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Abstract: | will describe work aimed at understanding the dynamics of gravitational collapse in a fully quantum setting. Its emphasisis on the role
played by fundamental discreteness. The approach used suggests modifications of a black hol€\'s mass loss rate and thermodynamical properties.
Numerical ssimulations of collapse with quantum gravity corrections indicate that black holes form with a mass gap.
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Some basic questions

What is a quantum black hole?
How does it form?
What role is played by fundamental discreteness?

How does Hawing radiation show up in a suitable approximation?
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Some approaches

In classical theory: Metric g, and matter fields o.

1-perturbative: background independent
g, ©—(q,m) (0, FP,) H(q.7.0.P,) — H

— attempt to follow evolution of a matter-geometry initial state

* Perturbative: fix background
g = go+ h — 90T X
h — h. X — X

— compute (h(x)h(x)....), (h(x)h(x")%(x")....
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x A

AdS CFT: so far no approach to bh formation — a first step is to
study gravitational collapse with qg corrections in asymptotically
AdS spacetimes.

]

Other: g.o are "emergent” collective degrees of freedom and
shouldn’t be quantized ... so a collective motion ansatz such as
cooper pairs, Laughlin wavefunction, BE condensate needed ... for
a "fundamental” QG Hamlitonian.

=

We use a canonical background independent approach with a
notion of fundamental discreteness.
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A model

o = 0 — flat space or Schwarzschild metric.

o(r, t) is the source of local degrees of freedom.

complicated 2d field theory

no known analytic collapse solutions that are asymptotically flat

solvable collapse models (Oppenheimer-Snyder, Vaidya, CGHS,
and variations) have only matter inflows
B scalar field model is much richer I )



PROBLEM

Find the quantum theory of this model
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Classical results

* There are two classes of initial data o(r.t = 0):
Weak data — no black hole formation in the long time limit.

Strong data — black holes form above threshold initial data
parameters.

— Result of hard analysis (Christdoulou 1976)

* Details of transition weak — strong done by numerical
simulation. (Choptuik 1993)

— with A (VH, M. Olivier, G. Kunstatter ... (2001))
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Simulation procedure
* Specify o(r,t =0) = ar’e \r—")/%" p.(r.t =0)=0.

* Geometry data (g.p. 73°) determined by constraints.

* Evolve data and check for trapped surface formation at each
time step: compute light expansions #~ = D,/? on spheres S5
embedded in time slice X;.

Uf(ii;ﬁa on slice) = H._(r. t)

Normal: 6. >0, 60_ <0
Marginally trapped: #. >0, _ <0
Trapped: 6+ <0

* Look for roots #. (r. t) = 0 as simulation proceeds. Search for
outermost root: this gives location of evolving horizon

ra(t)
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Results
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critical solution — naked singularit

- : no horizon forms.
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Results

N”EH — EFH[J, a. F::)
a>a. Mgy~ (a—a.)
a = a,: critical solution — naked singularit
a < a* : no honizon forms.

Classically black holes form without a mass gap
In QG we expect fundamental discreteness, and singularity

avoidance:
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Quantization

Use an ADM variables: phase space variables (g.p. :'r"“'b) for
geometry and (¢. P,) for matter.

S = / d> xdt ( 722G + Py — NH — Nﬂ(_;)

* Realize constraints as self-adjoint operators.
H is Hamiltonian constraint — H

~

C, diffeomorphism constraint — C;

~

* Compute (¢|H|v), (¥ C5|0) for states |¢°) such that

a | 0
H%® = (¢|H|y) = H‘ lassi nl(q- w, 0, P, )'_( %) f(q T, O, P] )

* State |v’) is peaked on the phase space point g. 7. 0. P, and L
s a scale in the state — its width.
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(semiclassical states for cosmology : VH, O. Winkler gr-qc )
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Quantum corrected collapse:

Evolve initial data using H9% and (C°
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Quantum corrected collapse:

Evolve initial data using H9% and C5°
Two types of corrections are present in H%, (3¢ if the underlying
theory has a fundamental discreteness scale A ~ /.

* No momentum operators — these must be written using
translation operators T, = e’?*

; l = T
P—pPr=—(Ix—1,)
I A
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Classical —1/x and the eigenvalue of —1/x operator for A = 0.1.
“Force changes sign — repulsion near the origin due to fundamental
P gicreteness: QG " Fermi” pressure. T
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Evolve initial data using H% and CJ%8

Two types of corrections are present in H%, (3¢ if the underlying
theory has a fundamental discreteness scale A ~ /.
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Quantum corrected collapse:

Evolve initial data using H% and C5°
Two types of corrections are present in H%, CJ¢ if the underlying
theory has a fundamental discreteness scale A ~ /.

* No momentum operators — these must be written using
translation operators T, = eP*

A ]- 3 T
p—p=—A— 1]

I A

“ Inverse configuration operators written using

11 == _1.
- y T,)
(q) (.f,\ L\ " ”
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Quantum corrected collapse:

Evolve initial data using H% and C3°

Two types of corrections are present in H9%, C3J¢ if the underlying
theory has a fundamental discreteness scale A ~ /.

* No momentum operators — these must be written using
translation operators T, = eP*

= ]- = —
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Classical —1/x and the eigenvalue of —1/x operator for A = 0.1.
“Force changes sign — repulsion near the origin due to fundamental
P gigcreteness: QG ” Fermi” pressure. R



Details

* In spherical symmetry the 3-metric is
ds® = N(r. t)dr* + R*(r. t)d°
so the geometry phase space variables are the pairs (R. Pg) and
(A, Pp), and the matter variables are (0. P,).
* Basic operators

R(ri.t)|a1.a2.---ap) = aglar1---an

—

e APRnst) |y 25 ---2) = |y, ---ag + N, ---a,

Similar definitions of the other fields — LQG-like representation
(VH, O. Winkler, gr-qc )
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Numerical ssmulation

* A code to evolve equations implemented with quantum corrected
constraints, and a choice of lapse and shift — (modification of a code
used with G. Kunstater (2003))

* Only one type of qg correction used: occurences of 1/R(r. t)
factors in classical equations replaced by eigenvalues of the
corresponding operators.
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Details

* In spherical symmetry the 3-metric is
ds® = N(r. t)dr* + R*(r. t)dQ?
so the geometry phase space variables are the pairs (R. Pg) and
(A, Pp), and the matter variables are (0. P,).
* Basic operators

R(ri.t)|lai.a2.---ap) = aglar1---an

——

e A\Pr(nst) |3y 25 ---3,) = |3y, ---axg + N, ---ap,

Similar definitions of the other fields — LQG-like representation
(VH, O. Winkler, gr-qc )
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Numerical ssmulation

* A code to evolve equations implemented with quantum corrected
constraints, and a choice of lapse and shift — (modification of a code

used with G. Kunstater (2003))

* Only one type of qg correction used: occurences of 1/R(r. t)
factors in classical equations replaced by eigenvalues of the

corresponding operators.
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Numerical simulation

* A code to evolve equations implemented with quantum corrected
constraints, and a choice of lapse and shift — (modification of a code
used with G. Kunstater (2003))

* Only one type of qg correction used: occurences of 1/R(r. t)
factors in classical equations replaced by eigenvalues of the
corresponding operators.

* Horizon detection using same procedure: compute #. at each
time step of simulation.

* Initial data is scalar field profile o(r.t = 0) = ar2e—(r—m)?/o?
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\ = 0: this is the known classical result Mgy = k(a — a*)
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A # 0: mass gaps evident at threshold of bh formation

points converge to classical case for large amplitude data
P o1t nass gaps increase with increasing A A



Summary

» A procedure for computing quantum gravity corrections to

Pirsa: 07110050

gravitational collapse.

Mass gap at the onset of black hole formation, critical solution for
A # 0 is not a naked singularity — quantum gravity corrections to
Choptuik behaviour.

(Mass gap known in the homogeneous case of Oppenheimer-Snyder
model (Bojowald, Maartens, Singh), but no critical behaviour)

Long to do list: put in P, corrections, continue evolution beyond
horizon formation (do horizons begin to shrink?), derive qg
corrected KG equation in a similar way, - - - .
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A comment on holography

— For the spatial metric ds® = A*(r. t)dt* + R*(r. t)d?, in gauge
A =1, volume V ~ [ R*(. t)dr'.

!

— This becomes an operator V=L Ea F?:(r__ ), where L is a
coordinate length interval in the chosen gauge.

— Its eigenvalues are proportional to L if,, (rather than ig had there
been no gauge fixing.)
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A comment on holography
— For the spatial metric ds® = A*(r. t)dt* + R*(r. t)dQ?, in gauge

-

A =1, volume V ~ [

s R%(r, t)dr'.

— This becomes an operator V = LY, R?(ry), where L is a
coordinate length interval in the chosen gauge.

— Its eigenvalues are proportional to L fz, (rather than ff-', had there
been no gauge fixing.)

— For a fixed coordinate length L, the unit quantum volume is
kLI3, so the number of such units in a sphere is
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*This is the essence of the argument made by Gambini & Pullin for
holography from LQG. It applies to other cases beyond spherical
P orsPfnmetry provided gauge fixing reduces the number of dynamical g
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A comment on holography
— For the spatial metric ds* = A*(r. t)dt* + R*(r. t)dQ?, in gauge

5

A =1, volume V ~ [

s R*(F,t)dr.

— This becomes an operator V=L Ea F?:(rq ), where L is a
coordinate length interval in the chosen gauge.

— Its eigenvalues are proportional to L if,, (rather than Ig had there
been no gauge fixing.)

— For a fixed coordinate length L, the unit quantum volume is
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A comment on holography

— For the spatial metric ds* = A*(r. t)dt* + R%(r. t)dQ?, in gauge
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Summary

» A procedure for computing quantum gravity corrections to
gravitational collapse.

» Mass gap at the onset of black hole formation, critical solution for
A # 0 is not a naked singulanty — quantum gravity corrections to
Choptuik behaviour.

(Mass gap known in the homogeneous case of Oppenheimer-Snyder
model (Bojowald, Maartens, Singh), but no critical behaviour)

» Long to do list: put in P, corrections, continue evolution beyond
horizon formation (do horizons begin to shrink?), derive qg
corrected KG equation in a similar way, -- - .
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