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Abstract: Some thirty years ago surface-enhanced Raman (SERS) was discovered. In a nutshell, molecules positioned near roughened silver and
gold surfaces were found to produce Raman spectra some 6 orders more intense than what an equivalent number of solution-phase molecules did. A
large number of mechanisms were proposed to account for this spectacular effect, among which the one that seems to account for most of the
observations essentially ascribes SERS to the concentration of the optical field in appropriately structured, interacting nanoscale features which
operate both on the incident and Raman-scattered light. This concentration is to be appreciable only for features in which strong and narrow
localized surface plasmons were excited. This A*plasmonicA” model not only accounted for many of SERS seminal features but also gave birth to
the research fields of plasmonics and so-called metamaterials most of which achieve the necessary conditions governing the electrical permittivity
and magnetic susceptibility of metamaterials in wavelength regions where plasmons are excited.

SERS was again in the news approximately 10 years ago when a number of groups pointed out that SERS from individual molecules could be
observed leading some to speculate that this observation challenged the plasmonic origin of SERS. The discovery of single-molecule SERS,
coincident with the intense interest of the research community in nanoscience and technology, produced a renaissance of interest in SERS that is still
with us. The work of the past half dozen years reaffirmed SERS as ultimately a plasmonic effect wherein most SERS-active systems are actually
rather heterogeneous with most of the enhancement originating from A“hot spotsA” where the enhancement could top 10 orders of magnitude
averaged over territory where the enhancement is rather low. The major current challenge in the field is to devise nanostructures where the hot spots
dominate, leading to systems with an inordinate ability to focus electromagnetic fields so as to produce not only extraordinarily intense SERS
(presumably as a super-sensitive chemical analysis tool) but also as loci where other unusua photo-induced physical and chemical processes occur
when the system is illuminated with rather banal light sources. The talk will illustrate some of the most recent advancesin this field.
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SERS was first observed in 1974, “discovered”
In 1977, explained in terms of localized surface
plasmons in 1978, re-discovered as single-
molecule SERS in 1996 and re-explained in
terms of "hot spots” due to coupled surface

plasmons in 1999, rediscovering an effect
oredicted in 1980.



Quick summary
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All else being equal, this term
predicts which metals will show
the most intense SERS and their

rank as enhancers.

Surface-plasmon resonance

irsa: 07110059

Page 5/40



Eall and X

The one-two enhancement punch
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An effect that works well ONLY at the nanoscale.

Too blg dissipation of optically pumped energy
intfo heat (excitation of multipoles)

reasmail: The conductivity of the metal is reduced
(electron scattering at the nanostructure’s

surfaces) and hence the quality factor of the
surface plasmon resonance
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Eall and X

The one-two enhancement punch
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Xu and Kall

SERS signal is normally
an average over a
greatly inhomogeneous
system

Formation of em
hot spot in inter
particle site

(predicted by Meti
in 1980)




Nanoantennas
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An entire new field of optical physics — plasmonics — was born as a resuli
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Can form an optical signal
with these higher spatial

Plasmon disperson refahon

frequencies an the Ag surfacg
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Interest In

metamaterials
(materials for which the @ *
phase velocity counter-
propagates with the
group velocity) also
owes its resurgence to
plasmonics
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NENSHAN CAL UDAY K. CHETTIAR, ALEXANDER V. KILDISHEV AND VLADIMIR M. SHALAEV*

Optical Cloaking using a nanowire-based
metamaterial
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Intensity
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TOPOGRAPHIC AND OPTICAL
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Fractal clusters of
nanoparticles excited in
the surface plasmon
region are also
predicted to possess
"hot spots” where the
SERS enhancement is
expected to be as large
as 10!, These hot spots
correspond to localized
normal modes of
coupled, dipolar surface
plasmons, each
oscillator resident on a
nanoparticle.
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== | Chemical strategies are available for making hot spots
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Sequence-specific DNA
binding proteins: cytosine-C5-
methyltransferase (CGCG):
and TATA binding protein, a
eukaryotic transcriptional

regulator .
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And placing a single molecular
linker reliably in the hot spot by
self-assembly produces single-
molecule spectra rouiinely.
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Time (sec)

SERS-Clusters on two independently labeled beads

flowing through a microchannel. Peak value at 1434

cm! is due to the ABT tag, the 1575 cm'band is due
laraciyvy +a ODV/



Mapping: Multiplexing Two Clusters
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B-Cell Labeling Using Ab-SERS Clusters (ABT tag)

CD19+/CD4Se+ cells labeled with thionin-Mab4Se and
ABT-Mab19 SERS Clusters
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Blue: Thionin

W Wad® SEe———

Pirsa: 07110059 Raman Shit icn Cf}ﬂtr(}l: CDEE+CD_‘_E§+ N/ Séng4oziu2t_




B-Cells Labeling Using Ab-SERS Clusters (ABT tag)

Brighter than commercial fluorescence label
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Infiltrate the linker
layer with a pH
sensing small
molecule such as
MBA

ﬁ

Aggregate
bifunctional-
linker-covered
nanoparticles

Molecular scale pH determination
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Ratia 1380 ovar standard
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Calibration
Indicates that
pH can be
determined
with £0.5 pH
units in
volume ~ a
few nm?
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Raman overlay of ring vs.
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The intensity fluctuations are due
both to small number statistics (6
dimers on average) and the fact
that the particles are randomly

r, oriented as they pass through the
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Detection of cocaine vapor at room temperature
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Detection of cocaine vapor at room temperature
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Intensity (arb. unit)

Molecular
recognition at the
near single- molecule

level. (Malecular sensing

functionality is collocated
with hot spots, and the rest
of the surface is




All that signal comes from a few mglecules
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» SERS is primarily a plasmonic phenomenon

* |ts discovery gave birth to the field of plasmonics
and to the current resurgence of interest in
metamaternials

 The phenomenon is entering its “engineering”
phase

* A good quantum mechanical treatment of many
plasmonic effects is still unavailable, including a
good treatment of the conversion of a plasmon (a
multi-electron dynamical effect) into single-
electron excitations
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