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Abstract: In any attempt to construct a Quantum Theory of Gravity, one has to deal with the fact that Time in Quantum Mechanics appears to be
very different from Timein General Relativity. Thisisthe famous (or actually

notorious!) \"Problem of Time\", and gives rise to both conceptual and technical problems. The decoherent histories approach to quantum theory, is
an aternative formulation of quantum theory specialy designed to deal with closed (no-external observer or environment) systems. This approach
has been considered particularly promising, in dealing with the problem of time, since it puts space and time in equal footing (unlike standard QM) .
Thistalk develops a particular implementation of the above expectations, i.e.

we construct a general set of \"Class Operators\" corresponding to questions that appear to be \"Timeless\" (independent of the parameter time), but
correspond to physically interesting questions. This is similar to finding a general enough set of timeless observables, in the evolving constants
approach to the problem of time.
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