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Abstract: The dispersion relations that naturally arise in the known emergent/analogue spacetimes typically violate analogue Lorentz invariance at
high energy, but do not do so in completely arbitrary manner. This suggests that a search for arbitrary violations of Lorentz invariance is possibly
overkill: There are a number of natural and physically well-motivated restrictions one can put on emergent/analogue dispersion relations,
considerably reducing the plausible parameter space.
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Remember, remember the fifth of Novemober,
the gunpowder treason and plot,

| know of no reason

why gunpowder treason

should ever be forgot...
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Abstract:

The dispersion relations that naturally arise in the
known emergent/analogue spacetimes typically
violate analogue Lorentz invariance at high energy,
but do not do so in completely arbitrary manner.
This suggests that a search for arbitrary violations of
Lorentz invariance is possibly overkill: There are a
number of natural and physically well-motivated
restrictions one can put on emergent/ analogue
dlsper5|on relations, conS|derably reducing the
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Possible ultra-high energy violations

of Lorentz invariance are one of the

most popular “signals” being looked
for in quantum gravity phenomenology.

Replace: w2 — u_)g + (32 kz_

By: Fi(w,k) =0.

Or, (appealing to the implicit function theorem):

But this might be
% — F2 (kj) ) too general tcgagelg%e

useful...
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H I:

Gravity: Not just CPT, but

.. F and

Einstein gravity: Certainly C, P, and T invariant.

Only known examples of P, T violations are in the
electro-weak sector, seemingly unconnected
with gravity.

Certainly no gravitational experiment has
detected P or T violations.

S0 don’t add more complications than necessary:~



Working hypothesis |:

Maintain both P and T invariance.

This constrains the terms that can show up
in the dispersion relation:

wr”: w (T - k): (T - k)*; h' k; k;.
Here “v’ is a P odd, T odd, term that behaves
*like®* a “velocity”.

Here “h” is a2 P even, T even, term that behaves
''''' *like* a “dielectric matrix”.
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Improved dispersion relation:

F; (wg: w (U - E) (-E"-E)Q: h k; kj) —

Improved basis:
w?: (w—T- k)% (7-k)%;  hY Kk k;.

Improved dispersion relation:

Fy (wQ; (w—T-K)2 (F-K)% h' k; k; ) — 0.

psa: 711000 Both P and T invériant.



H Il

Time derivatives higher than
second-order tend to be
problematic.

Time derivatives higher than second-order tend to lead
to ghosts and unitarity violations.

Time derivatives higher than second-order
do not seem to be seen in nature.

Minor exception: Fresnel relations.

But in (almost) all known physically
relevant cases, Fresnel relations factorize
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into second-order fragments.




Improved dispersion relation:

F5 (wg; w (U - E) (E’E)Q h* k, k; ) —

Improved basis:
w?: (w—7- k)% (7-k)%;  hY k; k.

Improved dispersion relation:

Fy (wQ; (w—T-K)2 (F-K)% h k; k; ) —@

s 711000 Both P and T invériant.



H Il

Time derivatives higher than
second-order tend to be
problematic.

Time derivatives higher than second-order tend to lead
to ghosts and unitarity violations.

Time derivatives higher than second-order
do not seem to be seen in nature.

Minor exception: Fresnel relations.

But in (almost) all known physically
relevant cases, Fresnel relations factorize
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into second-order fragments.



Fresnel relations:
w? (Aw* + BW?kE2+CEkYH =0.

(Two physical photon polarizations,
plus the “longitudinal” mode.)

But in all known cases,
(including uni-axial bi-refringent crystals),
they factorize:

W’ (0’ — £ k%) (w0 — S k%) =0.
“Ordinary” and “extraordinary” rays... [bi-axial worse]

Net result: (Almost) all known dispersion relations
are effectively second-order in time...
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Working hypothesis |1:

Dispersion relations are at most
second-order in time.

Combine with working hypothesis | (P and T invariance):
F5 (aw2 +b(w—7-k)2% (F-k)% hY K k ) =8

Regroup terms: b

0000000000000



Improved dispersion relation:

Fe ((w-ﬁ-E)Q: (F-K)2; hY K, kj) — 0

Appeal to implicit function theorem:
(w—-ﬁ-k) = ( h k; ki; (7 - k)2 ) .

Finally, drop unneeded subscripts and over-bars:

(w-7- 12’)2 = F (1 ki kys (7)) .
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Under very mild conditions:

HIl: P and T invariance.

H ll: Second-order time derivatives.

(w—ﬁ'-é’)Q = F(hii ki kj; (7-F)2 )

(o—5-F) = \/F (9 ki ks @B ).

But this falls naturally into a minor extension
of the class of dispersion relations arising in
“emergent/ analogue spacetimes’.




Emergent analogue spacetimes:

—\ 2 . :
(w—7-E) =F(#).

—

HI +H I (w—f’-k)z :F(h-’?i ki kjz (T - k)2 )

Note that | have not used any “analogue model”
reasoning to get to this stage --- just some very
fundamental working hypotheses, of what would

seem to be eminently reasonable constraints
any realistic quantum gravity phenomenology
should satisfy.

"(P've not even used any notion of “Lorentz invariaricé”.)



H Il

Now let’s take “v” a little more seriously,
and hypothesize that it is some
sort of “physical velocity”.

Local preferred rest frame for Lorentz breaking?

Or, (if you like to give colleagues heart attacks),
“velocity of the sub-quantic aether™...

(Add your personal favourite name here...)

What you call it does not matter: If it is a physical
velocity, then you can certainly go to the local rest
frame where this velocity is zero.



I’'m not using Lorentz transformations
here, just saying that if “v” is a physical
velocity then you should be able to
move at speed “v", effectively putting
you “at rest” with respect to whatever
it is that “v” is representing...

In this “local rest frame” the dispersion relation
(w—a.k) :F7(h” ki ki (3-F) )

specializesto [HI +HII+HI]:
w? = Fg ( h¥ k; k;j) .
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In the local rest frame, dropping
unnecessary subscripts:

w®=F(h? k; k;) .

From this | can construct the usual notion of
phase velocity:

F (b ki k;)
2 e G =~
Cphase(k ) i hz ] k'z kj .

=S )N EE}

CTHET + H L+ H I (almost done...) ™™



HIV:

No one can stop me from making a
Galilean coordinate transformation:

— — -
E

r— I +7v
t — 1.

(I make no claim that this is a “symmetry”, it is “merely”
a convenient choice of coordinates...)

Of course this induces a change in coordinates
on the cotangent space as well...

& —>wr—w-k.
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[HI+H H+HIN+HIV]

There is a convenient set of coordinates
in which the dispersion relation
takes the form:

(w—ﬁ-g)QzF(hijkikj).

;o A
(w = k) = conase(k2) { A7 ki k; }.

This should be compared to the standard
“analogue spacetime” result:

e (w_ﬁ.E)Q:F(kz).



This gives me confidence that whatever
insights we extract from the
“emergent analogue spacetime”
programme are likely to be generic
to a wide class of physically reasonable
quantum gravity phenomenologies.

For example, “analogue spacetimes” provide concrete models
of “emergence” (the effective low-energy theory can be
radically different from the high-energy microphysics).

“Analogue spacetimes” also provide controlled models of
“Lorentz symmetry breaking”, and extensions
of the usual notions of Lorentzian geometry:
“rainbow spacetimes”, and more...
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Acoustic
spacetime:

The simplest “emergent/analogue spacetimes”
are the “acoustic spacetimes’...

Cuozuoy :J||5nﬂi?£/

({l

-—

L ]
* sound speed fluid velocity

supersonic

~onsider sound waves in a moving fluid...

-0



Victoriz

Iz Whare Wamarga

Acoustic

» te Ipoko o fr [ka a Mius

spacetime: TS

Theorem: Consider an irrotational. inviscid, barotropic
perfect fluid, governed by the Euler equation. continuity
equation, and an equation of state.

The dynamics of the linearized perturbations (sound. phonons)
is governed by a D'Alembertian equation

1
A (b —_— _aﬂ ﬂ‘.ba (I) S~ 0

involving an “acoustic metric”.

[Algebraic function of the backeround fields.]



Acoustic
spacetime:

= = —g
g“”(t. T s Rt I I N AR . o
Poc eI
=% (¢ 6 — vy vp)_
. ‘2 it
Po iR —Y
gpy(t”[,) = freerenere o e
c | | !
Sk, = O

dsio= g, dort dr” = . [—cg dt* + (dz' — v}, dt) é;; (da? —P@.%S/Sdt)] .

C



Back to the general case...

[HI+HI+HII+HIV]

F ( hi k; kj)

) = ——
( ) hJ k‘ikj

phase

A o
(w—7F)" = conase(¥?) { h" kik; }.

This lets you pick off a momentum dependent
“rainbow metric”.
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Back to the general case...

[HI+HI+HII+HIV]

2 1.2 _F(hijkikj)
Cphase( ) Sk h” k‘z kj -

». e
(@ =7 F)" = conase(k?) { hY ki k; }.

This lets you pick off a momentum dependent
“rainbow metric”.
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Rainbow spacetime:

Define:

=1

e (w; E)

Rewrite the dispersion relation as:
gab(kQ) ka kb = 0.

Pick off the components:

+v7

+ v*

phase

(k%) R —v* I




Rainbow spacetime:

=1 +v7
ab(ki?) x - i il
+ v* cghase(kQ) h* —v* v/
- (k%) — hy; v vj} —;
gab(kQ) X { . J J
— 1% +hij

Momentum-dependent “rainbow metric”
depending on the phase velocity.
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Rainbow spacetime:

This dispersion relation approach
is physically very transparent...

Only weakness: Conformal factor left unspecified...

This is a standard side-effect of the geometrical
quasi-particle approximation,
also shows up in geometrical acoustics
geometrical optics, and more generally
in any eikonal approximation...

PDE is better --- if you have the additional physical
oo INfOrmation available from some other source.......



Rainbow spacetime:

Similar (but distinct) steps can be
taken to develop a rainbow metric
based on group velocity.

Consider a wave packet centered on momentum k.

That packet will propagate with the group velocity.

(dZ — 7 dt)* =

Pirsa: 07110041

k%) dt°.

group (



gab(k2) X

ab(k2) X

Rewrite as:
ds* =0 = gab(kQ) dz?® dz’.

Pick off components:

{ ﬂ‘roup — hyj v° UJ} i
e -I-h-gj
—1 +v/
| 3 I
| ) B v* v

Momentum-dependent “rainbow metric”
b depending on the group velocity.




Rainbow spacetime:

There are at least two distinct very

different notions of “rainbow metric”
na[HI+HI+HIl+HIV] setting.

Not now restricted to an “analogue spacetime”.

They answer different questions:

*  WWhat is the dispersion relation?
* How do wave packets propagate?

If you are lucky there is a “hydrodynamic™ limit:

. 2
};:% Cphabe(k ) i Chydr{)dynamm I ‘]C'li% Cgroup (gk; /5)6

£ 0O



Rainbow spacetime:

In general: Rainbow ==> multi-metric

’ — {*(k?) — hij v* v} | +v;
gab(kﬂ) X
o R
b= 1 +v7 |
9" (k?) . s
+ v | (k%) hY — v* 7
Cphase(kiz)
b Cgrnup(kz)
With: C( kn) i Chydrodynamic
Csignal

irsa: 07110041 Page 44/56

oa?



Causal structure:

Q: Is the “signal velocity” finite?

Two plausible definitions of “signal velocity”.

Csignal — klim Cpha,se(k 2)-
—00

4 2
Csignal =— mi?x Cgroup(k )

The first definition focusses on how discontinuities
propagate, the second definition focusses on
how rapidly one can transmit a packet of information.
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(They are inter-related.)



Causal structure:

As long as the signal velocity is finite the
global causal structure will be similar to
that of general relativity, just with
“signal cones” instead of light cones...

If the signal velocity is infinite then the global causal
structure will be similar to that of Newtonian physics.

The distinction between “superluminal” and
“subluminal” dispersion relations, while it certainly
impacts on thresholds, and constrains allowable
particle interactions, is of subsidiary importance
when it comes to determining
global causal structure.
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Rainbow spacetime:

Bogoliubov dispersion relation
(eg, BECs, superconductors):

2
w2=c§ k? + (i) k4

2m

xR T e |
& =+ (—) (phase velocity)

2m

Controlled breaking of Lorentz invariance...

Check group velocity to see supersonic/subsonic...

Pirsa: 07110041
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Rainbow spacetime:

Surface waves in finite depth of liquid:

[Lamb]
2 5 , o tanh(kd 2
w2 = gk tanh(kd) = ¢ k2 t‘m;(d ) c—gd
2 9,9 tanh(kd)
c=ck Ed (subsonic)
o _ (ka)* | 2(kd)?
=g K {1 3 + T +}

So analogue models provide concrete examples for
both supersonic and subsonic dispersion,
and more ..
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Rainbow spacetime:

Surface waves in infinite depth of liquid:

W =g K Cphase — V g/

No hydrodynamic limit...
No well-defined low-momentum spacetime...
You could argue that this is an unphysical limit...

Why does this seem to violate H I? Specifically, P’

0000000000000



The real dispersion relation is this,
which is P invariant:

nh(k d)
kd

. : ta
w? = gk tanh(kd) = ¢ k?

The “apparent” P violation comes about in the
unphysical infinite depth limit, and only for
wavelengths less than the depth of the ocean...

Now let’s talk quantum gravity phenomenology:

Suppose | desperately want k-cubed terms in the
dispersion relation, but without violating parity
invariance. How could | achieve this!?
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Faking a cubic term...

Consider this:

tanh(k/K>)
(k/K2)

w? = wi + ¢ k* + #(k*/ KY)

This dispersion relation is P invariant.

K | is a momentum scale characterizing Lorentz breaking

K _ 2 is a momentum scale characterizing “apparent”
parity breaking.

You need two different physical scales...

Need K 2 <<K | togetanything “interesting”...
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Rainbow spacetime:

Surface waves in finite depth of liquid
+ surface tension:

) tanh(kd
kd)“} N

2 Ed
2 9 | a = tanh( &
C—cn{l.pcﬁd(kd)} ~

Asymptotically supersonic, though it can be
adjusted to have a subsonic dip.

o o (0.27 em)?

. | E— . e — = S
Pirsaﬂ)gte r o p("(;; d pgd z dz Page 52/56




Rainbow spacetime:

tanh(kd)

& = {1-|—€ kd)} o

Je—1 o€ — 2 p 6
{1 + 3 (kd)* — — (kd)” + O|(kd) ]} :

15

L |
SV

-
|
™

oN

Can tune away the lowest order Lorentz violation...
(Water at 0.47 cm depth)

These are just some examples of the types of
. dispersion relation you can arrange... ...

A



Rainbow spacetime:

Can also arrange for particle masses:

- - - kT4 L]
W = u..«'(] + C() k) | A,Q | O[(k)b]

[2 interacting BECs: Weinfurtner et al...]

Basic message: Lots of physically well behaved and
well controlled toy models for many different
types of “beyond the standard model” physics...
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Conclusion:

Many interesting extensions and modifications of the
general relativity notion of spacetime have
concrete and well controlled models within

the “analogue spacetime” framework.

The “analogue spacetime” framework is quite
natural and plausible from the point of view of
“quantum gravity phenomenology”.

This tells us which rocks to start looking under...

irsa: 07110041 Page 55/56

i



“It is important to keep an
open mind; just not so open
that your brains fall out™

--- Albert Einstein
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