uniquely the limiting observable as Q.
m lim,_ EZO)(X) = P9 (X) (weakly) for all X € B(R)
with A(8X) = 0 (A Lebesgue measure.)
In other words,
B m The limits on the moments of the measurement
strong

auxiliary field statistics for the (superpositions of) coherent states
determine the limiting observable as Q.

m For any state T, the quadrature probability Tr{ TP (X)]
iIs obtained as the limit of a sequence of actual

measurement outcome probabilities, provided that. @X
hae 7ern | ebeceniie meaciire



q’ An application to eight-port homodyne detector

=1 . :
prodlem and m Define the Weyl operators W(q,p) = €'2% e gPQ,
s (g.p) € R?, in terms of quadratures Q = Jﬁ(? + a),
P= Z-i(a —a).
An application
to eight-port
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‘;’ Conclusion on the high amplitude limit

o m The convergence of moments
detection
! Kiukas Jm (el( f x* dE*®))p) = (0| QGp), © € Deoh:

determines uniquely the limiting observable as Q.
m lim,_ EZO)(X) = P9 (X) (weakly) for all X € B(R)
with A(8X) = 0 (A Lebesgue measure.)
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‘.T,’ Conclusion on the high amplitude limit

o m The convergence of moments
detection

determines uniquely the limiting observable as Q.
m lim,_ EZ®)(X) = P9 (X) (weakly) for all X € B(R)
with A(8X) = 0 (A Lebesgue measure.)
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