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Abstract: Observables in (quantum) General Relativity can be constructed from (quantum) reference frame -- a physical observable isthen arelation
between a system of interest and the reference frame. A possible interpretation of DSR can be derived from the notion of deformed reference frame
(cf Liberati-Sonego-Visser). We present a toy model and study an example of such quantum relational observables. We show how the intrinsic
guantum nature of the reference frame naturally leads to a deformation of the symmetries, comforting DSR to be a good candidate to describe the
QG semi-classical regime.
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OUTLINE

¢ Flat semi-classical space time: modification of symmetries — notion
of reference frame revised. Is this effect due to a possible quantum
nature of the reference frame?

¢ Why a quantum reference frame is natural from the Quantum Gravity
perspective’

o (Quantum reference frame in a toy model.







There 1s now hope to probe semi-classical QG effects in experiments: need
to construct a theorv and in this context provide different experimental
sets-up together with predictions.

[deally this theory should be derived from:

Loy, ¢)- Leglg). lagrangians for resp. matter and grav. dof.
Thas 1s the “conservative™ point of view. Introducing a semi-classical state
for flat space-time, we obtain the effective lagrangian for matter.
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To regulanize this expression. we could use for example the spinfoam
approach.

[f we take a “liberal™ point of view, we can implement extra-dimensions.
other fundamental objects (eg strings, D-particles...)...




¢ In 3d. the calculation can be done exactly. one obtains Deformed
Special Relativity (Freidet Livine, hep-h0512113).

¢ In4d. it can’t be done vet. so one models by hand the effective theory
reproducing the QG fluctuations around flat space-time:

¢ -~ Modity flat space-time (ie Special Relativity) to incorporate QG
effects (eg Planck scale) at the kinematical level.




Special Relativity 1s characterized by the Poincare symmetries.
~ If there 18 a new fundamental scale (Mp), Poincaré symmetries can be

¢ Unmodified: need to understand why it is so (eg discrete structure
consistent with Lorentz Symmetries (causai sess, Sayder...)).
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Special Relativity 1s characterized by the Poincaré symmetries.
~ If there 1s a new fundamental scale (Mp). Poincaré symmetries can be

¢ Unmodified: need to understand why it is so (eg discrete structure
consistent with Lorentz Symmetries causai sess, Sayder...)).

¢ Broken: this is very much constrained at this (ime (cfSeefane’s ik tomorrow .

¢ Deformed: there is still a (modified) relativity principle: symmetries
are deformed to be consistent with the new scale. This 1s Deformed (or
Doubly) Special Relativity.

¢ To distingwmsh between the different possibilities. one needs either a
full denivation or some experiments.




DEFORMED SPECIAL RELATIVITY (DSR)

We modify the action of the boost on momentum. but not the Loreniz
algebra:

~= Non linear realization of the Lorentz group.

7, the “platonic” momentum variable carrying linear representation
(therefore unbounded).

p, = F, (7. Mp) the "physical” momentum bounded by Mp. F 1s a non
linear invertible map.
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This leaves the modified mass shell invanant:
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This is not simply a rewriting of Special Relativity in a funny choice of

coordinates if we choose carefully a new momenta addition for example,
consistent with the deformed symmetries.




There are various versions on how momenta add, how space-time 1s

5% + g(p. My)

oF + f(p.Mp)




EXAMPLE: "BICROSSPRODUCT ™ BASIS

Thas 1s the best mathematically defined and most studied example. Taking
the platonic variables = £ R’ we have

T

¢ Momentum: py = MpIn "*_,;P'T“'.

pi =Mp——

4

— (2Mp sinh t_ —pe o =mr
#-Minkowski spacetime:
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Poisson brackets:
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Momentum addition:
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¢ People study this mathematically well-defined theory: Quantum field
theory on s-Minkowski.
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¢ People study this mathematically well-defined theory: Quantum field
theory on s-Minkowski.

There is a number of physical concrete questions arising from the
general approach.

o What does it mean to have a non-commutative sum of momenta’
o There is the “soccer ball™ problem: eg
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Can we explore this theory from a different angle? Symmetries relate
reference frames: modified symmetries means a modified notion of

reterence frame’!
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SYMMETRY AND FRAME

Introduce a reference frame ¢, with i = space-time coordinates, o
labels vectors.

Let 7, be the momentum of the particle.

Then p, = 7€, 1s the measurement outcome (or coordinates) of 7 1n

¢. In Minkowski space-time. e¥, ~ 0¥, so 7 ~ p.

Consider another reference frame. ¢, — ¢, =\’ ,¢"3. Aisa
Lorentz transformation.




SYMMETRY AND FRAME

To get a detormation of symmetry, one needs a nonlinear function of
reference frame and the system (“effective reference frame”™). (Liberati. Sonego.
Visser. preg/e10113)
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The fundamental variable s the frame e ,. We have then a non-linear
transformation of the effective frame:
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Such frame will be associated to a Finsler metric o my taik on Sawrday) O Rainbow
meitric.




EXAMPLE

In a couple of papers. Liberati et al introduced a stochastic component
to the tetrad induced by QG effects. (grqe511031. er-qoeo7ooy)

A particle will probe the fluctuations of the tetrad up to the scale L

E¥ (L) =< e, >p. This scale can be naturally identified with the
particle’s de Broglie length L = A/ py.

In this case. the effective reference frame becomes momentum
dependent E¥ , (py).

A similar result 1s obtained m the renormalization group approach (Gieti
Liberat. Percacc. Rahmede. gr-ge/(607050).

It 1s however not clear how this extends in more general situations:
multi-particles case...

The key question to answer 1s how the reference frame becomes system

independent.
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EXAMPLE

In a couple of papers. Liberati et al introduced a stochastic component
to the tetrad induced by QG effects. (erqe511031, ar-qone07024)

A particle will pmh-e the fluctuations of the tetrad up to the scale L
EF (L) =< e*, >p. This scale can be naturally identified with the
particle’s de Brm‘-rhe length L = i/ ps.

In this case. the effective reference frame becomes momentum
dependent E¥ , (py).

A similar result 1s obtained m the renormalization group approach (Gietii
Liberati. Percacct. Rahmede. gr-ge/(607030).

It 1s however not clear how this extends in more general situations:
multi-particles case...

The key question to answer 1s how the reference frame becomes system
independent




¢ When constructing the effective theory by hand, we had the
choice: the symmetry 1s either broken (preferred frame) or
untouched (usual frame?) or deformed (modified frame).

Can we find a general argument from the QG perspective that
will pinpoint one of these different possibilities?

¢ In QG, we need to talk about Quantum Reference Frame (QRF).
~+ Why 1s that?
~ | will study QRF in a toy model that will generate some
modification of the symmetry.




PART II:

Why Quantum Reference Frame in Quantum Gravity?




* Gravity can be described as a constrained system (Disc. Lectures on Quaneum
Mechaniecs
First class constraints C; can be seen as encoding symmetries (in the
General Relativity case, the diffeomorphsims).

Observables O are phase space functions that commute with
constraints.

It 1s often hard to construct in general the set of observables. but using
physical reference frame helps in general (e Rovelli's book. Dittrich's papers,

GiddingsHartle-Marolf s paper).




WHY A RF?

* Gravity can be described as a constrained system (Disc. Lectures on Quancum

Mechanics)

First class constraints C; can be seen as encoding symmetries (in the
General Relatvity case. the diffeomorphsims).

Observables O are phase space functions that commute with
constraints.
10.Ci} =0

It 1s often hard to construct in general the set of observables. but using
physical reference frame helps in general (cfRoveilis book. Ditrici's papers,

Gidding=Hartle-Marolf s paper).




¢ Gravity can be described as a constrained system (Disc. Lectures on Quancum

Mechaniecs
First class constraints C; can be seen as encoding symmetries (in the
General Relativity case. the diffeomorphsims).
Observables O are phase space functions that commute with
constraints.

1261 =10

It 1s often hard to construct in general the set of observables. but using
physical reference frame helps in general (cf Rovelli's book. Dittrici's papers.

GiddingsHartle-Marolf s paper).




¢ Gravity can be described as a constrained system (Dirac. Lctures on Quantum

Mechanics

First class constraints C; can be seen as encoding symmetries (in the
General Relatvity case. the diffeomorphsims).

Observables O are phase space functions that commute with
constraints.

It 1s often hard to construct in general the set of observables. but using
physical reference frame helps in general (cfRoveili's book. Dittrich's papers.

Gidding=Hartle-Marolf s paper.




WHY A RF?

¢ Gravity can be described as a constrained system (Disc. Lectures on Quaneum

Mechanics

First class constraints C; can be seen as encoding symmetries (in the
General Relatvity case. the diffeomorphsims).

Observables O are phase space functions that commute with
constraints.

It 1s often hard to construct in general the set of observables. but using
physical reference frame helps in general (cfRoveili's book. Ditrich's papers,

Giddmg=Hartle-Marolf s paper).




¢ Gravity can be described as a constrained System (Dirsc. Lectures on Quantum
Mechamics
First class constraints C; can be seen as encoding symmetries (in the
General Relatvity case. the diffeomorphsims).

Observables O are phase space functions that commute with
constraints.

(0.} =0

It 1s often hard to construct in general the set of observables. but using
physical reference frame helps in general (cf Rovelli's book. Dittrich's papers,

Gidding=Hartle-Marolf s paper).




¢ Gravity can be described as a constrained system (Dise. Lectures on Quantum
Mechanics

e First class constraints C; can be seen as encoding symmetries (in the
General Relatvity case. the diffeomorphsims).

¢ Observables O are phase space functions that commute with
constraints.

(0.} =0

It 1s often hard to construct in general the set of observables. but using
physical reference frame helps in general (cfRoveili's book. Ditrici's papers,

Giddings-Hartle-Marolf s paper).




¢ Gravity can be described as a constrained system (Dirac. Lctures on Quantum

Mechanies
First class constraints C; can be seen as encoding symmetries (in the
General Relatvity case, the diffeomorphsims).
Observables O are phase space functions that commute with
constraints.

10.Gi} =0

It 1s often hard to construct in general the set of observables. but using
physical reference frame helps in general (cfRoveili's book. Dittrich's papers.

Gidding=Hartle-Marolf s paper).




EXAMPLE |
Relativistic particle:
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¢ A\ isa Lagrange multiplier encoding the mass-shell constraint.
¢ This constraint encodes the time reparametrization symmetry.

¢ Observables O are functions on phase space such that

I i) L il
iL _.,i' —n ]I :H

J 0. p,, commute since p- is Poincaré Casimir, but
{xf.pm—m~} =p* £0.
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To define observable positions. we introduce a clock F = x”. a “time
reference frame™. Consider

:]j—"

= I ¥ z , ¥
X =+ ("—T)= {X*.p"—n

If.}l.

so X¥ 1s observable. It is a relational coordinate:
When v =T then X* = x* «~ when the clock indicates 7. the particle is
at the position +*.

Other choice of relational coordinates, ie other choice of clock F = x#p,,:




When we have (first class) constraints or symmetries, relational
quantities provide a natural set of observables.
To construct a relational quantity. we introduce a reference frame and define

a relation between the system of interest and the reference frame.




EXAMPLE 2

Spin systems: Consider a set of non interacting classical spin particles S'.
We impose that the total spin is zero: we impose global rotational symmetry.
through the constraints

s —qg S —p. s —q.

A relative angle 1s a natural observable when dealing with rotational
symmetry: Consider the system S = S, pick one set of spins J' as our
reference axis, then

To construct a 3d reference frame. we pick up another set of spins J°. We can
then define J° = J; A J5. We have then the physical relational coordinates:
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Spin systems: Consider a set of non interacting classical spin particles S'.
We impose that the total spin is zero: we impose global rotational symmetry.
through the constraints

S‘_;I{I'I'- — “ SIIIEH" = {J* S:E{JI! = 0‘

¥

A relative angle 1s a natural observable when dealing with rotational

symmetry: Consider the system S = §. pick one set of spins J' as our
reference axis. then

To construct a 3d rets:reme frame. we pick up another set of spins /2. We can
then define J° = J; A J>. We have then the physical relational coordinates:
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EXAMPLE 2

Spin systems: Consider a set of non interacting classical spin particles .
We impose that the total spin is zero: we impose global rotational symmetry.
through the constraints

S Y70 £V _ ¢

A relative angle 1s a natural observable when dealing with rotational

symmetry: Consider the system S = S, pick one set of spins J' as our
reference axis. then

:ggfl s {j.llslj:r_:r |[ s
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To constructa 3d re I-:reme frame. we pick up another set of spins J>. We can
then define J° = J; /A J>. We have then the physical relational coordinates:

—5.F




EXAMPLE 3

GPS coordinates: i Rovelli book)

Consider a pomnt P m (2d) space-time. We impose diffeomorphisms
symmetry: P can have any arbitrary coordinates as parametrization of the
manifold.

We can define physical system by considering two “satellites™ with
relativistic velocities V,,'. V,,”. emitting radio signals.

Then the physical coordinates of P with respect to the satellites are:

This 1s the Einstein’s “incidence point™.
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EXAMPLE 3

GPS coordinates: ct Rovelli book)

Consider a pomt P m (2d) space-time. We impose diffeomorphisms
symmetry: P can have any arbitrary coordinates as parametrization of the
manifold.

We can define physical system by considering two “satellites™ with
relativistic velocities V), . '»"U:'. emitting radio signals.

Then the physical coordinates of P with respect to the satellites are:

This 1s the Einstein’s “incidence point™.




(QUANTIZATION

One follows Dirac canonical procedure:
¢ Phase space — "kinematical™ Hilbert space
C; — C; (careful with ordering ambiguities...)
Kemel of C; is the physical Hilbert space.

Observables: [O. C;| = 0. It is now natural to look at quantum
relational observables. constructed out of a quantum reference frame.




EXAMPLE OF A QRF

Spin systems revisited: Consider a set of non interacting quantum spin
particles £'*). The quantum constraints are obtained in a straightforward
manner

E; ot} = U E:é.*crr' — U ctiot} - {}
T v b z -

y

Quantum relational observables:

These are quantum relational observables and J# , 13 a quantum reference
frame.




¢ Quantum Gravity is a quantum constrained system. Observables can be
constructed as relational m terms of a quantum reference frame.

e We need to understand the physical implication of having quantum

reference frames.




QUESTIONS TO EXPLORE:

What is the precision of a QRF?

What 1s the robustness of a QRF?

Do we get non-commutative coordinates’

What is the notion of symmetry’

How do we coarse-grain relational observables (multi-particles state)’
These questions are of interest for both the Quantum Information Theory

and QG community. In particular. the QIT people would implement that in
concrete experiments.




PART IIL:

Quantum Reference Frame in a toy mode]




QRF m ToY MODEL

Toy MODEL

We consider the set of quantum spin particles. The QRF axis J', J* are made
of spin / and satisfy
) 0 if a #
jlu | !L — .. = L1
e, I 5] . g

if a =
VEE+D)

We mtroduce also

_

h=hAkh s=(-h
The quantum system £ 1s a spin . The relational coordinates satisfy the
modified algebra: analog to the emergence of “non-commutativity .
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We obtain the “semi-classical relational™ coordinates by taking the RFin a
semi-classical state p = py @ oo
¢semi—classical

el i TFR.F I:.Er-._'r P,

taking each of the axis a = 1, 2 of the reference frame in the adequate
coherent state |£,. {,) and {, — .

i ol
"-fu*“uj l:_‘-F-:PF-nr' =0

csemi—classical “a—
i

We recover the standard su(2) algebra.

[5|i~ 5}] =

The semi-classical coordinates can be decomposed into a sum of 2j + |
orthogonal projectors P.,.m = —j j associated with distinct eigenvalues
m.




QRF mv Toy MODEL

MEASUREMENTS: PROJECTORS

o state of the source particle, p state of reference frame. The state p @ o of
AEs = - [
s*ismjRQl~P 5, Kk

Spectral theorem tells us that:
t'__l,.

Z NI, with eigenvalues \*

———1

kik+1)—£4L+1)—jG+1)

2/ HE+1)

and projector

T =

k & Tl
\

where the normalization factor 1s

IT’, are non-linear functions of the relational coordinates s,, (polynomials of

degree 2j).




QRF mv Toy MODEL

MEASUREMENTS OF s,

Measurement of s,, will produce the outcomes \* with probability

WA L) IR o 1 LIS
Pr(A") =TIl p ® 0§




INDUCED MEASUREMENTS ON SYSTEM

PriX) = THIF p 2 o} = Tr{A o)

with

}Ltt = T[“RF{ H“|r P }
A7, can be seen as an approximation of the measure of the “semi-classical
relational”™ coordinates.

AL =(1—P5 + Z i'_‘j:'kﬁ:j.~

K £k

where €. ¢ * depend on p and are of order /~'. We can then play on p to
determine which p provides the optimum measurement: this is one way (o
encode the precision of the QRF.




QRF v TOY MODEL

INDUCED MEASUREMENTS ON RF: BACK-ACTION ON
QRF

First note that

s i .
L L e L/ C f'
_\f "'_1! - Sr'r:[ e _Lr._ L,- rlilj {'!-i.. =
!

By the uncertainty principle. a measurement of 5., will thus alter the value of
J . and so disturb any future measurement that make use of that frame.




QRF mv Toy MODEL

After measurement. we have the (normalized) state:

¥ (p 2 o)X
Pr(N)

We are interested at the dynamics of the QRF induced by the measurements.
After a measurement. we sum over the different uutu_‘-mea and trace out the

system o = Y . 5;|0; {0
- _lﬂ 3 L
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FE = o

witha = (k,i.7) and the Kraus operators K, = | /5;(0r 1T, |0;) satisfying
N B —
> K Ky =1.




QRF mv Toy MODEL

EXAMPLE

If £ is a spin 5. assuming the QRF in coherent state. then at first order in ¢~
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UL (J.E 1/6)(pa)
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Jr =Te(J* p). (&) =Tt(s). cosb=JT, (€

|

-

The reference frame axis undergoes a rotation around the axis J, A (&) of
angle 6.
Ths 18 n the Schrodinger picture. we can move to the Heinsenberg picture.

. S U, 6110,

after n measurements. Non-unitary effects (noise) will appear in general at
higher orders.




QRF m TOY MODEL

After measurement. we have the (normalized) state:

|
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We are interested at the dynamics of the QRF induced by the measurements.
After a measurement. we sum over the different outcomes and trace out the
system o = ) __ 5;|0; { 0]
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with @ = (k.1.7') and the Kraus operators K, =
\ T
2 KpKp = 1.

/5i 0 11, |0;) satisfying
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EXAMPLE

If £ is a spin +. assuming the QRF in coherent state, then at first order in /!
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The reference frame axis undergoes a rotation around the axis J, A (§) of
angle 6.
This 18 n the Schrodinger picture. we can move to the Heinsenberg picture.
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after » measurements. Non-unitary effects (noise) will appear in general at

higher orders.




QRF v ToY MODEL

¢ The evolution can be decomposed into an invertible part and some
non-invertible part (noise). When £ > n the number of measurements
then the mvertible part 1s dominant. This 1s a simplified example of the
“decoupling theorem™.
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¢ The evolution can be decomposed into an mvertible part and some
non-invertible part (noise). When £ > n the number of measurements
then the invertible part 1s dommnant. This 1s a simplified example of the
“decoupling theorem™.

¢ The measurement of the relational quantum coordinate of a source
particle induces a back-action on the RE. which 1s in general a
non-linear function &, of the quantum relational coordinate p,,.

Jn-: o - E{: |J{“ iF - nE, f t' =

Thus 13 to be compared with the DSR case:
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QRF m Toy MODEL

¢ The evolution can be decomposed into an invertible part and some
non-invertible part (noise). When £ > n the number of measurements
then the mvertible part i1s dominant. This 1s a simplified example of the
“decoupling theorem™.

The measurement of the relational quantum coordinate of a source
particle induces a back-action on the RE. which 1s in general a
non-linear function &, of the quantum relational coordinate p,,.

J a E{f: l: F Qe E J i' .

Thus 1s to be compared with the DSR case:
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One can then ask for which state the QRF will be the most robust, and
possibly the most robust and the most precise as there might be a
trade-off between the two.




QRF v ToY MODEL

MULTI-PARTICLES:

Remember for DSR we have eg:

{Tof )

| (2)
Py =Py + TPy s

Within the reference frame interpretation. 7" = 7! + z1%) is the total
intrinsic momentum. The physical momentum is naturally defined then as

where [ added ~ to solve the “soccer ball”™ problem.
Can we get something analog in the toy model?
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The total intrsic spin is

=

clior)
]

() 4 2) [c'l i2]
< - . Mg T

The relational coordinate 1s therefore

But then

(1Y (7
l-_"._l_lf'_.' i
g S

‘l;.,.- FiF — l I:I i
that 1s the components of the physical total spin are not commuting anvmore.
Also we have

58, 5] £ 0

that is measuring the total relational spin of two particles differs from

measuring their ndividual relational spins and adding the outcomes.
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MULTI-PARTICLES:

Remember for DSR we have eg:

HIor )

) (2)
Po =Py TPy >

Within the reference frame interpretation. 7" = 7! + z1%) is the total

intrinsic momentum. The physical momentum is naturally defined then as

(o) _ [ (D), (DY & _ (1) (2)
P _(“ g & =P TE, -

i
/i

[f the frame 1s "deformed”™

where [ added ~ to solve the "soccer ball”™ problem.
Can we get something analog in the toy model?
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The total intrinsic spin is

= = 5 N

¢l or) Al 2)
~ ~ 5

o

The relational coordinate 1s therefore

for 'rlu
! r!' -

— A
e

But then

~ AV
{L','-.' C':_I|£':'f.,d
F 14 T |

"k'

that 1s the components of the physical total spin are not commuting anvmore.
Also we have

VL0 k=12

that 1s measuring the total relational spin of two particles differs from

measuring their individual relational spins and adding the outcomes.




ANALOG TO THE SOCCER-BALL PROBLEM

Measurements are defined in terms of the projector IT;,, with
k=|f—j|...... + . There are therefore 2/ + | projectors.

The system £ 13 defined in terms of 2/ + | projectors.

If j < £. then we have enough projectors to specity a priori the
information encoded in the system.

[f j > (. then we do not have enough projectors to specify completely
the 111mr1nalmn encoded in the system. / is comparable to the Planck
scale.

But there 1s not a fundamental problem a priori: [ should just take a
bigger reference frame such that £ > j.
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CONCLUSIONS

¢ (Quantum Reference Frames are essential in QG to construct some
observables.

[ used a toy model to explore the consequences of dealing with a QRF:
interesting structures such as non-commutativity. symmetry
deformation. unusual coarse-graining appeared.

These structures also appeared in the context of effective description of
semi-classical flat space-time, such as Deformed Special Relativity.
The analogy suggests therefore a new argument favoring DSR as the

natural QG flat sema-classical limmt.
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o Physics of a QRF can also be of mterest for QIT commumity: precision.
robustness of the QRF to encode information in relational quantities.

New models need to be explored. The toy-model concentrated here

on spin. ie su(2). For the QG fiat semi-classical limit. we need to deal
with Pomncaré symmetries. We should aim at constructing for example
a quantum reference frame using quantum fields.




QRF mv Toy MODEL

CONCLUSIONS

¢ (Quantum Reference Frames are essential in QG to construct some
observables.

[ used a toy model to explore the consequences of dealing with a QRF:
inferesting structures such as non-commutativity. symmeltry
deformation, unusual coarse-graining appeared.

o These structures also appeared in the context of effective description of
semi-classical flat space-time. such as Deformed Special Relativity.
The analogy suggests therefore a new argument favoring DSR as the
natural QG flat semi-classical limmt.




