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Abstract: There is a deep relation between Loop Quantum Gravity and notions from category theory, which have been pointed out by many
researchers, such as Baez or Velhinho. Concepts like holonomies, connections and gauge transformations can be naturally formulated in that
language. In this formulation, the (spatial) diffeomorphisms appear as the path grouopid automorphisms. We investigate the effect of extending the
diffeomorphisms to all such automorphisms, which can be viewed as \"distributional diffeomorphisms\". We aso give a notion of \"categorial
holonomy-flux-algebral", and present the construction of the automorphism-invariant Hilbert space for abelian gauge groups, which will be entirely
combinatorial.
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Distributional

Imtroduction and motivation

From smooth to distributional

Several suggestions for Diff(X):

Diffeomorphisms which are smooth up to finitely many points

Fairbairn. Rovelli. [arXivigr—gc, 0403047
L = 1 J

C" diffeomorphisms, which are analytic up to lower
dimensional submanifolds ashcekar. Lewandowski. [arXiv:gr-qc  0404018]

stratified diffeomorphisms kesiowski [zr-qc 0610017]
piecewise analytic diffeomorphisms zapsts [zrqc 9703033]
) graphom{:}rphismsn Fleischhack [math-ph 0407006]

path groupoid automorphisms veminho [math-ph 0411073]
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Imtroduction and motivation

From smooth to distributional

Several suggestions for Diff(X):
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LQG in ;;atégﬁry |-a.n-g;-|..|-a é;e

-

Categories

Category language

@ A category € consists of

@ objects: X.Y < |€]
@ morphisms f : X — Y from one object X to another Y

_,d-—;:-——__ __F____Hl_;._h
L~ i
A Y 7
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LQG |n Eatégéry I.a.n E-I..I-HEE {;ate gories

Category language

@ A category € consists of

@ objects: X.Y < |€|
@ morphisms f : X — Y from one object X to another Y

> e
Ca

Y zZ

@ Example: objects = smooth manifolds, and f : X — Y
smooth maps between manifolds
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LQG |n c:n:egory |IHHE-I..I-H ée ('.":ateguriﬁ

Category language

@ A functor F : € — < between categories
X — F(X)
f:X—Y — F(f): F(X)— F(Y)
such that

F(fog) = F(f) o Flg)
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LQG |n ﬁatégéry |EIH-E-I..I-EEE (;ate gories

Category language

@ A functor F : € — < between categories

f: X—Y — F(_f):: F(X)— F(Y)
such that

F(fog) = F(f) o F(g)

@ A natural transformation between functors F. G : 6 — &
for each object X = |%| a morphism gx : F(X) — G(X), so
fthatrtori X — ¥

F(f)c gy = gx o G(f)
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LQG |n i..:at;egt-:.:ry |.E.I'I-E-I..I-H,-EE _ategories
morphisms and their properties Category concepts in LQG

@ Objects in P = points in space L
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LQC in categney language ~ategories
morphisms and their properties Categorv concepts in LQG

@ Objects in P = points in space L

@ Morphisms between two points x.y < 2: paths from x to y
(piecewise analytic curves modulo reparametrization and
retracing)
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LQC in categnry language - ategories
morphisms and their properties Category concepts in LQG

Pirsa: 07110034 Page 10/74




LQG |n éati_eg;ry Ia.né;-l..l-a,;;e _ategories
morphisms and their properties Category concepts in LQG

@ A smooth connection A = A assigns to each path p the
holonomy A(p) = G along that path
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f":.éré é!él-i‘j-'- _con cepts in LQG

LQG |n t.:at;egt;ry |IEH-E-I..I-E,§E

@ A smooth connection A = A assigns to each path p the
holonomy A(p) = G along that path

@ One has:

A(poq) = A(p)- A(9g)
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(é.atééﬁrf-'. _concepts in LQG

LQG |n t.:atégt-:.:ry |-EIH-E-I..I-EEE

@ A smooth connection A = A assigns to each path p the
holonomy A(p) = G along that path

@ One has:
A(poq) = A(p)- Alg)

@ In category language: A is a functor from P to the gauge

group G. (A = Hom(P. G))
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LQG |n Eati_egéry Ian;g,'-l;l-zlge _ategories
morphisms and their properties Category concepts in LQG

@ [wo connections A;. A> can be related by a gauge
transformation, if there is a smooth map g : 2 — G such
that, for every path p from x to y:

Ai(p) = g(x)-Axp)-gly)™
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Categnry concepts in LQG

LQG in Eatégéry |-=|.n-g'-|..|-age

@ [wo connections A;. A> can be related by a gauge
transformation, if there is a smooth map g : 2~ — G such
that, for every path p from x to y:

Ai(p) = g(x)-Axp)-gly)™

@ In category language: the functors A;. A> can be related by
the natural transformation g.
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LQG in Eatégéry |-a..n-g;-|..|-a ge

=3 (-:;.atéén.:rr}". ;:uncepts in LQG

@ Diffeomorphisms © = Diff(X) map points to points and paths
to paths:

i)
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LQG in category language "ategories
morphisms and their properties Category concepts in LQG

@ Diffeomorphisms o < Diff(X) map points to points and paths
to paths:

i

@ In category language: © is an invertible functor from the
category P to itself: o = Aut(P)
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LQG |n Eati_egbry Ia.ng;-u-age
Distributional extensions

=

@ Every A Aisafunctor’ P — G
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Distributional

@ Every A< Aisafunctor’ P — G

@ _1 is the set of all functors from P — G
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LQG |n l:a -.ry |IEIH-E-I..I.-HEE

=

Distributional

@ Every A< Adisafunctor P — G
@ 1 is the set of al/l functors from P — G

@ Every g = § induces a natural transformation on functors A
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Distributional

@ Every A= Aisafunctor’ P — G
@ 1 is the set of all functors from P — G

@ Every g = ¢ induces a natural transformation on functors A

@ G is the set of all natural transformations on functors A
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Distributional

@ Every A= Aisafunctor P — G

@ 1 is the set of all functors from P — G

@ Every g = ¢ induces a natural transformation on functors A
@ ( is the set of all natural transformations on functors A

@ Every o = Diff(X) induces an automorphism on P
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LQG |n Eatégéry |IEH-E-I..I-H,.EE —_ ==

Distributional extensions

Every A< Adisafunctor P — G

A is the set of all functors from P — G
Every g = ( induces a natural transformation on functors A

G is the set of all natural transformations on functors A

Every o < Diff(X) induces an automorphism on P

Suggestion: Try Diff(X) := Aut(P) the set of all

automorphisms on P.
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------- Properties of @ € Aut{P)

- — =

@ [ he automorphisms act on connections:

aA(p) = Alo(p))
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Autnmorpltli;n:ls and their prup_ernjﬁ PFPE"?m% of © E_AHT (P)

Properties of a

@ [ he automorphisms act on connections:

a,A(p) = Alo(p))

@ Theactiona, : 4 — A is a homeomorphism
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Autarnorpﬁi;n:ls an.l:-ll -ﬂ'lTe-ir pmp_emjﬁ F’rnpemes_ _mc _":’ E_ ‘G‘ET (P)

i 4

@ [ he automorphisms act on connections:

aA(p) == A(o(p))

@ Theactiona, : 4 — A is a homeomorphism

@ [ he automorphisms leave the Ashtekar-Lewandowski measure
Invariant:

(au) HAL = 1AL
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Automorphisms and their properties F’mpemes_ _Of . E_AEH (P)

= = . =

@ [ he automorphisms act on connections:

a,A(p) = A(o(p))

@ Theactiona, : 4 — A is a homeomorphism

@ [ he automorphisms leave the Ashtekar-Lewandowski measure
Invariant:

(v, ) TUAL = MAL

@ = Automorphisms act unitarily on Hyi, = L*(A. drar)
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Autmorpﬁisn_'ls and their pl‘DFI_E-I"I:IjE

On tﬁe si-ze. Of..ﬂu.l;l'[ ﬁ’:}

What automorphisms de

@ o < Aut(P):
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@ o= Aut(P):

@ such that
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On I_'hE si-ze. Df..ﬂ.l;‘E[ .E"
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On fﬁe si-ze. of-AL;r{ P‘ )

@ o <= Aut(P)
o :x +— ox)
o —  o(p)
@ such that
p.x — Yy = o(p) : o(x) — o(y)
o(pcq) = o(p)co(q)

@ But if z lies on p, ©(z) does not have to lie on o(p)!
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F On fhe si-ze. of-AL;t[ F’}

Autarnorpﬁi;n:ls an—l;ll -ﬂ;_:ir prup_ernjﬁ

Elements in Aut(P)

5 |7
e *
T
B, E
M I-"'!
P - 1
e e )
j i e as gl o Ipa
/” L H‘M i - = o
/ — : -
— p] xb:- _ T,
i Dix | B ————

Here p = p1 © p2, and z lies on p. One has o(p) = o(p1) c o(p2).
but ©(z) does not lie on o(p)!
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Automorphisms and ther properties  JECERCRES yRtE

Elements in Aut(P) -

There are strange elements in Aut(P):

@ Automorphisms o < Aut(P) which permute the points in
arbitrarily, but leave the paths essentially invariant (" natural
transformations of the identity’ ).
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On thE s.i-ze. of- Al;t[ I‘ }

Autornm‘pltli;n:ls and their pr-;:: rhins S

Elements in Aut(P)

There are strange elements in Aut(P):

@ Automorphisms o < Aut(P) which permute the points in
arbitrarily, but leave the paths essentially invariant (" natural
transformations of the identity’ ).

@ Automorphisms o < Aut(P) which swap two edges
€1.e : x — Vy. but leave all points invariant, as well as afl
other paths that intersect with e;. & in at most finitely many
points (" edge-interchanger”).
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Autamnrpltli;n:ls aﬁ l:| ﬁtﬁéi r pr;:: per‘l:IE

On fHe si-ze. of-Alir[ I‘}

Edge-interchanger
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Autamorpﬁlsn'ls anl:l th_El r pmpernﬁ

A On fhe si-ze. of.Alir[ P‘r

Edge-interchanger
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Automorphisms and their properties (T.}n ti:IE 5_125 ;Jf:AEﬂ_f-"‘r

Edge-interchanger
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Page 36/74
T — e ———



A ﬁu“ = orphlsn'rsanddlar E":u_ ;E On the size of.m;t{ ﬁ”'}

Graph combinatorics

@ With the help of the edge-interchangers. one can show:
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Autamorpltli;n_'ls an.c-ll I'.‘I'TE-IF pr-l.:T . djﬁ

o On thE s.i-ze. of-Alir{ P }

Graph combinatorics

@ With the help of the edge-interchangers, one can show:

@ Given two graphs ~1. ~> with the same combinatorics. Then
there is an automorphism o £ Aut(P) that maps one to the
other:

;_'1(”‘1) = “2
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Autamorpltli;n:ls an.léll ti'?&lr pr::T . _jﬁ

-

On I_'hE s.i-ze. Df..ﬂ.l.-l‘[i ﬁ‘}

Graph combinatorics

@ With the help of the edge-interchangers, one can show:

@ Given two graphs ~1. ~> with the same combinatorics. Then
there is an automorphism o £ Aut(P) that maps one to the
other:

:'1(”‘1) = “2

@ In fact more general: Also true for hyphs.
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— prn. s On fhe s.i-ze. Of-.ﬂu.l.-ll'[ Tf‘ )

Autumorpﬁlsms an.léll

= B4 o e

Graph combinatorics

Automorphisms only respect the fact that parallel transports along
paths are independent. but not how these paths are embedded in
space:
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> in category language Automorphisms and cylindrical functions

Automorphism-invariant Hilbert spaces ;

Orbits of the Au

@ What is the action of an automorphism o = Aut(P) on a
function f cylindrical over a graph -7

- SRR Skt
-~ »
- /
. et ]
e B T
X ] oip)
.fd—-'__\___
~ ’f
; | g}
\ g
L
{X)
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Automorphisms and cylindrical functions

Automorphism-invariant Hilbert spaces

Orbits of the Au

@ What is the action of an automorphism © = Aut(P) on a
function f cylindrical over a graph -7

@ Warning: -~ a graph, but o(~) is no graph in general!

p - i _“*x.‘ s N
= /
- et _.’
'"-h-H_____:,?’
= 1 Mol
I S——
.--'.r
| | %aqi
b e
|
X}
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Automorphisms and cylindrical functions
Automorphism-invariant Hilbert spaces —_ ¢ for G SU(2

Orbits of the Au

Consider a function 7 : .4 — C which is cylindrical over the
following graph:

. ®
- x'*. _—T_?' "
‘l"\-_l,.-""?
o l‘\
- .
.-"" e ]
__,-'_"."f | =]
~ — L
o .
- .,
L »

ile. f(A) = F(A(e). A(e). Al(es). A(es)) for some function

F: G* — C. Choose F such that

F(hy. ho. hs. hy) = F'(hiha. h3hs)
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Automorphisms and cylindrical functions

Automorphism-invariant Hilbert spaces

Orbits of the A

Then U({_'?)f(A) = f(a,A) is cylindrical over the following hyph:

* - ~
O
e | _
.
M ‘ 1\.‘
-
® °

But since f depends only on the parallel transport along e; ¢ &
and ez o eg, U(0)f depends only on the parallel transports along

oer) o o(e2) and o(e3) © ofey).
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Automorphisms and cylindrical functions

Automorphism-invariant Hilbert spaces H = 2

So U(o)f(A) = f(a,A) is cylindrical over the graph:

which consists of the two edges o(e1) © o(e) and o(es) c o(ey).
But only because of the peculiar dependence of f on the parallel

transports in !

Page 45/74
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Automorphisms and cyvlindrical functions

Automorphism-invariant Hilbert spaces Hantf

Orbits of the Automorphism

Consider a function 7 : A — C which is cylindrical over the
following graph:

LN »
“ ——
—\.‘ i =
e y
\I'
- e
."". : ._
- e )
= — M =
A —=, 4
; "
L 2 »

le. f(A) = F(A(e). A(e). A(es). A(ey)) for some function
F: G* — C. Choose F such that

F(hy. ha. hs. hy) = F'(hiha. hshs)
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Automorphisms and cylindrical functions

Automorphism-invariant Hilbert spaces et |

Orbits of the A

So U(ﬁ-_'{}r"(A) — f(a_A) is cylindrical over the graph:

L *
le—
=
L
=4 I w,
2 il |
M ey
. |
—
L = *

which consists of the two edges o(e1) o o(e) and o(e3) o o(es).
But only because of the peculiar dependence of f on the parallel

transports in !
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Automorphisms and cylindrical functions

Automorphism-invariant Hilbert spaces H A e for G = S

Action of Aut(P) on

=

This has the following consequence:

Let ~ be a graph 7 be a gauge-invariant function on ~. Then there
is an o = Aut(P) such that U(o)f is cylindrical over a flower
graph.

o o 0 Y .
A7 e 1 i T VI
=] ) “» 4
i —— . T—
s A =
A ._/ . fE r b T
|I \'\'\.
“( X | g Fd “
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Automorph and their properties 'H-_J-L.TH. for G = | 1)
Autnmcrph'g'n-inym'iant Hilbert spaces H A ut for G

Haut for G = U(1)

Abelian gauge group: For each (gauge-invariant) charge-network
function T- 5 there is an automorphism © mapping 7- 5 on a
Charge-Wilson loop

2 —r g
o4 ~ N

‘\—\-._ -'?ﬂ"d--.l _.--"H_ _\_\-\‘-\""'\-\

n, = 4
1 A i
P I ) - h
- -y h“"'": J e

..-"’"'f . e

- A e
T
0o
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Awurtomorph their _':--.'. _—_— ..H_J.L.;_lt for G = Uf_..l"}
Autnmcrphisrn-im_.'ariant Hilbert spaces Hine for G —5

Haut for G = U(ES

Abelian gauge group: For each (gauge-invariant) charge-network
function T- 5 there is an automorphism © mapping /- 5 on a
Charge-Wilson loop

_a-"""'_-F."‘x n 3
1 My
2 = )
# J _\_1-_‘\\ r
i N . W
‘____\_‘::H\ ; -’:" ._ﬂ-ﬂ'_ _H-\-H,_HHL
a, el ]
= n 1
{ __\?' . Y i
f n— J
.-""f i . i -
e 2 3o
e / e —
s
n
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AUTomorpn “_ = ‘_— r _':'-.'_: _—_. : _—‘ .hg_—‘.';ut .ﬁ)r G :- U{]_] .
Automorphism-invariant Hilbert spaces Ha ot for G — SU(2

Haut for G = U(1)

So for G = U(1). one can compute the automorphism-invariant
Hilbert space:
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Autn.n'.l&pi.'liﬁn-im_;al."iant H-ilbén:- span:E 'H;ut for G — 3U|{2]

Observation: Finitely many separate Wilson loops build basis for
lower intertwiner spaces on flowers, i.e.:

"ﬁw—__
2 "'f__ﬂx"‘m..h} - e T E S
4 _/;r\:_% i T A ™ o ——
a,____,f’"f ER-___J" B . 2 ”
\1_#:«7'{
F(hi. ) = At {_.hlhg) + Btr

ik
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Autnmcrphlsrn-lnvmant H-iII:Ha;n:- span:E
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.H-__;_u[ for G = .SU_{E}
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.H;—-‘;ut f:OI' G = .SUEZ]

Automorphism-invariant Hilbert spaces

Observation: Finitely many separate Wilson loops build basis for
lower intertwiner spaces on flowers, i.e.:

—
i ] — =
= £ et o e
.\'\'\.H‘ J_'___.- -
A, o _ o,
> - K"‘a__ 14 B = 4 B i )
-\.\_\__\___'_'_,_,.,-F"'f -\""'\-\.\_\_\_\__\_-\_ _,_,-'-""J | b, % 3 .-_.- '\.
b i

F(hi. ) = Atri(mh) + Btri(h)tri(h)

- %
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Automorphism-invariant Hilbert spaces

Pirsa: 07110034

.H-___";_ut for G

— SU}_.’E]
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Automorphism-invariant Hilbert spaces

.H-_-_"g:_ul' f:cl' G = 5“{2]

Haut for G = SU(2)

@ Conjecture: These are already enough. i.e.

~ —J1
. — ot J2
U Auat — E E Cn,j_ .__ﬁj
S . . 1 %7 A fm—11
=0 ... oM -~
L. St |

@ Just basis, not orthonormal. (Use Gram-Schmidt-Procedure

to get ONB)

Pirsa: 07110034

Page 56/74



Automorphism-invariant Hilbert spaces

'H;;ut for G = ﬁU_{.'Z']

Observation: Finitely many separate Wilson loops build basis for
lower intertwiner spaces on flowers, i.e.:

o,
i —
T I
. T » e -—
. o e . _d_,fﬁ_ \ " - i
{ _,.-:tf =i - & - B
- B 55 SR . B )
"H-.._\___'_‘_,.,-F'"-/; -H"\-H'"\-\._\__\_ -'_H_’__,.- i L \_H_\_\_'_F__._/ 1 9
, A
e, — ] -

[

F(hl hg) = AtI’?(.hlhg) T Btr%(hl_} tr%{hg)
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— = ] ) —

'H;;m for G = SIU_[.'Z}

Automorphism-invariant Hilbert spaces

@ Conjecture: These are already enough. i.e.

. —J1 .
(L ‘_—1]_]1? — E E an_ ~ . =
R v e 4
"H_D Jl ..... _j' n__%il .-_- X S
o e iy =
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Automorphism-invariant Hilbert spaces

Hayt for G = SU(Z}

to get ONB)

Pirsa: 07110034

X
CAut — E E C”j—
n=0 j, .. jn=3N

.H-_J_-Lui ﬁ)r G = -SU

1

()i,

(2)

@ Conjecture: These are already enough, i.e.

\din—1

@ Just basis, not orthonormal. (Use Gram-Schmidt-Procedure




'H:;m for G — SUE_E}

Automorphism-invariant Hilbert spaces

Observation: Finitely many separate Wilson loops build basis for
lower intertwiner spaces on flowers, i.e.:

—
— J
e = g SN
% -~ e fﬂf . L, - 5
Fi ™ e h
e i = A i 5 @ -
_'_‘_,_,.:-"’J,-{ H"'ﬂ-.. - "
oo o e e i 5, 3 %

p
B A

F(h. ) = Atri(mh) + Btri(h)tri(h)
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Automorphism-invariant Hilbert spaces Haut for G

Haut for G = SU(2) -‘.‘

@ Conjecture: These are already enough, i.e.

Pirsa: 07110034
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Automorphism-invariant Hilbert spaces

..H-___‘Lu{ for G — -SU_E:E]

Haut for G = SU(2)

@ Conjecture: These are already enough, i.e.

\_4f1

X —~
z : 2 : —
f_ ‘_jﬁ_i_lt T = C” oy

o i 7 X
B S T jn—1
n=0 B e EJ_‘. g

L I'-—- .-‘r.l'"'

@ Just basis, not orthonormal. (Use Gram-Schmidt-Procedure

to get ONB)
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Summary

@ We have presented the implications of extending spatial
diffeomorphisms Diff(X) to path groupoid automorphisms

Aut(P).
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Summary

= b

Slzm_fnﬁry aﬁﬂ m—.n-:--

@ We have presented the implications of extending spatial

diffeomorphisms Diff(X) to path groupoid automorphisms
Aut(P).

@ Aut is compatible with the topology and the measure on _A.
— acts unitarily on Hyy,.
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=3 Summary

Sllm;'néry ai‘n:i .nl..n.:_- ok

@ We have presented the implications of extending spatial

diffeomorphisms Diff(X) to path groupoid automorphisms
Aut(F).

@ Aut is compatible with the topology and the measure on _A.
— acts unitarily on Hyp.

@ Aut(P) is large: Two graphs with the same combinatorics can

be mapped to each other. P contains little information about
spatial manifold 2!
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3 Summary

+= B

e il i
Summary
@ Orbits of Aut(P) on Hy, investigated for G = U(1) and

G = SU(2). Only information left invariant of a cvlindrical
function f: Combinatorics of paths over which 7 is cylindrical.
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Summary

Sllm_fnﬁry a;tﬁ nl..|.1.:_-

@ Orbits of Aut(P) on Hy,, investigated for G = U(1) and
G = SU(2). Only information left invariant of a cvlindrical
function f: Combinatorics of paths over which 7 is cylindrical.

@ Automorphism-invariant Hilbert spaces investigated:
Completely combinatorial. Degrees of freedom delocalized!

C
CAug — Cnh | \Un _‘
n—0 wad .
e e -
WA — E Cn T B 2
= Yo J n—1
n=0 _ffll....._j'.n—:%_'T =
L. A dlnm 5
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Qutlook

@ Gravitational dof delocalized: Add matter. which sits at
vertices, to localize them!
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Summary

Sllm}néry a;tﬂ l'.'ll..ﬂ.-:.-

Summary

@ Orbits of Aut(P) on Hy;, investigated for G = U(1) and
G = SU(2). Only information left invariant of a cylindrical
function 7: Combinatorics of paths over which 7 is cylindrical.

@ Automorphism-invariant Hilbert spaces investigated:
Completely combinatorial. Degrees of freedom delocalized!
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Qutlook

@ Gravitational dof delocalized: Add matter. which sits at
vertices, to localize them!
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Qutlook

@ Gravitational dof delocalized: Add matter. which sits at
vertices, to localize them!

@ Can one define physical operators on these Ha:? V? M?
Combinatorial dynamics? Contact with AQG? Giesel. Thiemann

A
r-qc. 0607000]
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Qutlook

@ Gravitational dof delocalized: Add matter. which sits at
vertices, to localize them!

@ Can one define physical operators on these Ha:? V7?7 M?
Combinatorial dynamics? Contact with AQG? Giesel. Thiemann

[arXiv:gr-qc 0607099]

a5

@ 4-diffeomorphisms as automorphisms of 2-category?
Connections to Spin Foams?
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Summary
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@ Orbits of Aut(P) on Hy;, investigated for G = U(1) and
G = SU(2). Only information left invariant of a cylindrical
function f: Combinatorics of paths over which 7 is cylindrical.

@ Automorphism-invariant Hilbert spaces investigated:
Completely combinatorial. Degrees of freedom delocalized!
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Qutlook

@ Gravitational dof delocalized: Add matter. which sits at
vertices, to localize them!

@ Can one define physical operators on these Ha:? V7?2 M?
Combinatorial dynamics? Contact with AQG? Giesel. Thiemann
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@ 4-diffeomorphisms as automorphisms of 2-category?
Connections to Spin Foams?
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