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Outline

* Meta-stable SUSY breaking in field theory and string theory
* SU(N,) SQCD with massive flavors

* The model

* A mass term from a stringy instanton

* Stabilization of dynamical masses

* Gravity dual

* Type lIA T-dual
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Meta-stable SUSY breaking

| SUSY breaking (DSB) may be relevant in the description of
e electroweak scale.
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Meta-stable SUSY breaking

*  Dynamical SUSY breaking (DSB) may be relevant in the descrniption of
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Nature at the electroweak scale.

* Meta-stable SUSY breaking Quite generic in field theary.
Crucial iIn some string theory constructions.

* DSBis often a strong coupling phenomenon. Two powerful toals:

Seiberg duality.
Gauge/gravity duality.
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Meta-siable SUSY breaking

* Dynamical SUSY breaking (DSB) may be relevant in the description of
Nature at the electroweak scale.

* Meta-stable SUSY breaking Quite generic in field theory.
Crucial iIn some string theory constructions.

* DSBis often a strong coupling phenomenon. Two powerful toals:
Seiberg duality.
Gauge/gravity duality.

sauge/gravit Smooth gravity dual of the cascading SU(N+M) x SU(N)
conifold theory . Klebanov and Strassler
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Meta-siable SUSY breaking
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SY breaking Quite generic in field theory.
Crucial in some string theory constructions.
* DSB s often a strong coupling phenomenon. Two powerful toals:
Seiberg duality.
Gauge/gravity duality.
Smooth gravity dual of the cascading SU(N+M) x SU(N)
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Meta-stable SUSY breaking

N oreaking (DSB) may be relevant in the description of
t the electrowea k scale

cta-stable SUSY breaking Quite generic in field theory.
Crucial iIn some string theory constructions.

* DSBis often a strong coupling phenomenon. Two powerful tools:
Seiberg duality.
Gauge/gravity duality.

>auge/gravit Smaooth gravity dual of the cascading SU(N+M) x SU(N)

conifold theory . Klebanov and Strassie:
Add p « M anti-D3 branes. They are atiracted to the tip.

Non-SUSY meta-stable states in the SU(N+M-p) x SU(N-p)
at large 't Hooft coupling.
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Meta-siable SUSY breaking
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SUSY breaking (DSB) may be relevant in the description of
Nature at the electroweak scale

* Meta-stable SUSY breaking Quite generic in field theory.
Crucial in some string theory constructions.

* DSBis often a strong coupling phenomenon. Two powerful tools:
Seiberg duality.
Gauge/gravity duality.

sauge/gravit Smooth gravity dual of the cascading SU(N+M) x SU(N)
conifo Jdth:*"‘fc Klebanov and Strassler

Add p « M anti-D3 branes. They are aftracted to the tip.

Non-SUSY meta-stable states in the SU(N+M-p) x SU(N-p)
at large 't Hooft coupling.
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Seiberg dualit Meta-stable SUSY breaking vacuum in field theories as

gator, Seiberg simple as SQCD with light massive flavors.
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SUSY breaking vacuum occurs at strong coupling and small
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siberg dualit Meta-stable SUSY breaking vacuum in field theories as
ey simple as SQCD with light massive flavars.
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SUSY breaking vacuum occurs at strong coupling and small
/evs. — Selberg duality

Jualitative similarities between KPV and ISS states:

Related to baryonic branch (for Ne.=N_).
Non-chiral gauge theories.
Moduli space of Goldstone modes.
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=iberg dualit Meta-stable SUSY breaking vacuum in field theories as
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SUSY breaking vacuum occurs at strong coupling and small
/evs. —s Seiberg duality

= similariies between KPV and |SS states:

Related to baryonic branch (for N-=N_).
Non-chiral gauge theories.
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[tis natural to expect that SUSY breaking at the end of a warped throat is
CFT dual to dynamical SUSY breaking.
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siberg dualit Meta-stable SUSY breaking vacuum in field theories as
o simple as SQCD with light massive flavars.

SUSY breaking vacuum occurs at strong coupling and small
/S. = Seiberg duality
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alitative similarities between KPV and ISS states:
Related to baryonic branch (for Ne.=N_).
Nan-chiral gauge theories.

Maoduli space of Goldstone modes.

s natural to expect that SUSY breaking at the end of a warped throat is
: Zb--gr dual to dynamical SUSY breaking.
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2 there somer= 2100 between the two classes of meta-siable states?
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A simple FT mc)del SU(N,;) with massive flavers
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Requirements:

Page 20/1




Page 21/1




siberg dualit Meta- *:tal:le *?U SY breaking vacuum in field theories as
s simple as SQCD with light massive flavars.

SUSY breaking vacuum occurs at strong coupling and small
—  Seiberg duality

=
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Jualitative similarities between KPV and ISS states:

Related to baryonic branch (for N.=N_).
Non-chiral gauge theories.
Maoduli space of Goldstone modes.

[tis natural to expect that SUSY breaking at the end of a warped throat is
AdS/CFT dual to dynamical SUSY breaking.

Isthere somer=zt0n between the two classes of meta-stable states?
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A simple FT mc)del SU(N,) with maggivg flavors

iriligator, Seiberg and Shih (ISS)

Requirements:
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A simple FT m@del SU(N,) with massive flavers
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Requirements:

1 -SUSY breaking
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A simple FT model: SU(N,) with massive flavers
ntriligator, Seiberg and Shih (ISS)
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Requirements:

1 - SUSY breaking

2 - In a metastable minimum
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A simple FT m@del SU(N.) with massive flavers
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1 -SUSY breaking
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3 - That is parametrically long-lived
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A simple FT m@del SU(N,) with massive flavers

igator, Seiberg and Shih (ISS)

Requirements:

1 - SUSY breaking
2 - In a metastable minimum
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N in the free magnetic range
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A simple FT mc)del SU(N,) with massive flavers

igator, Seiberg and Shih (ISS)

|

Requirements:

1 -SUSY breaking
rank-condition mechanism

2 - In a metastable minimum

3 - That is parametrically long-lived

Computational requirement: Wi

N¢ in the free magnetic range
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A simple FT m@del SU(N,;) with massive flavors

triliaator. Seibera and Shih (1SS
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Requirements:

1 -SUSY breaking
rank-condition mechanism

2 - In a metastable minimum
pseudomaoduli become massive at 1-loop

3 - That is parametrically long-lived

Computational requirement: Vi

N¢ in the free magnetic range
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A simple FT mc)del SU(N,) with massive flavers

igator, Seiberg and Shih (ISS)

Requirements:

1 -SUSY breaking
rank-condition mechanism

2 - In a metastable minimum
pseudomoduli become massive at 1-loop

3 - That is parametrically long-lived

Computational requirement: i

)

N¢ in the free magnetic range
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A simple FT mc)del SU(NG) mth maggiv@ flavors

Requirements:

1 -SUSY breaking
rank-condition mechanism

2 [na :-:: 2 TN |-.-;-J|:._-
pseudomoduli become massive at 1-loop

3 - That is parametrically long-lived
distance between non-SUSY and SUSY minima
height of the barrier

Computational requirement: Vi

N¢ in the free magnetic range
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SU(N,) with massive flavors
SU(N,) SYM with N massive flavors Q and Q
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SU(N,) with massive flavors
SU(N,) SYM with N massive flavors Q and Q

W =mtrQQ M << Asaep
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N.+1<Ne<32N,

Page 36/1




SU(N,) with massive flavors
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N.+1<N<32N,

To study the IR behavior we use the IR free Seiberg dual description
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SU(N,) with massive flavors
SU(N.) SYM with N massive flavors Q and Q

W =mtrQ0Q M << Asqep

In order to have control in the IR: theory in the free-magnetic range

N+1<N;<32N,|

To study the IR behavior we use the IR free Seiberg dual description

>auge group: SU(N) with N = Ng- N,

Page 38/1




SU(N,) with massive flavors
SU(N,) SYM with N massive flavors Q and Q

W = mtrQQ|  m<<Asgen

In order to have control in the IR: theory in the free-magnetic range
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To study the IR behavior we use the IR free Seiberg dual description

>auge aroup: SU(N) with N = Ng- N,
tter content Dualquarks: ¢ ¢
Mesons: »=QQ
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SU(N,) with massive flavers
SU(N.) SYM with N massive flavors Q and Q

W =mtrQQ|  m=<<Asgen

In order to have control in the IR: theory in the free-magnetic range

No+1<N<32N,|

To study the IR behavior we use the IR free Seiberg dual description

>auge group: SU(N) with N = Ne- N,
stter content Dualquarks: ¢ ¢
Mesons: ®=QQ
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SU(N,) with massive flavers
SU(N.) SYM with N¢ massive flavors Q and Q

W =mtrQ0Q M << Asgep

In order to have control in the IR: theory in the free-magnetic range

N.+1<N:<32N,

To study the IR behavior we use the IR free Seiberg dual description
sauge group: SU(N) with N =N.- N,
stter content Dualquarks: g q
Mesans: =QQ
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SUSY is broken at tree level. F-term for @: qq =puo
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SU(N,) with massive flavors
SU(N.) SYM with N massive flavors Q and Q

W = mtrQQ|  m<<Asep

In order to have control in the IR: theory in the free-magnetic range

N.+1<N;<32N,

To study the IR behavior we use the IR free Seiberg dual description

sauge group: SU(N) with N = Ng- N,
stter content Dualquarks: ¢ q
Mesons: =QQ

W =hTrq®j — hy’Tr
SUSY is broken at tree level. F-term for @: g = o — rankN
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SU(N,) with massive flavers
SU(N.) SYM with N massive flavors Q and Q

W =mtrQ0O M << Asqep

In order to have control in the IR: theory in the free-magnetic range

N.+1<N:<32N,

To study the IR behavior we use the IR free Seiberg dual description
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The model

VWe engineer our gauge theory In string theary by
co r|-|:1effn:1 (fractional) D3-branes at the fipofa
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SU(N,) with massive flavers
SU(N,) SYM with N massive flavors Q and Q

W =mtrQQ M << Asacp

In order to have control in the IR: theory in the free-magnetic range

N.+1<N:<32N,

To study the IR behavior we use the IR free Seiberg dual description
sauge group: SU(N) with N =N,- N,
latter content Dual quarks: ¢ g
Mesans: =QQ
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>USY is broken at tree level. F-term for @: ¢ q = o — rankN
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There is a classical moduli space of SUSY breaking vacua with
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nere is a classical moduli space of SUSY breaking vacua with
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All pseudomodull (classically flat directions not corresponding to Goldstone

directions) become massive due fo the one-loop effective potential:
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sical moduli space of SUSY breaking vacua with

All pseudomeduli (classically flat directions not corresponding to Goldstone
directions) become massive due fo the one-loop effective potential:

The point of maximal unbroken global symmetry is a meta-stable SUSY
breaking minimum
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There is a classical moduli space of SUSY breaking vacua with
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me massive due to the one-loop effective potential:
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The point of maximal unbroken global symmetry is a meta-stable SUSY

breaking minimum
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here is a classical moduli space of SUSY breaking vacua with

All pseudomodull (classically flat directions not corresponding to Geldstone

directions) become massive due fo the one-loop effective potential:

The point of maximal unbroken global symmetry is a meta-stable SUSY
breaking minimum

‘:’-; —y o : | — LJ'].\' .’3
The theory has N¢- N, SUSY minima at
2 _‘\.':- -3N \
f 1L: = \ = l\' — Ng—N 1\‘ E = il 0

The distance in field space and the potential barmier between (a) and (D) s
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The model

We engineer our gauge theory in string theory by
co r“-|:1c"n:1 fr :t]:mal Ew pranes at thetip of a
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The model
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Fractional branes

Ne want to consider ranks: (N, N, N, 1,0,0)
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The model
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cansidering (fractional) D3-branes at the tip of a

- 1
Z- orbifold

N,

N;
1

——

-

a1 [ M)

)

L

Both the conifold and its orbifold are non-chiral. The ranks can be arbitramseess:




The meodel

We engineer our gauge theory in string theory by e
considering (fractional) D3-branes at the fipofa
~rhifald Af thae ~Aanifald
DS

e et | '-|-|--1..

—y ] Bl e el W R

fold

- \’

.vll v |?

- >
1y h
— he’ e A,B.A;B Ns (6 3) N
- o
- Ly
- »
Al 14

Page 59/1




The model

We engineer our gauge theory in string theory by e
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Fractional branes

Ne want to consider ranks: (N, N, N_,1,0,0)
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The model
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Fractional branes

Ne want to consider ranks: (N, N, N_,1,0,0)
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Fractional branes

Ne want to consider ranks: (N, N, N_,1,0,0)
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Fractional branes

Ne want to consider ranks: (N, N., N, 1.0.0)
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Fractional branes

We want to consider ranks: (N, N., N, 1,0,0)
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Fractional branes

/Ne want to consider ranks: (N, N, N_,1,0,0)
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Fractional branes

Ne want to consider ranks: (N, N, N, 1,0,0)
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Ne want 1

Fractional branes
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Fractional branes
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Fractional branes

e want to consider ranks: (N, N., N, 1,0,0)
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N=2 <«—— Singularities are not isolated
DSB «—— Obstructaed deformation
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deformation fractional branes
deformation fractional brane
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Fractional branes

We want to consider ranks: (N, N, N.,1,0,0)
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Fractional branes

Ne want to consider ranks: (N, N., N_,1.0.0)
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Deformation
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The dynamics

% —."—ﬁ T h,.ﬂ—m
1 2 [ A
L SE—————— S = W

Page 75/1




The dynamics

stringy instanton
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The dynamies

- = e -
1 2 3 | 4

S A A
N, N, N, 1

1 = h( XX Xao Xoy — X X Xig X)) Hn X s Xy hAZ<<m

stringy instanton

AT »

Node 1 has N, = N; — quantum modulispace — det /5, — BB = w
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The dynamics

1 3 [ 4
| A . S
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stringy instanton
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The dynamics

1 2 h T 4
N, N, N, :
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The dynamics

W= h( M9 X53.X30 — X3 X3y X3 X50 ) + mX ;3 Xy,
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The dynamiecs

N o -
N, N, N, 1
V = h( X;56.X53 X35 X51 — X3 X35:. X3 X5

Node 1 has N, = N, — quantum moduli space —
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The dynamics
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The dynamies
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The dynamiecs

TRY A

Ne obtain the ISS model with N.=N_ +
eformed by a g

M o
s
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The dynamics
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V= ~{X X3 XX — Ao 2
Node 1 hasN, =N, — quantum modulispace —  |det }/5, = \™
V= h (M) X3 X9 — Xog X3y X g X)) = mX 3.3
Ne obtain the ISS model with Ne= N, + 1 massive flavors
3ITIC Superpotenta Kitano, Ooguri and Ockouchi

deformed by a quartic
see that there is a metastable SUSY-breaking

Jsing Seiberg duality. wecan s
Page 85/1
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The dynamics

Node 1 has N, = N; — quantum moduli space —

Ne obtain the ISS model with N.= N_ + 1 massive flavors
deformed by a quartic sur '

-
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The dynamics

i ' z Kl — - e . =
We obtain the ISS model with N.= N massive flavors
deformedbyac > superpotentia Kitano, Ooguri and Ookouch
P SRR T R R ) N = L
metastable SUSY-breaking

Jsing Seiberg duality, we can see that there is a metas

vacuum with:
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Meiasiable vacuum

* Tofindth
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Meiasiable vacuum

* Tofind the metastable vacuum — use magnetic dual

-

1 3 [ 4
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Meiasiable vacuum

~ Seiberg mesons: ¢ = Xiz Xy

> agnetic qua _'kr’:&aﬂd.f_g_;

> Mesons and baryons of confinig node: 1. Mz =X Xq
Band B
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Meiasiable vacuum

* Tofind the metastable vacuum - use magnetic dual

> Magnetic quarks: Yz and Y
> Mesons and baryons of confinig node 1: My = Xg X4
Band B

* The pseudomodulus ¢., gefs a non zero vev | ¢, ~h _133| at 1-loop

Page 91/1




Meiasiable vacuum

* Tofind the metastable vacuum — use magnetic dual

- - |
1 2 -

» oeibe J Mesans ':"g.=><53 XE]

> Magnetic quarks: Yz and Y5

> Mesons and baryons of confinig node: 1 Mz = Xgq X4z
Band B
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Metasiable vacuum

* Tofind the metastable vacuum — use magnetic dual

> Magnetic quarks: Yi; and Yy
10de 1° My = Xg1 X4
Band B

Ny

d.,~h A;=| at 1-loop

g

(D

* The pseudomodulus 6., gets a non zero
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A mass term generated by a stringy instanton

* \Wheredoes m.\3.X;: comefrom?
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A mass term generated by a stringy instanton

* \Wheredoes m-\3.\1: comefrom?

*  [-brane instantons wrapping cycles corresponding to quiver nodes which are
"t:::um d by q;:a{::-fllhna oranes.
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A mass term generated by a stringy instanten

* \Wheredoes m.\3.X5: comefrom?

* [-0rane instantans wrapping cycles corresponding fo quiver nodes which are
vt:::um d by space-filling branes. — can contribute corrections to'W

* Consideran EL 1 wrapping node 5 of the quiver. Naively: acting on the
instanton with the broken :up~rrharges then produces two fermion zero
modes in the ED1 - ED1 sector. Extrazero modes can be projected out by an

e e T
i |
i LI,
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A mass term generated by a stringy instanten

Wheredoes m.X3.\y. comefrom?

_-0rane instantons wrapping cycles corresponding to quiver nodes which are
not occupied by space-filling branes. — can contnbute corrections to W

Consideran EL 1 wrapping node 5 of the quiver. Naively: acting on the
instanton with the broken :up~rchar:1es then produces two fermion zero
modes in the ED1 - ED1 sector. Extra zero modes can be projected out by an

S — |
. | |
el L el
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A mass term generated by a stringy instanton

* Wheredoes m-\;.\3. comefrom?

* [-brane instantons wrapping cycles corresponding to quiver nodeswh[chare
not occupie :It, :pa e-filling branes. — can contribute corrections o'
* Consideran EL1 wrapping node S of the quiver. Naively: acting on the

instanton with the broken :up~rcharaes then produces two fermion zero
modes in the ED1 - ED1 sector. Extrazero modes can be projected out by an

..._.._..,,..-.-... -
=110
e ] e
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A mass term generated by a stringy instanton

Where does m.\3.X5: come from?

rzne instantons wrapping cycles corresponding to quiver nodes which are
J[CCCLJDF d by :pace—ﬁilmg branes. — can contribute corrections to W

Consider an ELC 1 wrapping node 5 of the quiver. Naively: acting on the
instanton with the broken :u;:~rr*haraes then produces two fermion zero
m :3:: in the ED1 - ED1 sectar. Extra zero modes can be projected out by an
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A mass term generated by a stringy instanton

*  Wheredoes m-\ 3.\ comefrom?

* [-brane instantons wrapping cycles corresponding fo quiver nodes which are
not occupied by upace-flimg branes. — can contnbute corrections to W

* Consideran EL 1 wrapping node S of the quiver. Naively: acting on the

instanton with the broken :upcrcharges then produces two fermion zero
maodes in the ED1 - ED1 sector. Extra zero modes can be projected out by an

....,,..--.. o
. | |
ot I e
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A mass term generated by a stringy instanton

* \Wheredoes m.X3.\1. comefrom?

* [D-brane instantons wrapping cycles corresponding to quiver nodes which are

not occupied by Qpabe-ﬂﬂmg branes. — can contrnibute corrections to W

* Consideran EL1 wrapping node 5 of the quiver. Naively: acting on the
instanton with the broken :upcrcharges then produces two fermion zero
modes in the ED1 - ED1 sector. Extra zero modes can be projected out by an

"
............... - : — e —L!
3 - 9
-l e T B 2 -
|-:f'
N, 1

With « and p fermionic zero modes.

Page 101/1




A mass term generated by a stringy instanton

* \Wheredoes mX3X3. comefrom?

. Jrz2ne instantons wrapping cycles corresponding fo quiver nodes which are
t:::um d by space-filling branes. — can contnbute corrections to W
* Consideran EL1 wrapping node 5 of the quiver. Naively: acting on the
instanton with the broken :up~rcharges then produces two fermion zero
maodes in the ED1 - ED1 sector. Extra zero modes can be projected out by an
orientifold
. .
B E e o 5
N, T

* With « and g fermionic zero modes.

* Bosonsarisein tru: I‘m aectur but contributions from ND directions push the
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A mass term generated by a stringy instanton

* \Wheredoes m.\3.X3: comefrom?

* [-brane instantons wrapping cycles corresponding to quiver nodes which are
not occupied by space-f ling branes. — can contnibute corrections to W

* Consideran EL 1 wrapping node S of the quiver. Naively: acting on the
instanton with the broken supercharges then produces two fermion zero
modes in the ED1 - ED1 sector. Exira zero modes can be projected out by an
orientifold.
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A mass term generated by a stringy instanton

Wheredoes m-\;-\y: come from?

* [-brane instantons wrapping cycles corresponding fo quiver nodes which are
t:::um d by space-filling branes. — can contnbute corrections to W
* Consideran EL1 wrapping node 5 of the quiver. Naively: acting on the

instanton with the broken :upcrcharges then produces two fermion zero
modes| in the ED1 - ED1 sector. Extra zero modes can be projected out by an

_______________ - : S —|J.-—
e 2 - e 5
= ey
N, 1
* With « and p fermionic zero modes.

JSons anse in Tm: Fr:: sector. but contributions from ND directions push the
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* A similar ED1 wrapping node 6 generates: |L = aX ..\, /l==|/B
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A similar ED1 wrapping node 6 generates: |L = a.X .\, I == /BB =2

Stabilization of dynamical masses

F) ' ' Wi nn \ ‘-’-qu> i 22a2 al
* Quantum constrainton node 1: [det M — BB =\ "=V’ ~ N h"\3 A\

VWhat prevents the baryaons from condensing, relaxing the vacuum energy to 07?

* Actually. the leading off-diagonal term in the mass matrix for fluctuations is:

i » =—h° -\L_-: i’l- =
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~ SHmiar =L

L)

10 node 6 generates: |L = a.X,.Xo Il =l /BB o —\rea

Stabilization of dynamical masses

~ - ] 0 T ) 4 {MZ'} ¥ AT 1.2 : +
* Quantum constrainton node 1: |det My — R =\ =il ~ N h"A5 A}
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* Asimilar ED1 wrapping node 6 generates: |L = a.X,.Xs, ==l /BB ¢—re?

Stabilization of dynamical masses

- . . 1 1 : ) k {rﬁqﬂ*} » AT 13 } 1
* Quantum constrainton node 1: [det M — PR=\7" T =V ~ N h"\3 ]
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*  Asimilar ED1 10 node 6 generates: L = a.X0.\ 0 =—|/B

Stabilization of dynamical masses

— . 1 1T T ' {hqf} 2 xr 12 ' 1
* Quantum constraintonnode 1: |det Mo — R = A7 =V ~ N A7\
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10 node 6 generates: (L = o X\ I =—=/BRB

=
i}
3
=
24
I
|

LY ]

Stabilization of dynamical masses

- : ' AT - ; {N‘E} 3 T 1.2 ! 1
* Quantum constrainton node 1: [det My — PR =\ =V ~ N A"\ ]
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T

10 node 6 generates: |L = aX,.Xo =l /BRB e

L)

*  Asimilar =01

Stabilization of dynamical masses

~ . . 1 T 1 {ME-} » AT 39 ) 1
* Quantum constrainton node 1: |det My — R =\ =il ~ N h"A5 ]
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* A similar ED1 wrapping node 6 generates: |L = o.X,.\y 1=}

Stabilization of dynamical masses

¢ N My>
LJ

* Quantum constrainton node 1: |det My» — BB = A7 =iV ~ N h"A5 \]

VWhat prevents the baryons from condensing, relaxing the vacuum energy o 07?
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* Asimilar ED1 wrapping node 6 generates: |L = 0.\ .0y, l==l/]

Stabilization of dynamical masses

- | WYRNTENY AT
* Quantum constrainton node 1: |det M» — BB = A7 i=lll ~ N h"A5 ]

VWhat prevents the baryaons from condensing, relaxing the vacuum energy to 07?
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* Asimilar ED1 wrapping node 6 generates: |L = a.X,.\ /==l BB ¢ —r2

Stabilization of dynamical masses

) M : ' 17 DD ' {ME} r NS LZA2 AL
* Quantum constrainton node 1: |det M» — BB = A7 "=lll ~ N h"A5 \]

What prevents the baryaons from condensing, relaxing the vacuum energy to 07?

* Actually. the leading off-diagonal term in the mass matrix for fluctuations is:

Vg =Vpp=—MA3/A7"
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* Asimilar ED1 wrapping node 6 generates: |L = a.\;,.\; IT=—|.

e

Stabilization of dynamical masses

0 - ot Mo — BB — A2V - AT 272 A4
* Quantum constrainton node 1: |det M» — BB = A7 "=l ~ N A" \5

VWhat prevents the baryons from condensing, relaxing the vacuum energy to 07?

-

Actually. the leading off-diagonal term in the mass matrix for fluctuations is:

V. =V ap = — b2 AZ/AZN

* The potential contains the following terms:

y = i 3 — — s — —
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*  Asimilar ED1 wrapping node 6 generates: |L = a.X ..\, 7 ==,

Sy

Stabilization of dynamical masses

- c ’ e - _) \, {?‘4'1'1“} At 19 } 1
* Quantum constrainton node 1: |det M» — BB =A==l ~ N A"\ \]

VWhat prevents the baryons from condensing, relaxing the vacuum energy to 07?

Actually. the leading off-diagonal term in the mass matrix for fluctuations is:

* The potential contains the following terms:
| = = —_. \; ¢ — AN I
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*  Asimilar ED1 wrapping node 6 generates: |L = a.X;,.X, /i ==|/ BB ¢\

Stabilization of dynamical masses

& : Lot Nd RN v My r a7 1.2a2 a4
* Quantum constrainton node 1: |det M» — BB =A==l ~ N h"A5 ]

VWhat prevents the baryons from condensing, relaxing the vacuum energy to 07?

*  Actually. the leading off-diagonal term in the mass mairix for fluctuations is:
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A similar ED1 wrapping node 6 generates: (L = a.X ;oYX ==,

o

Stabilization of dynamical masses

- . : . —_— o ) {h‘z} 7 xr 17 } 1
* Quantum constrainton nade 1: |det M» — BB =\ " ==V’ ~ N . h"\3 ]

VWhat prevents the baryons from condensing, relaxing the vacuum energy to 07?

Actually. the leading off-diagonal term in the mass matrix for fluctuations is:

Vs =Vps=—h" /A7

The potential contains the following terms:

Page 121/1




—Area

*  Asimilar ED1 wrapping node 6 generates: |L = o.X,.\y If=|/BB

Stabilization of dynamical masses

) 1 . 1 1T n I N {ME;I r AT 1.2 A 1
* Quantum constrainton nade 1: |det M» — BB =\ ==V’ ~ N . h"\3 ]

VWhat prevents the baryons from condensing, relaxing the vacuum energy to 07?

* Actually, the leading off-diagonal term in the mass matrix for fluctuations Is:

1 = t = — -'_;-'_‘ni—.. \L- -

— \ i - T o

iractions are stable provided that: Page 122/1




Gravity dual

The Z, orbifold of the conifold we are studying is describedby: |y~ = uv
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Gravity dual

The Z, orbifold of the conifold we are studying is describedby: |’ = v
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Gravity dual

The Z, orbifold of the conifold we are studying is describedby: |’ = v

[tis a toric singularity:

r—D
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ingularity:

Gravity dual

—9

N
&—4
——

)

. orbifold of the conifold we are studying is described by:

(0.1)
(1.0)
(-1,0)
(-1.0} —\
— (1.0)
—
{-1,0)

(0.1)
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Gravity dual

The Z, orbifold of the conifold we are studying is described by:

[tis a taric singularity:

—9

»—9
—4

—o

[t admits thr=e independent complex

(0.1)

(1.0)

(-1,0)

(-1.0) —\
— (1.0)

—

(-1.0)
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Gravity dual

The Z, orbifold of the conifold we are studying is describedby: |’ =

faric singularty: @.1)

—9 .
(1.0)

NS 10

>—
—9 — (1.9
J—

] (-1.0)
9 -1.0) ——

{-1.0)

D
(0,1)

It admits thr== independent complex deformations: H Iy — € ) = U

P
Ve @
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Gravity dual

The Z, orbifold of the conifold we are studyingis describedby: |’/ =

tis a toric singulanty: {@.1)

(1.0)

(-1.0}

(-1.0) —\
—= 41N

— (1,0)

|'-1,'|:]fl

[t admits three independent complex deformations: H Iy — € ) = U

-

/.
10005 _\_ - = — ] page 13071
—fp— > i —/ | R=i



Consider twa of the 3-cycles are blown-up to the same size:
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Consider two of the 3-cycles are blown-up to the sam
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amesize |

Consider two of the 3-cycles are blown-up tothe s

\\\ =
Aftera geome ansition, the N, deformation branes on node 3 tum into flux:
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Consider two of the 3-cycles are blown-up to the same sizeX|
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Cansider two of the 3-cycles are blown-up to the same size:

—_— A, singuiariy.
\ > .__' ol
Aftera geome ansition, the N, deformation branes on node 3 tum into fiux:
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Consider two of the 3-cycles are blown-up to the

A, singuiarity:
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S = T Y.
-_'.. o — - I*

TH — %

) of the 3-cycles are blown-up fo the sam

F g, et e L
Consider

.- A, singulariy:
\\ Az % C
Aftera geome ansition, the N, deformation branes on node 3 tum into fiux:
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Consider two of the 3-cycles are blown-uptothe samesizesr” " "o
- s'ngmarw
\ - e

1, the N, deformation branes on node 3 tum into fiux:
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Consider two of the 3-cycles are blown-up to the sam

tion, the N, deformation branes on node 3 turn into fiux:
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) of the 3cyclesare blown-uptothe samesizesy ™~ > "
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Consider ¢
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The mestastable non-supersymmeiric vacuum

Non-SUSY states of a field theory can be obtained by adding anti-D3 branes
to the dual confining geometry.  Kachru, Pearson and Verlinde

If the brane charges at infinity
as vacuum states of the same gauge theory (at strong t Hooft coupling).
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The mestastable non-supersymmetric vacuum

Non-SUSY states of a field theory can be obtained by adding anti-DS bDranes
to the dual confining geometry. Kachru, Pearson and Verlinde

If the brane charges at infinity are kept fixed, these states are interpreted
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The mestastable non-supersymmetric vacuum

Non-SUSY states of a field theory can be obtained by adding anti-DS branes
to the dual confining geometry.  Kachru, Pearson and Verlinde

If the brane charges at infinity are kept fixed, these states are interpreted
um states of the same gauge theory (at strong t Hooft coupling).

For the quiver we are studying, the gravity dual has N = k N, units of D3-
brane charge.
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The mestasiable non-supersymmetric vacuum

Non-SUSY states of a field theory can be obtained by adding anti-0S branes
to the dual confining geometry.  Kachru, Pearson and Verlinde

If the brane charges at infinity are — =d, these states are interpreted
as vacuum states of the same gauge theo (at strong 't Hooft coupling).

For the quiver we are studying, the gravity dual has N = k N, units of D3-
brane charge.

addanti-D3 — addD3
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The mestastable non-supersymmetric vacuum

Non-SUSY states of a field theory can be obtained by adding anti-DS branes
to the dual confining geometry.  Kachru, Pearson and Verlinde

f the brane charges at infinity are kept fixed, these states are interpreted
as vacuum states of the same gauge theory (at strong t Hooft coupling).

L)

For the quiver we are studying, the gravity dual has N = k N, units of D3-
brane charge.

addanti-D3 — addD3 —— perturbatively annihilate

The same happensfor 2..... N.-1 anti-D3’s.
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The mestasiable non-supersymmetric vacuum

Non-SUSY states of a field theory can be obtained by adding anti-DS branes
to the dual confining geometry.  Kachru, Pearson and Verlinde

If the brane charges at infinity are kept fixed, these states are interpreted
as vacuum states of the same gauge theory (at strong t Hooft coupling).

For the quiver we are studying, the gravity dual has N = k N, units of D3-
brane charge.

addanti-D3 — addD3 —— perturbatively annihilate
The same happensfor2,.... N.-1 anti-D3’s.

Butwe can add N. ant-D3 brane probes and “jump fluxes”:
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The mestastable non-supersymmeiric vacuum

Non-SUSY states of a field theory can be obtained by adding anti-DS bDranes
to the dual confining geometry.  Kachru, Pearson and Verlinde

f the brgnc charges at infinity are -5::"’ =d, these states are interpreted
as vacuum states of the same gauge theo (at strong 't Hooft coupling).

For the quiver we are studying, the gravity dual has N = k N, units of D3-
brane charge.

addanti-D3 — addD3 —— perturbatively annihilate
The same happensfor 2..... N.-1 anti-D3’s.

Butwe can add IN. anti-D3 brane probes and “jump fluxes™:

/ LA — / (e = — KB+ ] Page 150/1




sonic branch also contains N, D3 probes, around small cycles inthe
curve of-‘a singularities
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* The mesonic branch also contains N, D3 probes, around small cyclesin the
curve of A, singularities.

* Thefractional brane charges are aligned with the D3 charges. The DSs atiract
the N, anti-D3s. The anti-D3s dissolve in the D3s as gauge fiux:

Page 152/1




Page 153/1!




The mestastable non-supersymmetric vacuum

Non-SUSY states of a field theory can be obtained by adding anti-DS branes
to the dual confining geometry.  Kachru, Pearson and Verlinde

If the brane charges at infinity are kept fixed, these states are interpreted
as vacuum states of the same gauge theory (at strong t Hooft coupling).

For the quiver we are studying, the gravity dual has N = k N, units of D3-
brane charge.

addanti-D3 — addD3 —— periurbatively annihilate
The same happensfor2,.... N.-1 anti-D3’s.

But we can add N, anti-O3 brane probes and “jump fluxes"™

/ g = — K —_— / fos = — B4} Page 154/1




*  The mesonic branch also contains N, D3 probes, around small cyclesinthe
curve of A, singularities.
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*  The mesonic branch also contains N, D3 probes, around small cycles inthe
curve of A, singularities

* Thefractional brane charges are aligned with the D3 charges. The D5s atiract
the N, anti-D3s. The anti-D3s dissolve in the D3s as gauge flux:

wt
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*  The mesonic branch also contains N, D3 probes, around small cyclesin the
curve of A, singularities.

* The fractional brane charges are aligned with the D3 charges. The D3s atiract
the N, anti-D3s. The anti-D3s dissolve in the D3s as gauge flux:

— I

Comparison with the gauge theory
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' Th'e*‘r sonic branch also contains N, D3 probes, around small cycles in the
urve of A, singularities

* The fractional brane charges are aligned with the D3 charges. The D3s atiract
the N, anti-D3s. The anti-D3s dissolve in the D3s as gauge flux:

— —

Comparison with the gauge theory

* Itis impossible to get meta-stable statesfor 1,..., N.-1 anti-D3 branes.
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*  The mesonic branch also contains N, D3 probes, around small cyclesin the
curve of A, singularities.

* Thefractional brane charges are aligned with the D3 charges. The D3s atiract
the N, anti-D3s. The anti-D3s dissolve in the D5s as gauge flux:

— T

Comparison with the gauge theory

* Itis impossible to get meta-stable statesfor 1,..., N.-1 anti-D3 branes.

o

* Theenergy of the SUSY breaking vacuum is ~ N, in units of the dynamical scale.
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* The mesonic branch also contains N. D3 probes, around small cyclesinthe
curve of A, singularities.

* The fractional brane charges are alianed with the D3 charges. The D3s atiract
the N, anti-D3s. The anti-D3s dissolve in the D3s as gauge flux:

™ T}

Comparison with the gauge theory
* Itis impossible to get meta-stable statesfor 1,..., N.-1 anti-D3 branes.

* Theenergy of the SUSY breaking vacuum is ~ N, in units of the dynamical scale.

Meta-siability
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*  The mesonic branch also contains N, D3 probes, around small cyclesinthe
curve of A, singularities.

* The fractional brane charges are aligned with the D3 charges. The D3s atiract
the N, anti-D3s. The anti-D3s dissolve in the D5s as gauge flux:

— T

Comparison with the gauge theory
* Itis impossible to get meta-stable statesfor 1,..., N.-1 anti-D3 branes.

* Theenergy of the SUSY breaking vacuum is ~ N, in units of the dynamical scale.

Meta-siability

Even though the number of anti-D3s is comparable to the RR flux.

-

Page 161/1




*  The mesonic branch also contains N, D3 probes, around small cyclesinthe
curve of A, singularities.

* Thefractional brane charges are aligned with the D3 charges. The D3s atiract
the N, anti-D3s. The anti-D3s dissolve in the D3s as gauge fiux:

| i )

Comparison with the gauge theory
* Itis impossible to get meta-stable statesfor 1,..., N.-1 anti-D3 branes.

* Theenergy of the SUSY breaking vacuum is ~ N, in units of the dynamical scale.

Meta-siability
* Eventhough the number of anti-D3s is comparable to the RR flux.

* Forlarge N, the 3-form fluxes are diluted and the gradient of the Myers potentia
that would make the branes polarize into 3-branes is small.
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*  The mesonic branch also contains N, D3 probes, around small cyclesin the
curve of A, singularities.

* The fractional brane charges are alianed with the D3 charges. The D3s atiract
the N, anti-D3s. The anti-D3s dissolve in the D5s as gauge flux:

I [

Comparison with the gauge theory
* Itis impossible to get meta-stable statesfor 1,..., N.-1 anti-D3 branes.

* Theenergy of the SUSY breaking vacuum is ~ N, in units of the dynamical scale.

Meta-siability
* Eventhough the number of anti-D3s is comparable to the RR flux.

* Forlarge N, the 3-form fluxes are diluted and the gradient of the Myers potentia
that would make the branes polarize into 3-branes is small.
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Type llA dual
*  Thereis a simple Type lIA, T-dual Hanany-\Witien configuration. It provides a
very inturtive picture of how the anti-branes appear and the vacuum structure.
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Type lIA dual
* Thereis a simple Type llA, T-dual Hanany-\itten configuration. [t provides a

very intuitive picture of how the anti-branes appear and the vacuum structure.

ads

NS NS NS »
NS NS

7
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Type lIA dual
*  Thereis a simple Type lIA, T-dual Hanany-Witien configuration. |t provides a

very inturtive picture of how the anti-branes appear and the vacuum structure.

adls

rarare

NS NS NS .

NS NS NS

* Letus consider fractional branes leading to the (N NN, 1,0.0) guiver.
* Starting from the case with <M,»> =m = 0.
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T‘y‘pe A dual

* Thereis a simple Type lIA, T-dual Hanany-Aitten configuration. [t provides a
very intuitive

e picture of how the anti- branes appear and the vacuum structure.

adl

83/
NS NS NS’ *

L et us consider fractional branes leading to the (N_N_N., 1.0.0) quiver.
* Starting from the case with <M,,»> =m =0.
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Ty'pe IA dual
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Type A dual

*  Thereis a simple Type llA, T-dual Hanany-Witten configuration. It provides a
very intuitive picture of how the anti-branes appear and the vacuum structure.
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Type lIA dual
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-itten configuration. It provides a
----- y intuitive

e picture of how the anti-branes appear and the vacuum structure.

__/ ] / ; / 245 E
av.: i

83/
NS NS NS ¥

il
|
-1"

Let us consider fractional branes leading to the (N NN, 1.0,0) quiver.

* Starting from the case with <M,»> =m = 0.
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Non-zero m and <M,>

* Electric configuration
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Non-zero m and <M,,>

rric configuration

Seiberg duality
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Non-zero m and <M,,>

Seiberg duality
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Non-zero m and <M,,>

Seiberg duality

* Electric configuration

o7 | L #
* Magnetic configuration —5—f- //EJ —F o
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* Final configuration
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Conclusions

g ieered a gauge theory with interesting features using D-
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Conclusions
* We have engineered a gauge theory with interesting features using D-

branes on a Calabi-Yau singularity.

* Atweak 't Hooft coupling we can argue field theory techniques that it
admits both supersymmetric and meta-stable non-supersymmetric vacua.
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* Allthe dimensionful parameters are dynamically generated.
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* We have proposed a gravity description for both sets of vacua at strong 't
Hooft coupling (in this talk | have discussed the one for meta-stable vacua).
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Conclusions

* We have engineered a gauge theory with interesting features using D-
branes on a Calabi-Yau singularity.

* Atweak 't Hooft -:cuplin-cl we can argue field theory technigues that it
admits both supersymmetric and meta-stable non-supersymmetric vacua.
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* We have proposed a gravity description for both sets of vacua at strong 't
Hooft coupling (in this talk | have discussed the one for meta-stable vacua).

*  Qurwork indicates that. at least in some cases, the meia-siable staies

constructed using anti-D branes in warped throats are related to ISS-like
states.
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* String instanton effects plavy an important role



* Orbifolds of the conifold provide a simple case in which stringy Instantons
can be understood as arising from a duality cascade. Aharony and Kachru
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* Orbifolds of the conifold provide a simple case in which stringy iInstantons
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* They are flexible enough to engineer standard SUSY breaking modeis
an gauge dynamics. Aharony, Kachru and Silverstein
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* Orbifolds of the conifold provide a s:mpie case in which stringy instanions
can be understood as arnising from a duality cascade. Aharonyand Kachru

* They are flexible enough to engineer standard SUSY breaking modeis
vithout non-abelian gauge dt,f Namics. Aharony, Kachru and Silverstein
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Further directions

* Embeddingin a Calabi-Yau compactification.
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Orbifolds of the conifold provide a simple case in which stringy instantons
can be understood as arising from a duality cascade. Aharony and Kachru

ney are flexible enough to engineer standard SUSY breaking models
yithout non-abelian gauge dynamics. Aharony, Kachru and Silverstein
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Further directions
Embeddingin a Calabi-Yau compactification.
Understand gravity dual in more detail

Can we find meta-stability in grawiw duals of “simpler” field thearies. Do
they suggest other mechanisms ? Other regimes

ranco, RodrigueZ-a0omezZ and veriindae {In progress)
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