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Abstract: One of the most significant questions in quantum information is about the origin of the computational power of the quantum computer;
namely, from which feature of quantum mechanics and how does the quantum computer obtain its superior computational potential compared with
the classical computer?

In my talk, | address this open question more concisely through the study of measurement-based quantum computer, in which all the quantum
resource is attributed to entanglement since computation is carried through its consumption by local measurements. | a'so show a simple model of
the phase transition of quantum computer occurring at some threshold, below which the quantum computer comes to alow an efficient classical
simulation in accordance with an exponential drop in the amount of entanglement.
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. fundamental question: origin of computational power of QC

rom which feature of quantum mechanics and how does the
uantum computer obtain its superior computational power
ompared with the classical computer?

asurement-based quantum computer

the role of entanglement is highlighted!

} the amount of entanglement reflects computational power

' phase transition (exponential change of entanglement)
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Motivation
origin of computational power of quantum computer

. Measurement-based quantum computer
role of entanglement for universal quantum computation

. Entanglement criterion for universality
the amount of entanglement must grow faster than
polylogarithmic in the system size for universality

. Phase transition of computational power of a faulty
cluster state.
exponential change of entanglement

. Summary
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Measurement-based quantum computer
[ Raussendorf & Briegel, PRL 86, 5188 (2001)]

. Resources

- preparation of a multipartite entangled state called

2D cluster state |4),, which exhitbits the following
quantum correlation:
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For a graph & [ review: Hein et al., quant-ph/0602096]

vertices = qubits, edges = Ising-type interaction pattern.
degree is the number of edges from a vertex.
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(a.b)=edges
. Joint eigenstate of Ncommuting correlation operators

for Nqubits. Ka‘6>=‘5>, Kg 5 O_E:;) QR &b
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. stabilizer states = graph state, up to local unitaries.
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Measurement-based quantum computer

_ [ Raussendorf & Briegel, PRL 86, 5188 (2001)]
I. Computational process

According to quantum algorithms, the directions of
single-qubit projective measurements are determined.
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The set of rules for adapting measurement
directions and processing their outcomes by

Sl e I T R



Measurement-based quantum computer
[ Raussendorf & Briegel, PRL 86, 5188 (2001)]

. Resources

- preparation of a multipartite entangled state called
2D cluster state |4),, which exhitbits the following

quantum correlation:
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Measurement-based quantum computer

_ [ Raussendorf & Briegel, PRL 86, 5188 (2001)]
1. Computational process

According to quantum algorithms, the directions of
single-qubit projective measurements are determined.
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Measurement-based quantum computer

| [ Raussendorf & Briegel, PRL 86, 5188 (2001)]
I. Computational process

According to quantum algorithms, the directions of
single-qubit projective measurements are determined.
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Measurement-based quantum computer

| [ Raussendorf & Briegel, PRL 86, 5188 (2001)]
1. Computational process

According to quantum algorithms, the directions of
single-qubit projective measurements are determined.
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Role of entanglement

The role of entanglement in the initial resource state is

highlighted in measurement-based quantum computer,
since computation is carried through its consumption by
\ local measurements and classical communication.

/

role of entanglement for universality ("most powerful
potential”) of measurement-based quantum computation
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Role of entanglement

he role of entanglement in the initial resource state is
highlighted in measurement-based quantum computer,
since computation is carried through its consumption by
\ local measurements and classical communication.

e S S

/

role of entanglement for universality ("most powerful
potential”) of measurement-based quantum computation

e \

~ merits to consider universality as computational power:

- taking advantage of entanglement theory

* no direct consideration on speed-up (complexity) in
comparison with classical computation

- but, some non-universal quantum computation may allow
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Universality of quantum computation

uantum computation is universal in the standard circuit model,
- any m~qubit unitary gate operation U can be realized (in
rbitrary accuracy) for the » logical quantum wires.

onventional (bottom-up) approach

o show a capability of a universal set of elementary gates

nd their composability
exact universality {CNOT, vSU(2)}

approximate universality {CNOT Hadmard,Phase,z

Cll‘f;fﬂl"d

:ntanglement (top-down) approach

o consider entanglement convertibility by local measurements
rom an initial entangled resource state in measurement-based

)C
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Universality in one-way QC

Using single-qubit projective measurements and classical
feedforward of measurement outcomes, -
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» it's capable to simulate any unitary gate operation on
(known) input states deterministically

- it's c:apable to pr‘oduce any corresponding output state |¢5>

)iefinition of Universal resource:
X i l . .
. set of states 'V = {|y,) |,),...,} IS universal for

——

ieasurement-based QC, 1f
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General framework for universal resources
niversal resource (exact deterministic):

3|y, ) —== >V|_g‘é_>‘hmeasur'ed‘>

. ¥ o

N n N -n
ith fidelity Fone, with success probability pone.

fidelity probability encoding
' exact ® deterministic ® |ogical subspaci
' approximate (1-¢) ® quasi-deterministic (1-9)

® stochastic (nonzero, finite)

.fficienc?/
' universal resource is called efficient if it is capable of

preparing efficiently as well any state preparable efficiently
(poly time and size) in a standard universal (circuit/2D
cluster) model

ame.@ntanglement scaling, up to a polynomial overhead, must
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Motivation
origin of computational power of quantum computer

. Measurement-based quantum computer
role of entanglement for universal quantum computation

. Entanglement criterion for universality
the amount of entanglement must grow faster than
polylogarithmic in the system size for universality

. Phase transition of computational power of a faulty
cluster state.
exponential change of entanglement

. Summary
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Entanglement criterion for universality

dea: if any significant entanglement feature exhibited by
set of universal resource states (ex. the 2D cluster states)
s not available from another set ¥, then it cannot be universal

ondition for proper measures
E(|¢)) 2E(|¢')) whenever |¢)=> o |¢")
e.x. by entanglement monotones such that E(|¢)®|0)) = E(|4).

} entanglement width: distinguish 1D and 2D cluster states
) geometric measure

' Schmidt measure

)

xiterion for universality
A set of states ¥ cannot be universal for one-way QC if

sup,, E(I#)) > sup, ., E(|v))
T P— | P




Universality in one-way QC

Using single-qubit projective measurements and classicadl
feedforward of measurement outcomes, -
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- it's capable to simulate any unitary gate operation on
(known) input states deterministically

- it's capable to pr"oduce any corresponding output state |¢‘5>

)iefinition of Universal resource:
X - l . .
. set of states ¥ = {|y),|,),...,} IS universal for
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Entanglement criterion for universality

dea: if any significant entanglement feature exhibited by
set of universal resource states (ex. the 2D cluster states)
s not available from another set ¥, then it cannot be universal

ondition for proper measures
E(|¢)) 2E(|¢')) whenever |$)> o |4")
e.x. by entanglement monotones such that E(|¢)®|0)) = E(|4).

' entanglement width: distinguish 1D and 2D cluster states
} geometric measure
Schmidt measure

—

. —
riterion for universality
A set of states ¥ cannot be universal for one-way QC if

%E(w» = SUR, e E(ly))
== £ (153 = sup E(Z )




Entanglement width

“ntanglement-width
maximal entropy of entanglement associated
with certain bipartitions (cf. area law of entanglement)

E.o(lw))=min, max,._, £ . .(ly))

edgi__e--"" tree T

A

) non-increasing under deterministic LOCC

) equivalent to the rank-width in graph theory

D clster states show the divergencesichas  E...(/C)) > O(/AT)

ame.@ntanglement scaling, up to a polynomial overhead, must
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Entanglement width

-ntanglement-width
maximal entropy of entanglement associated
with certain bipartitions (cf. area law of entanglement)

E.o(lw))=min, max,_, £ . .(ly))

edgi__e--'“' tree T

A

) non-increasing under deterministic LOCC

) equivalent to the rank-width in graph theory

D clster shates show the divergencesichas  E...(|C)) > O(/AT)

nx.{af ficient) universal resource must have a diverging..z
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Non-universal graph states

"heorem 1:
iny set of the graph states whose entanglement width is at

st polylogarithmic in the number of qubits AV is not an
fficient universal resource.

“inferaction geometry determines the value as a resource”

}» 1D cluster states (E,j=1) o—e—a—a—- - ——a—a—a

v GHZ (tree) states, fully connected graphs

' graphs with bounded tree-width or clique-width

‘Ficient classical simulation of QC:
or graph states, if E, =< polylog(N), then measurement-
ased QC is effciently simulatable by classical computers

One-way computation on 1D cluster states and GHZ states:
"Hgtetsen 05; Markov & Sh1 05; Jozsa06; Van den Nest et al. 06>
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“Universe” of entanglement resources

The amount of entanglement must scale fast unboundedly!

ntropic , * ;
ntanglement widkth - maximum size of
unit localizable
entanglement
chmidt-rank . ///’
idth

universal resource families

O(polylogN) AN) =&

classically
efficiently
simulatable

SNes, , eometric
Schmidt measure g
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“Universe” of entanglement resources

The amount of entanglement must scale fast unboundedly!

ntropic ,

ntanglement widkth - maximum size of
unit localizable

\ entanglement
ichmidt-rank ) |

idth _
unive
O(polylogN)
classically
efficiently
simulatable
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Blowing-up universal resource states
Observation:

A set of states ¥ is a universal resource for one-way QC,
if and only if ¥ > .. |C,) foreveryn

2D cluster states other universal

Cﬁngle-q ubit resource states
measurements

GG! n

’-QOCJ

efficient N = poly(n)

show equivalence between two families of entanglement

resource states under LOCC (constructive proof).

~-mate: it is often easier than proving universality wihe

n-l'lnnn (n " r-;nﬁl |;+"l IIH;\rﬂlﬂE‘ﬂl mnAﬂlﬂ FoT il il Tl s T a1




“Universe” of entanglement resources

The amount of entanglement must scale fast unboundedly!

ntropic ,

ntanglement widkth - maximum size of
unit localizable

\ entanglement
ichmidt-rank L 6 o e

idth
universal - families
0 AT .
O(polylogN)
classically
efficiently
simulatable
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Blowing-up universal resource states
Observation:

A set of states ¥ is a universal resource for one-way QC,
if and only if ¥ > .. |C,) foreveryn

2D cluster states other universal

Cﬂngle-qublf } resource states
measurements

C ,0}{;

n
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IQOCJ

efficient N = poly(n)

show equivalence between two families of entanglement

resource stafes under LOCC (constructive proof).
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“Universe” of entanglement resources

The amount of entanglement must scale fast unboundedly!

ntropic ,

ntanglement widkh - maximum size of
unit localizable

\ entanglement
chmidt-rank | m o T e EE

idth ;
-

O(polylogN

classically
efficiently
simulatable
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“Universe” of entanglement resources

The amount of entanglement must scale fast unboundedly!

ntropic ,

ntanglement widkth - maximum size of
unit localizable

\ entanglement
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efficient N = poly(n)

show equivalence between two families of entanglement
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Blowing-up universal resource states
Observation:

A set of states ¥ is a universal resource for one-way QC,
if and only if ¥ > ,..|C,) foreveryn

2D cluster states other universal

Cﬂngle-qublf § resource states
measurements

C "‘*‘

n
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efficient N = poly(n)

show equivalence between two families of entanglement

resource states under LOCC (constructive proof).

~-mate: it is often easier than proving universality wih-
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Examples of universal resources

Theorem
Il graph states by 2D regular lattices are universal resources.

square lattice

trianqular lattice
(2D cluster state) J

hexagonal lattice

de}gr*ee =3 degree = 4 d'egr;ea -6

minimum possible degree for
\iform lattices to be universal

lerits of the lower degree

) increased robustness for local decoherence

) connvenience for bottom-up methods (ex. by polarizing.beam
= o STSSEE eS| Mo SIS e LersT W g el T TSI et Sl il S Sietows] | e S RSl B,



Motivation
origin of computational power of quantum computer

. Measurement-based quantum computer
role of entanglement for universal quantum computation

. Entanglement criterion for universality
the amount of entanglement must grow faster than
polylogarithmic in the system size for universality

. Phase transition of computational power of a faulty
cluster state.
exponential change of entanglement

. Summary
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Motivating observations

' dimensionality was a key for computational power

- all 2D regular lattices: efficiently universal £, = O(VN]

wd —

- 1D chain: non-universal, & classically simulatable £, =1

wa

Vhat will happen at an "intermediate” (fractal-like) dimension?

' Is the change ("boundary”) of\\‘ /
computational power gradual !
physically? ““Fm
i | O(polylogN) — IIN)==
classically
L efficiently
simulatabte







Motivating observations

» dimensionality was a key for computational power

- all 2D regular lattices: efficiently universal ~ £,, = O(VN]

wda —

- 1D chain: non-universal, & classically simulatable £, =1

Vhat will happen at an "intermediate” (fractal-like) dimension?

' Is the change ("boundary”) of\\‘ /

computational power gradual
physically?

classically
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Simple model with phase transition

' square lattice w
(cf. physical implementation by the cold atoms stored in
the optical lattice in the Mott-insulator regime)

every site is occupied independently with probability p_..,
followed by the controlled-phase operations.

(empty site becomes a "hole” without ad jacent edges)

the locations of holes are heralded.

E)ackgmund lattice
size N= [ x L

effective dimension is decreasing from2. [T [ 1 1
1 aA5503

P+ corresponds to physical imperfection ==== ==

in filling the 2D square lattice. B35S NES
"Ls.the value as the resource getting ...=====
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Simple model with phase transition

' square lattice wi

(cf. physical implementation by the cold atoms stored in
the optical lattice in the Mott-insulator regime)

every site is occupied independently with probability p_..,
followed by the controlled-phase operations.

(empty site becomes a "hole” without ad jacent edges)
the locations of holes are heralded.

Emckgr‘ound lattice
size N= [ x L

effective dimension is decreasing from2. [T 1 1 1
| EN Ny

p.:. corresponds to physical imperfection ==== ==

in filling the 2D square lattice. AIgEREAS
"Ls.the value as the resource getting ...=====
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Percolation

ercolation (existence of O(MN) giant cluster) above p,, = 0.592.

lote: the O(N) connected giant graph state is not necessarily
niversal (cf. 1D cluster and tree graphs with size N).

poly-time classical and
quantum algorithm

ps;:"'e - p?"f?

O(MN)-qubit universal resource
state (with a constant
overhead depending on p_;.)

any LOCC

==... ; % wd = 0("39 N:
B < not efficiently universal

L (one-way QC is classically
ot S O S TSR et | i




p. >R Supercritical phase

olynomial-time (quasi-deterministic) algorithm to concentrate
erfect 2D cluster state with a constant overhead ¢

l) Lattice identification by classical poly-time algorithm
- identification of disjoint paths Eﬁ[.) disjomt pGThsﬁ

- localization and correction of errors
(constant overhead)

s

1.0

2) Lattice contraction by
quantum measurements

disjoint H=crossings

06+

04-

021

Expected fraction of vertex
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Concentration algorithm at p=0.85
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Concentration algorithm at p=0.85
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Concentration algorithm at p=0.85
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Concentration algorithm at p=0.85
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Concentration algorithm at p=0.85

L]
L]
L]
L]
L L]
L]
-
RN ]
LR L]
L L] LB BN
[ ]
-
FEEREES
L]
L] Eaaan
L]
L] L]
PEw EeEs
L]
L]
L] L]
L]
L]
L] & B n
L] L
LE B N | -
L] L |
LN ] LN
(BN L]
L L B RN
L] BEE @8
a8 L]
LE NN [ ]
- -
LA N |
L] L N
L] -
a e
-
aEE 8 L]
LB N ]
LN
R RN
aee
L]
L]
FEEW
-e L]
& &haa

Ean
L]
-
- e L]
- L]
L] -
L LB B R N FRERERTERDE
L
LR N
L] LN
L]
L] LN N ] (AN NN § ]
L] L] LR
(I E R E NN N ] -
L] LN ]
LN
LR ] @ &8 a
LA BN
L] L]
- - ase 8
LR ] ]
L] L] -
L] L]
LR BN N - e
LN
LR
L] LN ]
Ll L] L]
L] L] L] L] mEw
e aw - ] L]
LR L] L]
a8 as L] ]
EEwN
L
(A B NN N ]
.
L] e s LR N L
-
B RN -
L] "aw
L] L -
L] . . .
LB N L ] BEE L]
L] L ] L] L]
LE N N BN L]
. -
LR LN ] L L]
B E NN N ] [ ] L] L] - -
RN N L] L] .

‘AN N ]
L]
LB |
L]
L ]
L]
L]
L ]
- fEEN
L]
LA
L RN
EEw
L]
[ ]
-
L FEREa8a
-
LE R RS B
L]
-
L]
SR ER
LR
L]
EE N

AR RSN DN
-
.
L]

L]

L]

L]

L

LR N
B R E NN
LA BN ]
L]
* LR N
LA NN
LE RN N
L]
&
L]
EEEN
-
L]
L]
& & aas
LA L]
EEEaea
LA BN |
-
- e
EEaaaa
L
-
-
-
LR
LB RN N
LR N

Pirsa: 07120025 & & & = = - e - Page 46/53

a0 F o 1



Concentration algorithm at p=0.85
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Concentration algor'rrhm at p=0. 85




o > Supercritical phase

olynomial-time (quasi-deterministic) algorithm to concentrate
erfect 2D cluster state with a constant overhead ¢

l) Lattice identification by classical poly-time algorithm
- identification of disjoint crossings @L) disjoinm pm‘hsﬁ

- localization and correction of errors
(constant overhead)

f

10—

2) Lattice contraction by
quantum measurements

06+

Zvd( faulty lattice with size N)

04-

Ewd ( perfect 2D cluster with size cN )

O(NN)

irsa: 07120025 0.0 — e ! |- page49/53
0.5 0.6 0.7 08 0.9 1

Expected fraction of vertex—disjoint H-crossings




Subcritical phase

largest component is
<
Psire < Prn almost surely O(logN)
g Enp i -
.0 6 Tmex E.06) | PR
(logN) IR - o N
f ET] - i
o - [ -
The total amount of entanglement !"I Bl iy :}_':

1

is determined by that of the most
entangled connected component.
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juantum computational power is not simply additive!”

'he computational power is not efficiently universal, and
ctually any measurement-based computation on it is s
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Phase transition of computational power

Ice Wt

he 2D cluster state with holes undergoes the phase
ransition in its computational power at the percolation

hreshold p, ~ 05927 ...

Pite> P - 1T is as efficiently universal as the perfect 2D
cluster with size N

Peite < P - measurement-based QC on it is efficiently
simulatable by classical computers

P P
' >
ntanglement os an order parameter T - oA
B 2E B
amount of entanglement measured sSssnne
by entanglement width changes _——— —=
exponentially at the threshold ———————




rom which entanglement feature and how does the
\easurement-based quantum computer obtain its superior
omputational power compared with the classical computer?

® scaling of entanglement reflects computational power

® phase transition (exponential change of entanglement)

- Van den Nest, Miyake, Dur, & Briegel,
Phys. Rev. Lett. 97, 150504 (2006).

- Van den Nest, Dur, Miyake, & Briegel,
New J. Phys. 9, 204 (2007), in the special issue on the

measurement-based quantum information processing.

- Browne, Elliott, Flammia, Merkel, Miyake, & Short,  uus
N -OV700 1720



Subcritical phase

largest component is
<
Psire < Pep almost surely O(logN)

1 HH -
mGXJ. Ewd(‘€}>) H E 3 ':[—-

Ewd (®J ‘éj>) 1

. 2 g G b e i
I N & J .-E: _:-h-l -3 : .‘
O ' . 1;
( 9 ) 3 .r;n"l_ - : =
g B T
1
. 7 . 1.
The total amount of enTangIemenT\ |._ ll::E"... e .':’_"
is determined by that of the most CTHL "L[.' r‘lL: L 3
Ll | | E | L1
entangled connected component. )it gt "H ¢ F o
i : IF-: L .l : '-rl .

juantum computational power is not simply additive!”

'he computational power is not efficiently universal, and
ctually any measurement-based computation on it is s

fof sl T RSP SRR | S| SRR SRS SRl | e e e



