Title: Symmetry deformation from quantum relational observables

Date: Nov 06, 2007 11:15 AM

URL: http://pirsa.org/07110044

Abstract: Observables in (quantum) General Relativity can be constructed from (quantum) reference frame -- a physical observable is then a relation between a system of interest and the reference frame. A possible interpretation of DSR can be derived from the notion of deformed reference frame (cf Liberati-Sonego-Visser). We present a toy model and study an example of such quantum relational observables. We show how the intrinsic quantum nature of the reference frame naturally leads to a deformation of the symmetries, comforting DSR to be a good candidate to describe the QG semi-classical regime.

Pirsa: 07110044 Page 1/74

OUTLINE

- Flat semi-classical space time: modification of symmetries → notion of reference frame revised. Is this effect due to a possible quantum nature of the reference frame?
- Why a quantum reference frame is natural from the Quantum Gravity perspective?
- Quantum reference frame in a toy model.

PART I:

There is now hope to probe semi-classical QG effects in experiments: need to construct a theory and in this context provide different experimental sets-up together with predictions.

Ideally this theory should be derived from:

$$\int [d\phi_M][dg]e^{i\int \mathcal{L}_M(\phi_M,g)+\mathcal{L}_{GR}(g)},$$

 $\mathcal{L}_M(\phi_M, g)$, $\mathcal{L}_{GR}(g)$, lagrangians for resp. matter and grav. dof. This is the "conservative" point of view. Introducing a semi-classical state for flat space-time, we obtain the effective lagrangian for matter.

$$\int [d\phi_{M}]e^{i\int \tilde{\mathcal{L}}_{M}(\phi)}$$

To regularize this expression, we could use for example the spinfoam approach.

If we take a "liberal" point of view, we can implement extra-dimensions, other fundamental objects (eg strings, D-particles...)...

- In 3d, the calculation can be done exactly, one obtains Deformed Special Relativity (Freidel, Livine, hep-th/0512113).
- In 4d, it can't be done yet, so one models by hand the effective theory reproducing the QG fluctuations around flat space-time:
- Modify flat space-time (ie Special Relativity) to incorporate QG effects (eg Planck scale) at the kinematical level.

- \longrightarrow If there is a new fundamental scale (M_P) , Poincaré symmetries can be
 - Unmodified: need to understand why it is so (eg discrete structure consistent with Lorentz symmetries (causal sets, Snyder...)).
 - Broken: this is very much constrained at this time (cf Stefano's talk tomorrow).
 - Deformed: there is still a (modified) relativity principle: symmetries are deformed to be consistent with the new scale. This is Deformed (or Doubly) Special Relativity.
 - To distinguish between the different possibilities, one needs either a full derivation or some experiments.

011

- \longrightarrow If there is a new fundamental scale (M_P) , Poincaré symmetries can be
 - Unmodified: need to understand why it is so (eg discrete structure consistent with Lorentz symmetries (causal sets, Snyder...)).
 - Broken: this is very much constrained at this time (cf Stefano's talk tomorrow).
 - Deformed: there is still a (modified) relativity principle: symmetries are deformed to be consistent with the new scale. This is Deformed (or Doubly) Special Relativity.
 - To distinguish between the different possibilities, one needs either a full derivation or some experiments.

- \longrightarrow If there is a new fundamental scale (M_P) , Poincaré symmetries can be
 - Unmodified: need to understand why it is so (eg discrete structure consistent with Lorentz symmetries (causal sets, Snyder...)).
 - Broken: this is very much constrained at this time (cf Stefano's talk tomorrow).
 - Deformed: there is still a (modified) relativity principle: symmetries are deformed to be consistent with the new scale. This is Deformed (or Doubly) Special Relativity.
 - To distinguish between the different possibilities, one needs either a full derivation or some experiments.

- \longrightarrow If there is a new fundamental scale (M_P) , Poincaré symmetries can be
 - Unmodified: need to understand why it is so (eg discrete structure consistent with Lorentz symmetries (causal sets, Snyder...)).
 - Broken: this is very much constrained at this time (cf Stefano's talk tomorrow).
 - Deformed: there is still a (modified) relativity principle: symmetries are deformed to be consistent with the new scale. This is Deformed (or Doubly) Special Relativity.
 - To distinguish between the different possibilities, one needs either a full derivation or some experiments.

011

DEFORMED SPECIAL RELATIVITY (DSR)

We modify the action of the boost on momentum, but not the Lorentz algebra:

→ Non linear realization of the Lorentz group.

 π_{μ} the "platonic" momentum variable carrying linear representation (therefore unbounded).

 $p_{\mu} = F_{\mu}(\pi, M_P)$ the "physical" momentum bounded by M_P . F is a non linear invertible map.

$$\tilde{\Lambda} \cdot p = F\left(\Lambda \cdot F^{-1}(p)\right), \quad \left[\tilde{\Lambda}_{\mu\nu}, \tilde{\Lambda}_{\rho\sigma}\right] = \eta_{\mu\rho}\tilde{\Lambda}_{\nu\sigma} - \eta_{\mu\sigma}\tilde{\Lambda}_{\nu\rho} - \eta_{\nu\rho}\tilde{\Lambda}_{\mu\sigma} + \eta_{\nu\sigma}\tilde{\Lambda}_{\mu\rho}.$$

This leaves the modified mass shell invariant:

$$\pi^2 = m^2 \to E^2 = m^2 + p^2 + \sum_{n=1}^{\infty} \alpha_n(p, M_P)$$

DSR

There are various versions on how momenta add, how space-time is reconstructed, ...

$$\{x^{\mu}, x_{\nu}\} = \delta^{\mu}_{\nu} + g(p, M_{P})$$
$$\{x^{\mu}, p_{\nu}\} = \delta^{\mu}_{\nu} + f(p, M_{P})$$
$$p_{1} \oplus p_{2} = ?$$

DSR

This is not simply a rewriting of Special Relativity in a funny choice of coordinates if we choose carefully a new momenta addition for example, consistent with the deformed symmetries.

DSR

There are various versions on how momenta add, how space-time is reconstructed, ...

$$\{x^{\mu}, x_{\nu}\} = \delta^{\mu}_{\nu} + g(p, M_{P})$$
$$\{x^{\mu}, p_{\nu}\} = \delta^{\mu}_{\nu} + f(p, M_{P})$$
$$p_{1} \oplus p_{2} = ?$$

EXAMPLE: "BICROSSPRODUCT" BASIS

This is the best mathematically defined and most studied example. Taking the platonic variables $\pi^A \in \mathbb{R}^5$ we have

- Momentum: $p_0 \equiv M_P \ln \frac{\pi_4 \pi_0}{M_P}$, $p_i \equiv M_P \frac{\pi_i}{\pi_0 \pi_4}$ $\rightarrow (2M_P \sinh \frac{p_0}{2M_P})^2 - \overrightarrow{p}^2 e^{-\frac{p_0}{M_P}} = m^2$
- κ -Minkowski spacetime: $\{x_0, x_i\} = -\frac{1}{M_P}x_i, \quad \{x_i, x_j\} = 0$
- Poisson brackets: $\{x_0, p_0\} = 1, \ \{x_i, p_j\} = -\delta_{ij}, \{x_0, p_i\} = -\frac{1}{M_P}p_i$
- Momentum addition: $(p_1 \oplus p_2)^0 = p_1^0 + p_2^0, \quad (p_1 \oplus p_2)^i = e^{-p_2^0/M_p} p_1^i + p_2^i$

- People study this mathematically well-defined theory: Quantum field theory on κ-Minkowski.
- There is a number of physical concrete questions arising from the general approach.

 Can we explore this theory from a different angle? Symmetries relate reference frames: modified symmetries means a modified notion of reference frame?

- People study this mathematically well-defined theory: Quantum field theory on κ -Minkowski.
- There is a number of physical concrete questions arising from the general approach.
 - What does it mean to have a non-commutative sum of momenta?
 - There is the "soccer ball" problem: eg $|\vec{p}| < M_P c \rightarrow |\vec{p}_1 \oplus \vec{p}_2| < M_P c$
 - What is the physical meaning of π ?
 - 9
- Can we explore this theory from a different angle? Symmetries relate reference frames: modified symmetries means a modified notion of reference frame?

- People study this mathematically well-defined theory: Quantum field theory on κ -Minkowski.
- There is a number of physical concrete questions arising from the general approach.
 - What does it mean to have a non-commutative sum of momenta?
 - There is the "soccer ball" problem: eg $|\vec{p}| < M_P c \rightarrow |\vec{p}_1 \oplus \vec{p}_2| < M_P c$
 - What is the physical meaning of π ?
 - ...
- Can we explore this theory from a different angle? Symmetries relate reference frames: modified symmetries means a modified notion of reference frame?

- People study this mathematically well-defined theory: Quantum field theory on κ-Minkowski.
- There is a number of physical concrete questions arising from the general approach.
 - What does it mean to have a non-commutative sum of momenta?
 - There is the "soccer ball" problem: eg $|\vec{p}| < M_P c \rightarrow |\vec{p}_1 \oplus \vec{p}_2| < M_P c$
 - What is the physical meaning of π ?
 - 0 ...
- Can we explore this theory from a different angle? Symmetries relate reference frames: modified symmetries means a modified notion of reference frame?

- People study this mathematically well-defined theory: Quantum field theory on κ-Minkowski.
- There is a number of physical concrete questions arising from the general approach.
 - What does it mean to have a non-commutative sum of momenta?
 - There is the "soccer ball" problem: eg $|\vec{p}| < M_P c \rightarrow |\vec{p}_1 \oplus \vec{p}_2| < M_P c$
 - What is the physical meaning of π ?
- Can we explore this theory from a different angle? Symmetries relate reference frames: modified symmetries means a modified notion of reference frame?

- People study this mathematically well-defined theory: Quantum field theory on κ-Minkowski.
- There is a number of physical concrete questions arising from the general approach.
 - What does it mean to have a non-commutative sum of momenta?
 - There is the "soccer ball" problem: eg $|\vec{p}| < M_P c \rightarrow |\vec{p}_1 \oplus \vec{p}_2| < M_P c$
 - What is the physical meaning of π ?
 - ...
- Can we explore this theory from a different angle? Symmetries relate reference frames: modified symmetries means a modified notion of reference frame?

- Introduce a reference frame e^{μ}_{α} , with $\mu \equiv$ space-time coordinates, α labels vectors.
- Let π_{μ} be the momentum of the particle.
- Then $p_{\alpha} = \pi_{\mu} e^{\mu}_{\alpha}$ is the measurement outcome (or coordinates) of π in e. In Minkowski space-time, $e^{\mu}_{\alpha} \sim \delta^{\mu}_{\alpha}$ so $\pi \sim p$.
- Consider another reference frame, $e^{\mu}{}_{\alpha} \to \overline{e}^{\mu}{}_{\alpha} = \Lambda^{\beta}{}_{\alpha}e^{\mu}{}_{\beta}$, Λ is a Lorentz transformation.

$$p'_{\alpha} = \pi_{\mu} \overline{e}^{\mu}{}_{\alpha} = \Lambda^{\beta}{}_{\alpha} e^{\mu}{}_{\beta} \pi_{\mu} = \Lambda^{\beta}{}_{\alpha} p_{\beta}.$$

- Introduce a reference frame e^μ_α, with μ ≡ space-time coordinates, α labels vectors.
- Let π_{μ} be the momentum of the particle.
- Then $p_{\alpha} = \pi_{\mu} e^{\mu}_{\alpha}$ is the measurement outcome (or coordinates) of π in e. In Minkowski space-time, $e^{\mu}_{\alpha} \sim \delta^{\mu}_{\alpha}$ so $\pi \sim p$.
- Consider another reference frame, $e^{\mu}{}_{\alpha} \to \overline{e}^{\mu}{}_{\alpha} = \Lambda^{\beta}{}_{\alpha}e^{\mu}{}_{\beta}$, Λ is a Lorentz transformation.

$$p'_{\alpha} = \pi_{\mu} \overline{e}^{\mu}_{\alpha} = \Lambda^{\beta}_{\alpha} e^{\mu}_{\beta} \pi_{\mu} = \Lambda^{\beta}_{\alpha} p_{\beta}.$$

- Introduce a reference frame e^μ_α, with μ ≡ space-time coordinates, α labels vectors.
- Let π_{μ} be the momentum of the particle.
- Then $p_{\alpha} = \pi_{\mu} e^{\mu}_{\alpha}$ is the measurement outcome (or coordinates) of π in e. In Minkowski space-time, $e^{\mu}_{\alpha} \sim \delta^{\mu}_{\alpha}$ so $\pi \sim p$.
- Consider another reference frame, $e^{\mu}{}_{\alpha} \to \overline{e}^{\mu}{}_{\alpha} = \Lambda^{\beta}{}_{\alpha}e^{\mu}{}_{\beta}$, Λ is a Lorentz transformation.

$$p'_{\alpha} = \pi_{\mu} \overline{e}^{\mu}{}_{\alpha} = \Lambda^{\beta}{}_{\alpha} e^{\mu}{}_{\beta} \pi_{\mu} = \Lambda^{\beta}{}_{\alpha} p_{\beta}.$$

- Introduce a reference frame e^{μ}_{α} , with $\mu \equiv$ space-time coordinates, α labels vectors.
- Let π_{μ} be the momentum of the particle.
- Then $p_{\alpha} = \pi_{\mu} e^{\mu}_{\alpha}$ is the measurement outcome (or coordinates) of π in e. In Minkowski space-time, $e^{\mu}_{\alpha} \sim \delta^{\mu}_{\alpha}$ so $\pi \sim p$.
- Consider another reference frame, $e^{\mu}{}_{\alpha} \to \overline{e}^{\mu}{}_{\alpha} = \Lambda^{\beta}{}_{\alpha}e^{\mu}{}_{\beta}$, Λ is a Lorentz transformation.

$$p_{\alpha}' = \pi_{\mu} \overline{e}^{\mu}{}_{\alpha} = \Lambda^{\beta}{}_{\alpha} e^{\mu}{}_{\beta} \pi_{\mu} = \Lambda^{\beta}{}_{\alpha} p_{\beta}.$$

To get a deformation of symmetry, one needs a nonlinear function of reference frame and the system ("effective reference frame"). (Liberati, Sonego,

Visser, grcq/0410113)

$$e^{\mu}_{\alpha} \rightarrow E^{\mu}_{\alpha} = \mathcal{U}(e^{\mu}_{\alpha}, \pi_{\mu}, M_{P}).$$

For example:

$$\mathcal{U}(e^{\mu}_{\alpha}, \pi_{\mu}, M_{P}) = \frac{1}{\sqrt{1 - \frac{\pi_{\mu}e^{\mu}_{0}}{M_{P}}}} e^{\mu}_{\alpha}, \quad p_{\alpha} = \frac{1}{\sqrt{1 - \frac{\pi_{\mu}e^{\mu}_{0}}{M_{P}}}} e^{\mu}_{\alpha} \pi_{\mu}$$

The fundamental variable is the frame e^{μ}_{α} . We have then a non-linear transformation of the effective frame:

$$p_{\alpha} = E^{\mu}{}_{\alpha} \pi_{\mu} \xrightarrow{\Lambda} p'_{\alpha} = \mathcal{U} \left(\Lambda \cdot \mathcal{U}^{-1}(E) \right) \pi_{\mu}.$$

Such frame will be associated to a Finsler metric (cf my talk on Saturday) or Rainbow metric.

EXAMPLE

- In a couple of papers, Liberati et al introduced a stochastic component to the tetrad induced by QG effects. (gr-qc/0511031, gr-qc/0607024)
- A particle will probe the fluctuations of the tetrad up to the scale L $E^{\mu}{}_{\alpha}(L) = \langle e^{\mu}{}_{\alpha} \rangle_{L}$. This scale can be naturally identified with the particle's de Broglie length $L = \hbar/p_{0}$.
- In this case, the effective reference frame becomes momentum dependent $E^{\mu}_{\alpha}(p_0)$.
- A similar result is obtained in the renormalization group approach (Girelli, Liberati, Percacci, Rahmede, gr-qc/0607030).
- It is however not clear how this extends in more general situations: multi-particles case...
- The key question to answer is how the reference frame becomes system independent.

EXAMPLE

- In a couple of papers, Liberati et al introduced a stochastic component to the tetrad induced by QG effects. (gr-qc/0511031, gr-qc/0607024)
- A particle will probe the fluctuations of the tetrad up to the scale L $E^{\mu}{}_{\alpha}(L) = \langle e^{\mu}{}_{\alpha} \rangle_{L}$. This scale can be naturally identified with the particle's de Broglie length $L = \hbar/p_{0}$.
- In this case, the effective reference frame becomes momentum dependent $E^{\mu}_{\alpha}(p_0)$.
- A similar result is obtained in the renormalization group approach (Girelli, Liberati, Percacci, Rahmede, gr-qc/0607030).
- It is however not clear how this extends in more general situations: multi-particles case...
- The key question to answer is how the reference frame becomes system independent.

EXAMPLE

- In a couple of papers, Liberati et al introduced a stochastic component to the tetrad induced by QG effects. (gr-qc/0511031, gr-qc/0607024)
- A particle will probe the fluctuations of the tetrad up to the scale L $E^{\mu}{}_{\alpha}(L) = \langle e^{\mu}{}_{\alpha} \rangle_{L}$. This scale can be naturally identified with the particle's de Broglie length $L = \hbar/p_{0}$.
- In this case, the effective reference frame becomes momentum dependent E^μ_α(p₀).
- A similar result is obtained in the renormalization group approach (Girelli, Liberati, Percacci, Rahmede, gr-qc/0607030).
- It is however not clear how this extends in more general situations: multi-particles case...
- The key question to answer is how the reference frame becomes system independent.

- When constructing the effective theory by hand, we had the choice: the symmetry is either broken (preferred frame) or untouched (usual frame?) or deformed (modified frame).
- Can we find a general argument from the QG perspective that will pinpoint one of these different possibilities?
- In QG, we need to talk about Quantum Reference Frame (QRF).
 - → Why is that?
 - → I will study QRF in a toy model that will generate some modification of the symmetry.

011

PART II:

Why Quantum Reference Frame in Quantum Gravity?

011

- Gravity can be described as a constrained system (Dirac, Lectures on Quantum Mechanics)
- First class constraints C_i can be seen as encoding symmetries (in the General Relativity case, the diffeomorphsims).
- Observables O are phase space functions that commute with constraints.

$$\{\mathcal{O}, \mathcal{C}_i\} = 0$$

- Gravity can be described as a constrained system (Dirac, Lectures on Quantum Mechanics)
- First class constraints C_i can be seen as encoding symmetries (in the General Relativity case, the diffeomorphsims).
- Observables O are phase space functions that commute with constraints.

$$\{\mathcal{O}, \mathcal{C}_i\} = 0$$

- Gravity can be described as a constrained system (Dirac, Lectures on Quantum Mechanics)
- First class constraints C_i can be seen as encoding symmetries (in the General Relativity case, the diffeomorphsims).
- Observables O are phase space functions that commute with constraints.

$$\{\mathcal{O},\mathcal{C}_i\}=0$$

- Gravity can be described as a constrained system (Dirac, Lectures on Quantum Mechanics)
- First class constraints C_i can be seen as encoding symmetries (in the General Relativity case, the diffeomorphsims).
- Observables O are phase space functions that commute with constraints.

$$\{\mathcal{O}, \mathcal{C}_i\} = 0$$

- Gravity can be described as a constrained system (Dirac, Lectures on Quantum Mechanics)
- First class constraints C_i can be seen as encoding symmetries (in the General Relativity case, the diffeomorphsims).
- Observables O are phase space functions that commute with constraints.

$$\{\mathcal{O},\mathcal{C}_i\}=0$$

- Gravity can be described as a constrained system (Dirac, Lectures on Quantum Mechanics)
- First class constraints C_i can be seen as encoding symmetries (in the General Relativity case, the diffeomorphsims).
- Observables O are phase space functions that commute with constraints.

$$\{\mathcal{O},\mathcal{C}_i\}=0$$

WHY A RF?

- Gravity can be described as a constrained system (Dirac, Lectures on Quantum Mechanics)
- First class constraints C_i can be seen as encoding symmetries (in the General Relativity case, the diffeomorphsims).
- Observables O are phase space functions that commute with constraints.

$$\{\mathcal{O},\mathcal{C}_i\}=0$$

It is often hard to construct in general the set of observables, but using physical reference frame helps in general (cf Rovelli's book, Dittrich's papers, Giddings-Hartle-Marolf's paper).

WHY A RF?

- Gravity can be described as a constrained system (Dirac, Lectures on Quantum Mechanics)
- First class constraints C_i can be seen as encoding symmetries (in the General Relativity case, the diffeomorphsims).
- Observables O are phase space functions that commute with constraints.

$$\{\mathcal{O}, \mathcal{C}_i\} = 0$$

It is often hard to construct in general the set of observables, but using physical reference frame helps in general (cf Rovelli's book, Dittrich's papers, Giddings-Hartle-Marolf's paper).

Relativistic particle:

$$S = m \int \sqrt{\eta_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}} d\tau$$

$$p_{\nu} = m \frac{\eta_{\mu\nu} \dot{x}^{\mu}}{\sqrt{\eta_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}}}$$

$$(\delta_{\mu\nu} - \frac{\dot{x}_{\mu} \dot{x}_{\nu}}{\eta_{\alpha\beta} \dot{x}^{\alpha} \dot{x}^{\beta}}) \ddot{x}^{\mu} = 0$$

$$H d\tau = p_{\mu} \dot{x}^{\mu} - \mathcal{L} = 0$$
Legendre transform
$$\begin{cases}
S = \int (\dot{x}^{\mu} p_{\mu} - \lambda (p^{2} - m^{2})) d\tau \\
\dot{x}^{\mu} = 2\lambda p^{\mu} \\
\dot{p}^{\mu} = 0 \\
p^{2} = m^{2}
\end{cases}$$

- λ is a Lagrange multiplier encoding the mass-shell constraint.
- This constraint encodes the time reparametrization symmetry.
- Observables O are functions on phase space such that {O, p² - m²} = 0.
 J_{μν}, p_μ commute since p² is Poincaré Casimir, but {x^μ, p² - m²} = p^μ ≠ 0.

To define observable positions, we introduce a clock $\mathcal{F} = x^0$, a "time reference frame". Consider

$$X^{\mu} = x^{\mu} + \frac{p^{\mu}}{p^{0}}(x^{0} - T) \Rightarrow \{X^{\mu}, p^{2} - m^{2}\} = 0$$

so X^{μ} is observable. It is a relational coordinate:

When $x^0 = T$ then $X^\mu = x^\mu \leftrightarrow$ when the clock indicates T, the particle is at the position x^μ .

Other choice of relational coordinates, ie other choice of clock $\mathcal{F} = x^{\mu}p_{\mu}$:

$$\tilde{X}^{\mu} = x^{\mu} + \frac{p^{\mu}}{p^2} (x^{\mu} p_{\mu} - T)$$

These relational coordinates become non-commutative: $\{\tilde{X}_{\mu}, \tilde{X}_{\nu}\} = \frac{1}{p^2}J_{\mu\nu}$

When we have (first class) constraints or symmetries, relational quantities provide a natural set of observables.

To construct a relational quantity, we introduce a reference frame and define a relation between the system of interest and the reference frame.

Spin systems: Consider a set of non interacting classical spin particles $\vec{S}^{(i)}$. We impose that the total spin is zero: we impose global rotational symmetry, through the constraints

$$S_x^{(tot)} = 0$$
 $S_y^{(tot)} = 0$, $S_z^{(tot)} = 0$.

A relative angle is a natural observable when dealing with rotational symmetry: Consider the system $\vec{S}^{(k)} = \vec{S}$, pick one set of spins \vec{J}^1 as our reference axis, then

$$s^1 = \vec{S} \cdot \vec{J}^1 \Rightarrow \{s^1, S_a^{(tot)}\} = 0$$

To construct a 3d reference frame, we pick up another set of spins \vec{J}^2 . We can then define $\vec{J}^3 = \vec{J}_1 \wedge \vec{J}_2$. We have then the physical relational coordinates:

$$s^i = \vec{S} \cdot \vec{J}^i.$$

Spin systems: Consider a set of non interacting classical spin particles $\vec{S}^{(i)}$. We impose that the total spin is zero: we impose global rotational symmetry, through the constraints

$$S_x^{(tot)} = 0$$
 $S_y^{(tot)} = 0$, $S_z^{(tot)} = 0$.

A relative angle is a natural observable when dealing with rotational symmetry: Consider the system $\vec{S}^{(k)} = \vec{S}$, pick one set of spins \vec{J}^1 as our reference axis, then

$$s^1 = \vec{S} \cdot \vec{J}^1 \Rightarrow \{s^1, S_a^{(tot)}\} = 0$$

To construct a 3d reference frame, we pick up another set of spins \vec{J}^2 . We can then define $\vec{J}^3 = \vec{J}_1 \wedge \vec{J}_2$. We have then the physical relational coordinates:

$$s^i = \vec{S} \cdot \vec{J}^i$$
.

Spin systems: Consider a set of non interacting classical spin particles $\vec{S}^{(i)}$. We impose that the total spin is zero: we impose global rotational symmetry, through the constraints

$$S_x^{(tot)} = 0$$
 $S_y^{(tot)} = 0$, $S_z^{(tot)} = 0$.

A relative angle is a natural observable when dealing with rotational symmetry: Consider the system $\vec{S}^{(k)} = \vec{S}$, pick one set of spins \vec{J}^1 as our reference axis, then

$$s^1 = \vec{S} \cdot \vec{J}^1 \Rightarrow \{s^1, S_a^{(tot)}\} = 0$$

To construct a 3d reference frame, we pick up another set of spins \vec{J}^2 . We can then define $\vec{J}^3 = \vec{J}_1 \wedge \vec{J}_2$. We have then the physical relational coordinates:

$$s^i = \vec{S} \cdot \vec{J}^i$$
.

GPS coordinates:(cf Rovelli's book)

Consider a point *P* in (2d) space-time. We impose diffeomorphisms symmetry: *P* can have any arbitrary coordinates as parametrization of the manifold.

We can define physical system by considering two "satellites" with relativistic velocities V_{μ}^{-1} , V_{μ}^{-2} , emitting radio signals.

Then the physical coordinates of P with respect to the satellites are:

$$s^{\alpha} = x^{\mu}V_{\mu}{}^{\alpha} - \sqrt{(x^{\mu}V_{\mu}{}^{\alpha})^2 - x^{\mu}x_{\mu}}.$$

This is the Einstein's "incidence point".

GPS coordinates:(cf Rovelli's book)

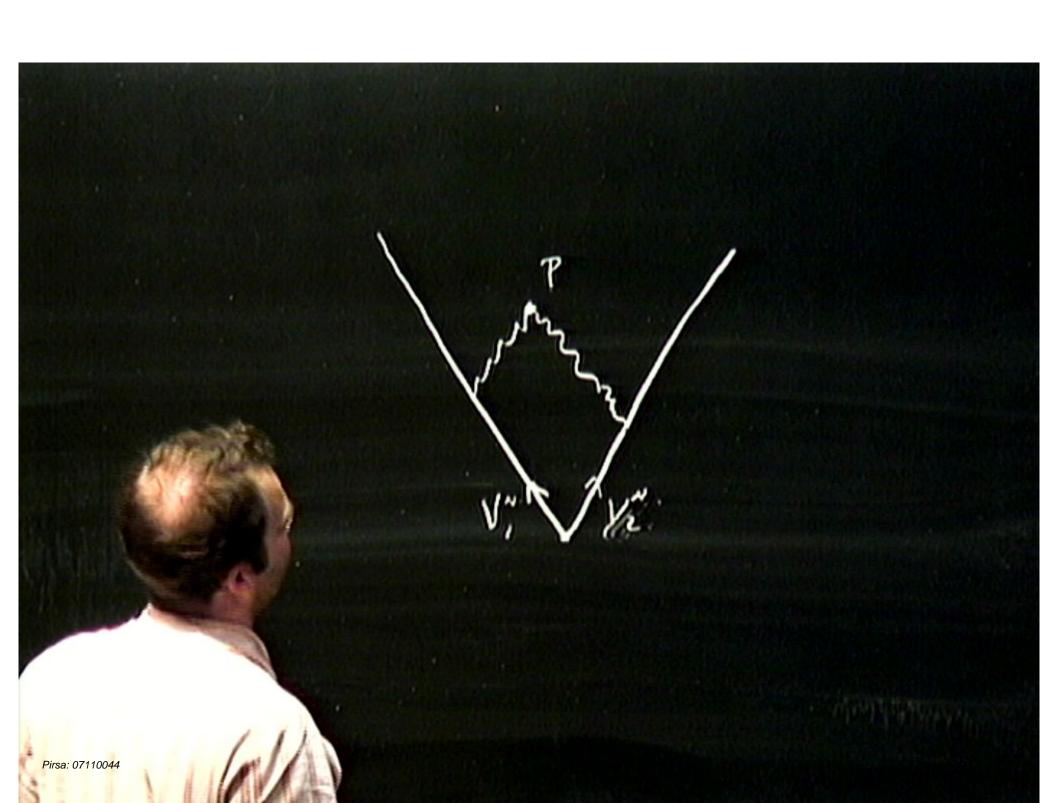
Consider a point *P* in (2d) space-time. We impose diffeomorphisms symmetry: *P* can have any arbitrary coordinates as parametrization of the manifold.

We can define physical system by considering two "satellites" with relativistic velocities V_{μ}^{-1} , V_{μ}^{-2} , emitting radio signals.

Then the physical coordinates of P with respect to the satellites are:

$$s^{\alpha} = x^{\mu}V_{\mu}{}^{\alpha} - \sqrt{(x^{\mu}V_{\mu}{}^{\alpha})^2 - x^{\mu}x_{\mu}}.$$

This is the Einstein's "incidence point".



GPS coordinates:(cf Rovelli's book)

Consider a point *P* in (2d) space-time. We impose diffeomorphisms symmetry: *P* can have any arbitrary coordinates as parametrization of the manifold.

We can define physical system by considering two "satellites" with relativistic velocities V_{μ}^{-1} , V_{μ}^{-2} , emitting radio signals.

Then the physical coordinates of P with respect to the satellites are:

$$s^{\alpha} = x^{\mu}V_{\mu}{}^{\alpha} - \sqrt{(x^{\mu}V_{\mu}{}^{\alpha})^2 - x^{\mu}x_{\mu}}.$$

This is the Einstein's "incidence point".

QUANTIZATION

One follows Dirac canonical procedure:

- Phase space → "kinematical" Hilbert space
- $C_i \rightarrow \hat{C}_i$ (careful with ordering ambiguities...)
- Kernel of \hat{C}_i is the physical Hilbert space.
- Observables: $[\hat{\mathcal{O}}, \hat{C}_i] = 0$. It is now natural to look at quantum relational observables, constructed out of a quantum reference frame.

EXAMPLE OF A QRF

Spin systems revisited: Consider a set of non interacting quantum spin particles $\xi^{(i)}$. The quantum constraints are obtained in a straightforward manner

$$\hat{\xi}_x^{(tot)} = 0$$
 $\hat{\xi}_y^{(tot)} = 0$, $\hat{\xi}_z^{(tot)} = 0$.

Quantum relational observables:

$$\mathbf{s}^{i} = \vec{\xi} \cdot \vec{J}^{i} \Rightarrow \{\mathbf{s}^{i}, \hat{\xi}_{a}^{(tot)}\} = 0$$

These are quantum relational observables and $J^{\mu}{}_{\alpha}$ is a quantum reference frame.

- Quantum Gravity is a quantum constrained system. Observables can be constructed as relational in terms of a quantum reference frame.
- We need to understand the physical implication of having quantum reference frames.

QUESTIONS TO EXPLORE:

- What is the precision of a QRF?
- What is the robustness of a QRF?
- Do we get non-commutative coordinates?
- What is the notion of symmetry?
- How do we coarse-grain relational observables (multi-particles state)?

These questions are of interest for both the Quantum Information Theory and QG community. In particular, the QIT people would implement that in concrete experiments.

PART III:

Quantum Reference Frame in a toy model

TOY MODEL

We consider the set of quantum spin particles. The QRF axis \vec{J}^1, \vec{J}^2 are made of spin ℓ and satisfy

$$[J^{\mu}{}_{\alpha}, J^{\nu}{}_{\beta}] = \begin{cases} 0 & \text{if } \alpha \neq \beta \\ \frac{i}{\sqrt{\ell(\ell+1)}} \epsilon_{\eta}{}^{\mu\nu} J^{\eta}{}_{\alpha} & \text{if } \alpha = \beta \end{cases}$$

We introduce also

$$\vec{J}_3 = \vec{J}_1 \wedge \vec{J}_2$$
, $\mathfrak{s}_3 = \vec{\xi} \cdot \vec{J}_3$

The quantum system $\vec{\xi}$ is a spin j. The relational coordinates satisfy the modified algebra: analog to the emergence of "non-commutativity".

$$[\mathfrak{s}_1,\mathfrak{s}_2] = i\mathfrak{s}_3$$

$$[\mathfrak{s}_2,\mathfrak{s}_3] = i\mathfrak{s}_1 + -iJ^{\mu}{}_2J_{\mu 1}\mathfrak{s}_2 + i\frac{\mathfrak{s}_1\mathfrak{s}_2 - (\vec{\xi} \cdot \vec{\xi})J^{\mu}{}_2J_{\mu 1}}{\sqrt{\ell(\ell+1)}}$$

$$[\mathfrak{s}_3,\mathfrak{s}_1] = i\mathfrak{s}_2 + -i\mathfrak{s}_1 J^{\mu}_2 J_{\mu 1} + i \frac{\mathfrak{s}_1\mathfrak{s}_2 - \left(\vec{\xi} \cdot \vec{\xi}\right) J^{\mu}_2 J_{\mu 1}}{\sqrt{\ell(\ell+1)}}$$

We obtain the "semi-classical relational" coordinates by taking the RF in a semi-classical state $\rho = \rho_1 \otimes \rho_2$

$$\xi_{\alpha}^{semi-classical} = \operatorname{Tr}_{RF} (\mathfrak{s}_{\alpha} \rho)$$
,

taking each of the axis a=1,2 of the reference frame in the adequate coherent state $|\ell_a,\ell_a\rangle$ and $\ell_a\to\infty$.

$$\langle \ell_a, \ell_a | J^{\mu}{}_a | \ell_a, \ell_a \rangle = \delta_{a\mu} \frac{\ell_a}{\sqrt{\ell_a(\ell_a + 1)}} \stackrel{\ell_a \to \infty}{\to} \delta_{a\mu},$$

$$\xi_{\alpha}^{semi-classical} \stackrel{\ell_a \to \infty}{\to} \xi_{\alpha}$$

We recover the standard su(2) algebra.

$$[\mathfrak{s}_i,\mathfrak{s}_j] \rightarrow [\xi_i,\xi_j] = i\epsilon_{ij}^k \xi_k$$

The semi-classical coordinates can be decomposed into a sum of 2j + 1 orthogonal projectors P_{α}^{m} , $m = -j, \ldots, j$ associated with distinct eigenvalues m.

MEASUREMENTS: PROJECTORS

 σ state of the source particle, ρ state of reference frame. The state $\rho \otimes \sigma$ of s^{α} is in $j \otimes \ell \sim \bigoplus_{k=\ell-i}^{\ell+j} k$.

Spectral theorem tells us that:

$$\mathbf{s}_{\alpha} = \sum_{k=\ell-i}^{\ell+j} \lambda^k \Pi_{\alpha}^k \text{ with eigenvalues } \lambda^k = \frac{k(k+1) - \ell(\ell+1) - j(j+1)}{2\sqrt{\ell(\ell+1)}}$$

and projector

$$\Pi_{\alpha}^{k} = \frac{1}{N^{k}} \prod_{k' \neq k} (\lambda^{k'} - \mathfrak{s}_{\alpha}),$$

where the normalization factor is

$$N^k = \prod_{k' \neq k} (\lambda^{k'} - \lambda^k).$$

 Π_{α}^{k} are non-linear functions of the relational coordinates \mathfrak{s}_{α} (polynomials of degree 2j).

Measurements of \mathfrak{s}_{α}

Measurement of \mathfrak{s}_{α} will produce the outcomes λ^k with probability

$$Pr(\lambda^k) = Tr\{\Pi_{\alpha}^k \rho \otimes \sigma\}$$

INDUCED MEASUREMENTS ON SYSTEM

$$Pr(\lambda^k) = Tr\{\Pi^k_{\alpha}\rho \otimes \sigma\} = Tr\{\Lambda^k_{\alpha}\sigma\}$$

with

$$\Lambda_{\alpha}^{k} = \operatorname{Tr}_{RF}\{\Pi_{\alpha}^{k}\rho\}.$$

 Λ_{α}^{k} can be seen as an approximation of the measure of the "semi-classical relational" coordinates.

$$\Lambda_{\alpha}^{k} = (1 - \epsilon^{k}) P_{\alpha}^{k} + \sum_{k' \neq k} \epsilon^{k', k} P_{\alpha}^{k'},$$

where e^k , $e^{k',k}$ depend on ρ and are of order ℓ^{-1} . We can then play on ρ to determine which ρ provides the optimum measurement: this is one way to encode the precision of the QRF.

INDUCED MEASUREMENTS ON RF: BACK-ACTION ON QRF

First note that

$$[J^{\mu}{}_{\alpha},\mathfrak{s}_{\alpha}] = \frac{i}{\ell} \epsilon^{\mu}{}_{\nu\eta} J^{\nu}{}_{\alpha} \xi^{\eta}.$$

By the uncertainty principle, a measurement of \mathfrak{s}_{α} will thus alter the value of J_{α} , and so disturb any future measurement that make use of that frame.

After measurement, we have the (normalized) state:

$$\frac{\prod_{\alpha}^{k}(\rho\otimes\sigma)\prod_{\alpha}^{k}}{Pr(\lambda^{k})}.$$

We are interested at the dynamics of the QRF induced by the measurements. After a measurement, we sum over the different outcomes and trace out the system $\sigma = \sum_i s_i |\phi_i\rangle\langle\phi_i|$

$$\rho' = \sum_{k} \operatorname{Tr}_{S} \{ \Pi_{\alpha}^{k} (\rho \otimes \sigma) \Pi_{\alpha}^{k} \} = \mathcal{E}_{\alpha}(\rho) = \sum_{b} K_{b} \rho K_{b}^{\dagger}$$

with a = (k, i, i') and the Kraus operators $K_b = \sqrt{s_j} \langle \phi_{i'} | \Pi_{\alpha}^k | \phi_i \rangle$ satisfying $\sum_b K_b^{\dagger} K_b = 1$.

If $\vec{\xi}$ is a spin $\frac{1}{2}$, assuming the QRF in coherent state, then at first order in ℓ^{-1}

$$\mathcal{E}_{\alpha}(\rho_{\alpha}) \approx \rho_{\alpha} - \frac{i}{\ell} \epsilon_{\mu\nu\eta} \mathcal{J}^{\mu}{}_{\alpha} \langle \xi^{\nu} \rangle \sin \theta [J^{\eta}{}_{\alpha}, \rho_{\alpha}]$$
$$= \mathcal{U}^{\dagger}_{\alpha}(J, \xi, 1/\ell)(\rho_{\alpha})$$

with

$$\mathcal{J}^{\mu}{}_{\alpha} = \text{Tr}\left(J^{\mu}{}_{\alpha}\rho\right), \quad \langle \xi^{\nu} \rangle = \text{Tr}\left(\xi^{\nu}\sigma\right), \quad \cos\theta = \vec{\mathcal{J}}_{\alpha} \cdot \langle \vec{\xi}^{\nu} \rangle$$

The reference frame axis undergoes a rotation around the axis $\vec{\mathcal{J}}_{\alpha} \wedge \langle \vec{\xi} \rangle$ of angle θ .

This is in the Schrodinger picture, we can move to the Heinsenberg picture.

$$J^{\mu}_{\alpha} \xrightarrow{n} \mathcal{U}^{n}_{\alpha}(J^{\mu}_{\alpha}, \xi, 1/\ell),$$

after *n* measurements. Non-unitary effects (noise) will appear in general at higher orders.

After measurement, we have the (normalized) state:

$$\frac{\prod_{\alpha}^{k}(\rho\otimes\sigma)\prod_{\alpha}^{k}}{Pr(\lambda^{k})}.$$

We are interested at the dynamics of the QRF induced by the measurements.

After a measurement, we sum over the different outcomes and trace out the system $\sigma = \sum_i s_i |\phi_i\rangle\langle\phi_i|$

$$\rho' = \sum_{k} \operatorname{Tr}_{S} \{ \Pi_{\alpha}^{k} (\rho \otimes \sigma) \Pi_{\alpha}^{k} \} = \mathcal{E}_{\alpha}(\rho) = \sum_{b} K_{b} \rho K_{b}^{\dagger}$$

with a = (k, i, i') and the Kraus operators $K_b = \sqrt{s_j} \langle \phi_{i'} | \Pi_{\alpha}^k | \phi_i \rangle$ satisfying $\sum_b K_b^{\dagger} K_b = 1$.

If $\vec{\xi}$ is a spin $\frac{1}{2}$, assuming the QRF in coherent state, then at first order in ℓ^{-1}

$$\mathcal{E}_{\alpha}(\rho_{\alpha}) \approx \rho_{\alpha} - \frac{i}{\ell} \epsilon_{\mu\nu\eta} \mathcal{J}^{\mu}{}_{\alpha} \langle \xi^{\nu} \rangle \sin \theta [J^{\eta}{}_{\alpha}, \rho_{\alpha}]$$
$$= \mathcal{U}^{\dagger}_{\alpha}(J, \xi, 1/\ell)(\rho_{\alpha})$$

with

$$\mathcal{J}^{\mu}{}_{\alpha} = \text{Tr}\left(J^{\mu}{}_{\alpha}\rho\right), \quad \langle \xi^{\nu} \rangle = \text{Tr}\left(\xi^{\nu}\sigma\right), \quad \cos\theta = \vec{\mathcal{J}}_{\alpha} \cdot \langle \vec{\xi}^{\nu} \rangle$$

The reference frame axis undergoes a rotation around the axis $\vec{\mathcal{J}}_{\alpha} \wedge \langle \vec{\xi} \rangle$ of angle θ .

This is in the Schrodinger picture, we can move to the Heinsenberg picture.

$$J^{\mu}_{\alpha} \xrightarrow{n} \mathcal{U}^{n}_{\alpha}(J^{\mu}_{\alpha}, \xi, 1/\ell),$$

after *n* measurements. Non-unitary effects (noise) will appear in general at higher orders.

- The evolution can be decomposed into an invertible part and some non-invertible part (noise). When $\ell \gg n$ the number of measurements then the invertible part is dominant. This is a simplified example of the "decoupling theorem".
- The measurement of the relational quantum coordinate of a source particle induces a back-action on the RF, which is in general a non-linear function ε_α of the quantum relational coordinate p_α.

$$J^{\mu}_{\alpha} \rightarrow U^{n}_{\alpha}(J^{\mu}_{\alpha}, \xi, 1/\ell),$$

This is to be compared with the DSR case:

$$e^{\mu}_{\alpha} \rightarrow \mathcal{U}(e^{\mu}_{\alpha}, \pi, M_P)$$

One can then ask for which state the QRF will be the most robust, and
possibly the most robust and the most precise as there might be a
trade-off between the two.

- The evolution can be decomposed into an invertible part and some non-invertible part (noise). When $\ell \gg n$ the number of measurements then the invertible part is dominant. This is a simplified example of the "decoupling theorem".
- The measurement of the relational quantum coordinate of a source particle induces a back-action on the RF, which is in general a non-linear function \mathcal{E}_{α} of the quantum relational coordinate \mathfrak{p}_{α} .

$$J^{\mu}_{\alpha} \to \mathcal{U}^{n}_{\alpha}(J^{\mu}_{\alpha}, \xi, 1/\ell),$$

This is to be compared with the DSR case:

$$e^{\mu}_{\alpha} \rightarrow \mathcal{U}(e^{\mu}_{\alpha}, \pi, M_P)$$

One can then ask for which state the QRF will be the most robust, and
possibly the most robust and the most precise as there might be a
trade-off between the two.

- The evolution can be decomposed into an invertible part and some non-invertible part (noise). When $\ell \gg n$ the number of measurements then the invertible part is dominant. This is a simplified example of the "decoupling theorem".
- The measurement of the relational quantum coordinate of a source particle induces a back-action on the RF, which is in general a non-linear function \mathcal{E}_{α} of the quantum relational coordinate \mathfrak{p}_{α} .

$$J^{\mu}_{\alpha} \to \mathcal{U}^{n}_{\alpha}(J^{\mu}_{\alpha}, \xi, 1/\ell),$$

This is to be compared with the DSR case:

$$e^{\mu}_{\alpha} \rightarrow \mathcal{U}(e^{\mu}_{\alpha}, \pi, M_P)$$

 One can then ask for which state the QRF will be the most robust, and possibly the most robust and the most precise as there might be a trade-off between the two.

MULTI-PARTICLES:

Remember for DSR we have eg:

$$p_0^{(tot)} = p_0^{(1)} + p_0^{(2)}, \quad p_i^{(tot)} = e^{-p_0^{(2)}/M_p} p_i^{(1)} + p_i^{(2)}.$$

Within the reference frame interpretation, $\pi^{(tot)} = \pi^{(1)} + \pi^{(2)}$ is the total intrinsic momentum. The physical momentum is naturally defined then as

$$p_{\alpha}^{(tot)} = \left(\pi^{(1)} + \pi^{(2)}\right)_{\mu} e^{\mu}_{\alpha} = p_{\alpha}^{(1)} + p_{\alpha}^{(2)}.$$

If the frame is "deformed"

$$p_{\alpha}^{(tot)} = \left(\pi^{(1)} + \pi^{(2)}\right)_{\mu} E^{\mu}_{\alpha}(e, (\pi^{(1)} + \pi^{(2)}), \gamma M_{P}),$$

where I added γ to solve the "soccer ball" problem.

Can we get something analog in the toy model?

The total intrinsic spin is

$$\vec{\xi}^{(tot)} = \vec{\xi}^{(1)} + \vec{\xi}^{(2)}, \quad [\xi_{\mu}^{(1)}, \xi_{\nu}^{(2)}] = 0, \quad [\xi_{\mu}^{(tot)}, \vec{\xi}_{\mu}^{(k)}] = 0$$

The relational coordinate is therefore

$$\mathfrak{s}_{\alpha}^{(tot)} = \xi_{\mu}^{(tot)} J^{\mu}{}_{\alpha}.$$

But then

$$[\mathfrak{s}_{\alpha}^{(1)},\mathfrak{s}_{\alpha}^{(2)}] = \frac{\epsilon_{\rho}^{\mu\nu}}{\sqrt{\ell(\ell+1)}} \xi_{\mu}^{(1)} \xi_{\nu}^{(2)} J_{\alpha}^{\ \rho},$$

that is the components of the physical total spin are not commuting anymore.

Also we have

$$[\mathfrak{s}_{\alpha}^{(k)},\mathfrak{s}_{\alpha}^{(tot)}]\neq 0 \qquad k=1,2,$$

that is measuring the total relational spin of two particles differs from measuring their individual relational spins and adding the outcomes.

MULTI-PARTICLES:

Remember for DSR we have eg:

$$p_0^{(tot)} = p_0^{(1)} + p_0^{(2)}, \quad p_i^{(tot)} = e^{-p_0^{(2)}/M_p} p_i^{(1)} + p_i^{(2)}.$$

Within the reference frame interpretation, $\pi^{(tot)} = \pi^{(1)} + \pi^{(2)}$ is the total intrinsic momentum. The physical momentum is naturally defined then as

$$p_{\alpha}^{(tot)} = \left(\pi^{(1)} + \pi^{(2)}\right)_{\mu} e^{\mu}_{\alpha} = p_{\alpha}^{(1)} + p_{\alpha}^{(2)}.$$

If the frame is "deformed"

$$p_{\alpha}^{(tot)} = \left(\pi^{(1)} + \pi^{(2)}\right)_{\mu} E^{\mu}_{\alpha}(e, (\pi^{(1)} + \pi^{(2)}), \gamma M_{P}),$$

where I added γ to solve the "soccer ball" problem.

Can we get something analog in the toy model?

The total intrinsic spin is

$$\vec{\xi}^{(tot)} = \vec{\xi}^{(1)} + \vec{\xi}^{(2)}, \quad [\xi_{\mu}^{(1)}, \xi_{\nu}^{(2)}] = 0, \quad [\xi_{\mu}^{(tot)}, \vec{\xi}_{\mu}^{(k)}] = 0$$

The relational coordinate is therefore

$$\mathfrak{s}_{\alpha}^{(tot)} = \xi_{\mu}^{(tot)} J^{\mu}{}_{\alpha}.$$

But then

$$[\mathfrak{s}_{\alpha}^{(1)},\mathfrak{s}_{\alpha}^{(2)}] = \frac{\epsilon_{\rho}^{\mu\nu}}{\sqrt{\ell(\ell+1)}} \xi_{\mu}^{(1)} \xi_{\nu}^{(2)} J_{\alpha}^{\ \rho},$$

that is the components of the physical total spin are not commuting anymore.

Also we have

$$[\mathfrak{s}_{\alpha}^{(k)},\mathfrak{s}_{\alpha}^{(tot)}]\neq 0 \qquad k=1,2,$$

that is measuring the total relational spin of two particles differs from measuring their individual relational spins and adding the outcomes.

0<mark>44</mark> Page 7

ANALOG TO THE SOCCER-BALL PROBLEM?

- Measurements are defined in terms of the projector Π_{α}^{k} , with $k = |\ell j|, ..., \ell + j$. There are therefore $2\ell + 1$ projectors.
- The system $\vec{\xi}$ is defined in terms of 2j + 1 projectors.
- If j < ℓ, then we have enough projectors to specify a priori the information encoded in the system.
- If j > ℓ, then we do not have enough projectors to specify completely
 the information encoded in the system. ℓ is comparable to the Planck
 scale.
- But there is not a fundamental problem a priori: I should just take a bigger reference frame such that \(\ell' > j \).

CONCLUSIONS

- Quantum Reference Frames are essential in QG to construct some observables.
- I used a toy model to explore the consequences of dealing with a QRF: interesting structures such as non-commutativity, symmetry deformation, unusual coarse-graining appeared.
- These structures also appeared in the context of effective description of semi-classical flat space-time, such as Deformed Special Relativity.
 The analogy suggests therefore a new argument favoring DSR as the natural QG flat semi-classical limit.

- Physics of a QRF can also be of interest for QIT community: precision, robustness of the QRF to encode information in relational quantities.
- New models need to be explored. The toy-model concentrated here on spin, ie su(2). For the QG flat semi-classical limit, we need to deal with Poincaré symmetries. We should aim at constructing for example a quantum reference frame using quantum fields.

CONCLUSIONS

- Quantum Reference Frames are essential in QG to construct some observables.
- I used a toy model to explore the consequences of dealing with a QRF: interesting structures such as non-commutativity, symmetry deformation, unusual coarse-graining appeared.
- These structures also appeared in the context of effective description of semi-classical flat space-time, such as Deformed Special Relativity.
 The analogy suggests therefore a new argument favoring DSR as the natural QG flat semi-classical limit.