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Abstract: The possible existence of a physical UV cutoff in dynamical spacetimes raises a number of conceptual and practical questions. If the
validity of Lorentz Invariance is considered unreliable above the cutoff, the creation or destruction of quantum modes and the choice of their initial
state need to be described explicitly. It has been proposed that these trans-Planckian effects might leave an oscillatory imprint on the power
spectrum of inflationary perturbations. However, taking into account the fluctuations of the cutoff, the signal is smeared out beyond recognition.
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Initial conditions in dynamical spacetimes

QFT in curved spacetimes = EFT, valid below
cutoff M < M, , lives on smooth manifold

-initial cond.s for matter y_, assigned on
“surface of semiclassicality (S0OS)”:

-gravity — initial data needs to be arbitrarily
densely spaced (density of d.o.f. infinite)

-Lorentz invariance (LI) for arbitrary boosts —
decoupling constrains choice of v_, (vacuum)

-Q: Can selection of SOS (and hence v_) be
described dynamically?




Initial conditions in dynamical spacetimes

What if LI is broken (or simply meaningless)
forl < M1?

-SOS only well-defined for proper distances > M1 \ \ / //

-gravity — modes must be depleted or created .. ' '

(density of d.o.f. finite)

— v (t) constrained by phenomenology
(backreaction, particle production)

-Q: Can selection of SOS and v _,(t) be described
dynamically (“mode creation”)?




Aspects of the problem

1. Phenomenology of mode creation in cosmology (using EFT, dispersion,
boundary conditions at M, ...)

- backreaction (Tanaka; JN & Parentani; Starobinsky; Schalm et al.; Danielsson;...)
- particle production (Starobinsky & Tkachev; Kolb et al.; ...)
- inflationary perturbations (Martin & Brandenberger + many more)

2. Models for mode creation
- QFT on a growing lattice (Foster & Jacobson)
- modified uncertainty relation in FRW (Kempf; Kempf & JN; Kempf & Lorentz)
- QFT with effective dissipation (Parentani)




Horizon Dynamics: Decelerating Universe

In a decelerating (matter or radiation Decelerating universe, comoving
dominated) universe the comoving coordinates:
horizon grows

ds* = a(n)*[—dn® + d?],
— structures “enter the horizon”. 7 = D...o00

Horizon problem: why is the universe
uniform on super-horizon scales?

The Horizon Probiem

= = 11w

st BIGBANG .
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Horizon Dynamics: Decelerating Universe

In a decelerating (matter or radiation Decelerating universe, comoving
dominated) universe the comoving coordinates:
horizon grows

i = a(n)’[—dn? +d=2],
— structures “enter the horizon”. n = 0...c

Horizon problem: why is the universe
uniform on super-horizon scales?
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Horizon Dynamics: Accelerating Universe

In an accelerating (vacuum dominated)
universe, the comoving horizon shrinks

— Inflation
— structures ,,leave the horizon*.

They re-enter during the decelerating
hot big bang phase.

inflation soives the Horizon Probilem

== I

Accelerating universe, comoving
coordinates:

ds® = a(n)?[—dn® + d3?],
7 = —oo...0




Horizon Dynamics: Accelerating Universe

In an accelerating (vacuum dominated) Accelerating universe, comoving
universe, the comoving horizon shrinks i
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Horizon Dynamics: Accelerating Universe

In an accelerating (vacuum dominated) Accelerating universe, comoving
universe, the comoving horizon shrinks i

coordinates:
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Horizon Dynamics: Accelerating Universe

In an accelerating (vacuum dominated) Accelerating universe, proper
F

universe, the comoving horizon shrinks 2
’ s coordinates:

H ~ const

— Inflation b GZ
— structures ,,leave the horizon*.

They re-enter during the decelerating
hot big bang phase.

inflation socives the Horiron Probilem
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Inflationary Perturbations

Accelerating universe, proper

flation can be modeled with a slowly
blling scalar field:

&

V(D)

H.Z Mplz

i
D(t)
Separate into classical zero mode and
quantum flucuation:

®(n,z) = 0o(n) + &(n, z)

(physical d.o.f. for metric fluctuations
essentially equivalent)

Vacuum modes of ¢ obey oscillator
equation with time-dependent mass:

2,

Ova +la° —x(m)]pq =0

coordinates:

Eph:ﬂs — ax

H ~ const




Inflationary Perturbations

flation can be modeled with a slowly
plling scalar field:

v(®@)f

H.Z Mplz

ol
D(t)
Separate into classical zero mode and
quantum flucuation:

®(n,z) = o0(n) +&(n,x)

(physical d.o.f. for metric fluctuations
essentially equivalent)

Vacuum modes of ¢ obey oscillator
equation with time-dependent mass:

.‘}

Onva +la® — x(m)]pq =0

On super-horizon scales, ¥ > g2 = the
modes are overdamped.

They become the seeds for CMBR
anisoptropies and large scale structure.
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Inflationary Perturbations

flation can be modeled with a slowly
blling scalar field:

&

v(D)

H-I Mplz

ol
D(t)
Separate into classical zero mode and
quantum flucuation:

®(n,x) = do(n) + S(n, x)

(physical d.o.f. for metric fluctuations
essentially equivalent)

Vacuum modes of ¢ obey oscillator
equation with time-dependent mass:

dnwa + la® — x(m]pq =0

On super-horizon scales, y > g2 = the
modes are overdamped.

They become the seeds for CMBR
anisoptropies and large scale structure.
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Cosmological evolution of scales

sub-horizon

hot big bang

---------------------------------------------------------------------------

inflation

comoving distance




Standard Procedure

¢ dq sin(gr)

Power spectrum: (U@ (&, x)2(2.5)| ¥ar) = / = ~ Pl 1)
40 i
q-‘3
hence Pu(q:t) = 55104(t) 2

where o_ is solution of (82 +w3(r)) e =0

and wi(r) = —x(7) = ¢ — _%

Vacuum choice:
“Bunch-Davies” (BD) vacuum = positive frequency mode att — - = :

(18- — @) 93 )rs—o0 =0

3 , H2
so that: Poo(@:t) = oszleg () x o
2“. _-"IPI




Perturbations without cutoff

modes oscillate
(x < g%

scale ractor

0g

comoving distance

£ =

g2

-----------------------------------------------------------

modes grow / decay
& > q)

vacuum fluctuations of harmonic oscillators i




Standard Procedure

¢ dg sin(gr)

Power spectrum: (Cnrl@ (£,x)2(t,¥)| ¥ar) = / e Paalg. 1)
J0 :
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hence Pu(g:t) = 55194

where o, is solution of (82 +w3(m)) pa =0
and wi(t) =¢" —x(7) ~ & —

Vacuum choice:
“Bunch-Davies” (BD) vacuum = positive frequency mode att — - = :
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Perturbations without cutoff

modes oscillate
(x < g%)

scale factor

0g

comoving distance

£ =
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modes grow / decay
(x > g%

vacuum fluctuations of harmonic oscillators ey




Perturbations with cutoff

og (scale factor

comoving distance

----------------------------------------------------------




Moduﬁcat,lon I: Dispersion

erger & Maitin, JN &Parentaini, many others)

Following Unruh and others in the black hole community, break LI
with nonlinear dispersion relation.

Replace o,/a with Fy(p=g/a) > o /afor g << aM,
where F,, is chosen phenomenologically:

Correction to power spectrum small if the
evolution is adiabatic, i.e. if

|H| | |HpdF|
e

—> scale separation (o, = H /M <<1) suppresses modifications
(same as for Hawking radiation)




Madification II: mode creation with sharp cutoff

Fix the state for each mode ¢." at M-crossing time:

g = Matm)
Relation to standard modes: e (D) =gy (1) + Bap ™" (1)
where aq = (p7) ‘;15:_:;«: G —— == E;gf

Power spectrum:

. e 2
Pr(q) = P-oo(q) X |agl? {1 + 2Re («%«: (%i)?) + }
Qg |ir7q .




Properties of the corrections

Amplitude: G2 =0 (¢22) , g2 =1+ |84
wherep=1for (8, —q) (¢¥/a) =0 (Danielsson)
p =2 for (i —q) M =0 (Martin & Brandenberger)
Pp=3for (i8, —wqe(r))pM =0 (JN, Campo, Parentani)

If c =0(103), there is essentially no hope to detect the
contribution.

Oscillatory correction potentially observable forp = 1.




Madification II: mode creation with sharp cutoff

(Jacobson; Danielsson; Easther et al., JN, Campeo, Parentani, .

Fix the state for each mode ¢," at M-crossing time:

g = Ma(tm)
Relation to standard modes: e (1) = ey " (T) + Ba v,
where ag = (p77°) 1B M By —— 7 B oM
Power spectrum:
Pr(g) = P-oo(q) X |ag|? {HQRE (3;: (%:,)2) % }
ag g™ |2 |
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Amplitude: G2 =0 (622) .  |ag? =1+|842
where p=1for (8, —q) (¢¥/a) =0 (Danielsson)
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If c =0(103), there is essentially no hope to detect the
contribution.

Oscillatory correction potentially observable forp = 1.




Madification II: mode creation with sharp cutoff

(Jacobson; Danielsson; Easther et al., JN, Campo, Parentani, ...)

Fix the state for each mode ¢," at M-crossing time:

g = Ma(t )
Relation to standard modes: GM(D) = aq@; (D) +Ba g™ " (7)
where ag = (p7%°) 18-oM Oy = —g5™ B, M

Power spectrum:

_ D
Pr(g) = P-—x(gq) X gl 2 {1 + 2Re (3'; (pii) ) == }
ag |vg |2




Properties of the corrections

Amplitude: |1&F =0 () . a2 =1+|8,2
wherep=1for (. —q (¢¥/a) =0 (Danielsson)
p =2 for (i3- —q) gt =0 (Martin & Brandenberger)
p=3for (i8: —wqe(r))pM =0 (JN, Campo, Parentani)

If c =0(10-3), there is essentially no hope to detect the
contribution.

Oscillatory correction potentially observable forp = 1.




Madification II: mode creation with sharp cutoff

Fix the state for each mode ¢." at M-crossing time:
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Properties of the corrections

Amplitude: &2 =0 (o22) , o AP
wherep=1for (8, —q) (¢¥/a) =0 (Danielsson)
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If c =0(10-3), there is essentially no hope to detect the
contribution.

Oscillatory correction potentially observable forp = 1.




Properties of the corrections

Oscillations
= : I ;—x“ﬂ | . ~
Generic form of oscillatory term: = ( _ifo x 2 (1 +0 (gq)) e27™
g Vg
with e T L aH ), _ altg)

TH (aH)ryy alra)

i.e., the redshift between creation and horizon crossing.

In the slow-roll approximation (H, ~ ln q): gris = = (1 e} o (E))

Ty . o

and Afhg— TO |
i | ‘

—> signature: superimposed oscillation in In g with amplitude ~ 6 P




Signatures of sharp cutoffs

boundary cond. at g/a(n,) =M

:place mode creation with boundary condition

Danielsson; JN, Campo, Parentani; Easther, Greene, Kinney, Shiu)

> characteristic sighature in power spectrum:

| H(g)\" M
|AP(q) (—q) 51'_11(‘3_——
=t M H(q)

e')

ampo, JN, Parentani)

boundary cond. at n = Mo

Boundary EFT” (Schalm, Shiu, van der Schaar, Greene)
characteristic signature in power spectrum :

| ' M
IAP(g) x 2 sin (21 = )
| qg* g H(q)

here n depends on degree of non-adiabaticity;
t: signal strongly damped if cutoff fluctuates

log (scale factor

comoving distance

scale factor

S EER IR S A EEREREFEE A EREEREEE eI EFTSEIFEREEEEEEREEEY
0

comoving distance




Signatures of sharp cutoffs

LF model

:place mode creation with boundary condition

bt
'ﬂ.h
!‘-‘-}
'L_..I
o
=
=

]
=
]

boundary cond. at g/a(n,) = M 10*

Danielsson; JN, Campo, Parentani; Easther, Greene, Kinney, Shiu)

> characteristic sighature in power spectrum:

H\" [ M
_ch'g]x(—H') 5511(2——9)
|- M | i

(| 'I"|'_ T _I'_I"_I_I_I'TI"I_"E:_I_I'_'

here n depends on degree of non-adiabaticity;
t: signal strongly damped if cutoff fluctuates

ampo, JN, Parentani)

boundary cond. atn =1,
Boundary EFT” (Schalm, Shiu, van der Schaar, Greene)
> characteristic signature in power spectrum :

[ M
!_\Pfq_] X i sin (li = )
| qg* g H(q)

“17 page 36/52




Madification III: fluctuating cutoff
(Campo, IN & Parentani, PRD 07)

Treat M as stochastic variable with fluctuations (of unspecified origin)

(M)=M , {((M—M)Z2)/2=x and ST < M
P 1_ T ) 3
For =, =mH, ( 3 ) this means =S R
“ & H_'u' ]_'EI. (_1_{ / H]‘
r W 2m
and | o? S2/02 V) — 5P 2/Fa y ox H3, ( M ) W
=) =of : % exp | —4_ M
I ? i = H; \ Hy J

— the oscillatory term becomes exponentially suppressed, the steady
term becomes the leading order correction.




Madification IV: Dissipation

(Parentani, arXiv:0710.4664)

Goal
Effective dissipation of ¢, above scale M while preserving unitarity
= coupling to heavy “environment field” ¥: s:=5, +5,+5.0

Power spectrum Rngt_]:4rp”f(ﬁ—_) '™ G, (t.x:t.0)

o

computed from 2pt function instead of mode functions, where G, is
the symmetric part of Guw(z.y) =Tr|jr o(2) o(y)]

Properties

« G, determined by noise kernel N = largely generic, insensitive to
detailed dynamics of v and ¢y coupling

» dependence on initial state of ¢ decays exponentially in time
» standard description in terms of modes becomes valid below M




Parentani, arXiv:0710.4664

Goal
Effective dissipation of ¢, above scale M while preserving unitarity
—> coupling to heavy “environment field” ¥ : s:=5, +5, +5.

[
b

. dr\3 . :
Power spectrum Pr,ij_]:—irp*/\(j—) e'™ G, (t.x;t.0)

computed from 2pt function instead of mode functions, where G, is
the symmetric part of Gw(z.y) =Tr|pro(z) o(y)]

Properties

« G, determined by noise kernel N = largely generic, insensitive to
detailed dynamics of v and ¢-w coupling

» dependence on initial state of ¢ decays exponentially in time
 standard description in terms of modes becomes valid below M
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Madification IV: Dissipation

(Parentani, arXiv:0710.4664)

Goal
Effective dissipation of ¢, above scale M while preserving unitarity
= coupling to heavy “environment field” ¥: s:=5, +5,+5.0

. dz\3 . . :
Power spectrum Pngta=4rp3/(;) '™ G, (t.x:t.0)

computed from 2pt function instead of mode functions, where G, is
the symmetric part of Guw(z.y) = Tr | jr é(z) 6(y)]

Properties

« G, determined by noise kernel N = largely generic, insensitive to
detailed dynamics of v and ¢-w coupling

» dependence on initial state of ¢ decays exponentially in time
 standard d%scription in terms of modes becomes valid below M




Madification III: fluctuating cutoff
(Campo, JN & Parentani, PRD 07)

Treat M as stochastic variable with fluctuations (of unspecified origin)

AMYy=M , {((M—M?2)V2=3x and S < M
M \" : 3
For > (_) this means 1 < =
- \Hpur In (M /H)
= H2, [ M\*"
and !\ J;; ¢2/9: ) =P ci2/05 3 exp | —4 _1I.-;f ( ) —[
| : H; \Hy) |

— the oscillatory term becomes exponentially suppressed, the steady
term becomes e leading order correction.




Madification IV: Dissipation

(Parentani, arXiv:0710.4664)

Goal
Effective dissipation of ¢, above scale M while preserving unitarity
= coupling to heavy “environment field” ¥: s:=5, +5,+5.4

Power spectrum

¥ 3 - =
Pﬂ{t_]:—}:rp“/(%) e'™ G, (t,x;t.0)

o

computed from 2pt function instead of mode functions, where G, is
the symmetric part of Gw (z.y) =Tr T o(z) o(y)]

Properties

« G, determined by noise kernel N = largely generic, insensitive to
detailed dynamics of v and ¢-w coupling

» dependen(ée on initial state of ¢ decays exponentially in time
« standard description in terms of modes becomes valid below M




Madification IV: Dissipation

Construction

1. flat space, time dependent formulation with interaction chosen so
that G, obeys local equation of motion:

1 s . : : %
+p] — [ﬁft Dp( c}t — Wy Jop + E/dt/_‘: dk II!*IP.F:_JI[_—BEZ— (mME) )¥(p.k)
& s _x_

re _@ 7
= B + 38 Tl

|G (£, ,p) = 8(t — 1)

2. curved space formulation by introduction of timelike vector field
which defines a preferred frame, keeping locality of ¢-w coupling

3. specialization to FRW universe:
S}H:{p} = ; [dn o @ —w |?} )Op —%/aft /dk ‘P*{p.k:]l'_—@f — (m Mk .IE:: VU(p.k

—/dngn{_njop 8, /dﬁ-m*{_p. 3




Dissipation and Inflation

Dissipation regimes
1. p/a>>M: ¢ is overdamped, strongly coupled to vy
2. p/a=M : ¢ decouples, becomes underdamped

3. p/a <<M: ¢ propagates as free field in the BD vacuum if v is in the
ground state and the evolution is adiabatic — standard power
spectrum for /M << 1 (while P~ HZT /M for T /H >> 1)

Numerical analysis (Adamek et al., in progress):




Madification IV: Dissipation

Construction

1. flat space, time dependent formulation with interaction chosen so
that G, obeys local equation of motion:

) 1 . = - 1 7 ) ’ : L .
Sr'(p) = 3 /a?t O5(—87 —wy)op + §fd't /_c dk U (p, k)(—& — (rMk) ) ¥(p.k)
< . - J —oqg

. J oo

2
> B2+ %28 +0]G. (6.2 .p) = Bt — 1)

2. curved space formulation by introduction of timelike vector field
which defines a preferred frame, keeping locality of ¢-w coupling

3. specialization to FRW universe:

ST ) éfdﬁ 65 (—8, —w,(m))op + % /{ﬁ [dk T (p,k)(—8; — (vME)") ¥(p.

—[dngni'_n:] op Oy /dﬁ"lf*{_p. k)




Dissipation and Inflation

Dissipation regimes
1. p/a>>M: ¢ is overdamped, strongly coupled to v
2. p/a=M : ¢ decouples, becomes underdamped

3. p/a <<M: ¢ propagates as free field in the BD vacuum if v is in the
ground state and the evolution is adiabatic — standard power
spectrum for H/M << 1 (while P~ H? T /M for T /H >> 1)

Numerical analysis (Adamek et al., in progress):




Summary and Conclusions

LIV in cosmology (re-)raises the problem of mode generation in
curved spacetimes
Interesting and largely unsolved practical and conceptual questions.

Various models for LI-breaking modifications to the production of
inflationary perturbations have been analyzed

Dispersion: modifications of power spectrum suppressed by adiabatic
evolution

Hard mode creation at fixed boundary: potentially observable,
oscillatory signature

Soft mode creation at finite-width boundary: oscillations suppressed

“Parentani model” for dissipation provides generic framework for
mode generation

Application to inflation confirms the absence of oscillations in the
power spectrum.
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Dissipation regimes
1. p/a>>M: ¢ is overdamped, strongly coupled to v
2. p/a=M : ¢ decouples, becomes underdamped

3. p/a <<M: ¢ propagates as free field in the BD vacuum if v is in the
ground state and the evolution is adiabatic — standard power
spectrum for H/M << 1 (while P~ H? T /M for T /H >> 1)

Numerical analysis (Adamek et al., in progress):




Madification IV: Dissipation

(Parentani, arXiv:0710.4664)

Construction

1. flat space, time dependent formulation with interaction chosen so
that G, obeys local equation of motion:

i A 1 &y i ]. = . . —~ Ty -
Sr'(p) = 3 fdt o;{—ar‘ —wp Jop + §fdt F dk ¥*(p. k)(—& — (wMFk)")¥(p.k)
- . o —og
= B + i—";ag +w2]Gr (£, ,p) = &(t —t)

2. curved space formulation by introduction of timelike vector field
which defines a preferred frame, keeping locality of ¢-w coupling

3. specialization to FRW universe:

5 — ;/dn 65 (—82 — wl(n))ép _%/&/dk T (p,k)(—97 — (vMk)") ¥(p, &

—/dngn{_n:] Op Oy /dﬁ"lf*{_p. k)




