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Thanks to the organizers for a great, diverse and provocative conference:

Sabine Hossenfelder, Bianca Dittrich, Tomasz Konopka, and Achim Kempf
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1) How far have we come??

2) Challenges

3) DSR from quantum gravity

4) Is the dark energy a quantum gravity phenomena’’
5) Non-locality and quantum gravity

6) Other windows 1nto quantum gravity phenomenology
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In 1998-2000 there arose the then novel 1dea that Planck scale
phenomena could be observed in high energy astrophysics

These measure the tfate of Poincare invariance to order
- .

How far has this idea come?

irsa: 07100039 Page 4/87



A key observational question for quantum gravity 1s:

What is the symmetry of the ground state?
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A key observational question for quantum gravity 1s:

What is the symmetry of the ground state?

Global Lorentz and Poincare invanance are not symmetries

of classical GR, they are only symmetries of the ground
state with A=0.

Hence, the symmetry of the quantum ground state is
a dynamical question.
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A key observational question for quantum gravity 1s:

What is the symmetry of the ground state?

Global Lorentz and Poincare invanance are not symmetries

of classical GR, they are only symmetries of the ground
state with A=0.

Hence, the symmetry of the quantum ground state is
a dynamical question.

Three possibilities
| Poincare invariant

2 Broken Lorentz invariance
3 Detormed Poincare invariance (DSR)
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Deformed or doubly special relativity (DSR)

Principles of deformed special relativity (DSR):

1) Relativity ot inertial frames
2) The constancy of ¢, a velocity
3) The constancy of an energy E

4) c 1s the universal speed of photons for B
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Principles of deformed special relativity (DSR):

) Relativity of inertial frames
2) The constancy of ¢, a velocity
3) The constancy ofan energy E .\

4) c¢1s the universal speed of photons for E<<E, .
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Principles of deformed special relativity (DSR):

1) Relativity of inertial frames

2) The constancy of ¢, a velocity

3) The constancy otan energy E

4) ¢ 1s the universal speed of photons for E<<E,
Consequences:

 Moditied energy-momentum relations

* Momentum space has constant curvature given by E .

* Energy-momentum conservation becomes non-linear
(Coproduct)
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Principles of deformed special relativity (DSR):

1) Relativity ot inertial frames

2) The constancy of ¢, a velocity

3) The constancy otan energy E |,

4) ¢ 1s the universal speed of photons for E<<E,,
Consequences:

 Moditied energy-momentum relations

* Momentum space has constant curvature given by E .

* Energy-momentum conservation becomes non-linear
(Coproduct)
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Principles of deformed special relativity (DSR):

) Relativity of inertial frames

2) The constancy of ¢, a velocity
3) The constancy ofan energy E
4) ¢ 1s the universal speed of photons for E<<E, .

Consequences:

 Moditied energy-momentum relations

*  Momentum space has constant curvature given by E

* Energy-momentum conservation becomes non-linear
(Coproduct)
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Mathematical realizations:
1) Detformed poincare algebra is a hopt algebra

Acts on a spacetime geometry which i1s non-commutative.

2) metric becomes scale dependent: g, (E)

=

Are they ditferent?
What are the differences?

[s there a way to map them to each other?
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Mathematical realizations:
1) Deformed poincare algebra is a hopt algebra

Acts on a spacetime geometry which i1s non-commutative.

2) metric becomes scale dependent: g, (E)

=

Are they ditferent?
What are the difterences?

[s there a way to map them to each other?
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Viodels of DSR:

DSR 1s realized precisely in 2+1 gravity with matter hep-th/030708:

QFT on kappa-minkowki
Rainbow metric

Energy dependent h and c
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How can we experimentally distinguish the three possibilities of
exact, broken or deformed Poincare invariance?

There are two basic low energy QG effects:
) Corrections to energy momentum relations:

E=p‘+nr+abE+BIp*E*+ ...
v=c(l+alp E" )

2) Modifications in the conservation laws.

Some basic consequences:
* Pretferred frame allowed processes (photon decay)
* Modifications of thresholds (GZK. Tev photons...)

* Energy dependence of the speed of light, neutrmnos ...

Pirsaf 07 ’ ‘) Page 23/87
Can they be measured to O(lp,,, ; ): g






Energy dependent speed of light
wWE)=c(l+alpE+blp° E° +...)

*Accumulates for long distances
*Observable in Gamma Ray bursts.

epresent limits have a < 1000
*GLAST will put limits a < 1

*Could be parity even or odd

*A parity odd v(E) has been ruled out at O(lp)
by observations of distant polanzed radio galaxies

Also, by polarization observed in Gamma Ray Bursts
Colburn. Boggs. Nature 423, 415417 (2003). Mitrotanov, Nature. VOL 426 13 Nov 2003

-2 Ayk AST could see O(ly,) parity-even v(E) page 25



Energy dependent speed of light
wWE)=c(l+alpE+blp° E° +...)

*Accumulates for long distances
*Observable in Gamma Ray bursts.
epresent limits have a < 1000

*GLAST will put limits a < 1

*Could be parity even or odd

*A parity odd v(E) has been ruled out at O(lp)
by observations of distant polanzed radio galaxies

Also, by polarization observed in Gamma Ray Bursts
Colburn. Boggs. Nature 423, 415417 (2003). Mitrofanov, Nature, VOL 426 13 Nov 2003

2 kyk AST could see O(ly,) parity-even v(E) —



Broken lorentz invariance gives modified dispersion relations
but unmodified conservation laws

- » GZK threshold moves appreciably
« helicity odd energyv dependent speed of light

Deformed lorentz invariance gives both.

- » GZKthreshold as in ordinary special relativity
* possible helicity even energy dependent speed of light

lo distinguish the three possibilities we need three experiments:

* AUGER tests GZK

e MAGIC, GLAST trests energy dependence of photons

* Detection of polarized photons from distant sources
tests helicity dependence e
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Broken lorentz invariance gives modified dispersion relations
but unmodified conservation laws

- » GZK threshold moves appreciably

helicitv odd energyv dependent speed of light

Deformed lorentz invariance gives both.

- » GZKthreshold as in ordinary special relativity
* possible helicity even energyv dependent speed of light

lo distinguish the three possibilities we need three experiments:

* AUGER tests GZK

*  MAGIC, GLAST tests energy dependence of photons

* Detection of polarized photons from distant sources
tests helicity dependence e
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The GZK threshold:

Cosmic ray protons scattering off the microwave background.

Special relativity predicts a threshold at 3 10" ev.

An ettect ot a O(lp,, ) moditied E-p relation 1s to move 1t O(1)

E=p+m+alpBE+ Blp° E*+ ...

Prediction from Lorentz Inv & ARN—
+ uniform sources ssssssssssssas . e
-
Ll - $h
AGASA reported events i Breeesrc ,.4;.;‘{: 1l
> '—T_ 3
over the GZK threshold! £ T *
: E sevsrems | (1 fOrm souroes i.'
: b
- \, }
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GZK: AGASA, Sugar saw
anomalous events

¥ * | [ HIRES didn't
- ... ;T‘. ' "' | ..-. ]
e ®o > . an® i".
. -.'- 2 -
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Correlation of the Highest-Energy
Cosmic Rays with Nearby

Extragalactic Objects

The Pierre Auger Collaboration®
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Fig. 2. Aitoff projection of the celestial sphere in galactic coordinates with circles of radius 3.1°
centered at the arrnival directions of the 27 cosmic rays with highest energy detected by the Pierre
Auger Observatory. The posttions of the 472 AGN (318 n the field of view of the Observatory) with
redshift z < 0.018 (D < 75 Mpc) from the 12th edition of the catalog of quasars and active nuclei
(12) are indicated by red asterisks. The solid line represents the border of the field of view (zenith
angles smaller than 60°). Darker color indicates larger relative exposure. Each colored band has
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Tentative but pretty compelling conclusions:
*There is a GZK cutoft
*Lorentz symmetry breaking is dead, at least at first ordei

*DSR and good old fashioned SR are fine.



Tentative but pretty compelling conclusions:
*There is a GZK cutoft
*Lorentz symmetry breaking is dead, at least at first ordei

*DSR and good old fashioned SR are fine.

*The relativity of inertial frames is good up to y~1011!!!

| sec dilates to 10000 years!!
[ cm contracts to 100 fermi!!
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Tentative but pretty compelling conclusions:
*There is a GZK cutoff
*Lorentz symmetry breaking is dead, at least at first ordei

*DSR and good old fashioned SR are fine.

*The relativity of inertial frames is good up to y~1011!!!

| sec dilates to 10000 years'!
[ cm contracts to 100 ferm!!
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Probing Quantum Gravity using Photons from a Mkn 501 Flare Observed by NMAGIC

We use the timung of photons observed by the MAGIC gammsa-ray telescope during a flare of the
active galaxy Markarian 501 to probe a vacuum refractive index = 1 — (E/Mqgca)™, n = 1.2, that
mught be induced by quantum gravity. The peaking of the flare 15 found to maximize for quantum-
Zravity mass scales .‘qu; ~~ 0.4 = 10*® GeV or .‘ch: ~ 0.6 < 10'! GeV. and we establish lower
hmits Mgc,; > 0.26 x 10" GeV or Mgga > 0.39 « 10" GeV at the 95% C.L. Monte Carlo studies
confirtn the MAGIC sensitivity to propagation effects at these levels. Thermal plasima effects in the
source are neghgble, but we cannot exchade the importance of some other source effect.
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More tlares??

GLAST launches in “May”
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Too tempting not to say:

If both experiments are correct we have
*GZK cutoft
*Parity even energy dependent speed of light.
*No parity odd variation in ¢

These are the signatures of DSR!!
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Some questions for Lorentz violators:
EFT+ bifringence results imply no first order in 1, violation.

o/f the MAGIC results are a real variation in the speed of light,
how can this then be lorentz violation?

With respect to EFT, saying it 1sn 't so doesn’'t make 1t not so.

*Are there really broken lorentz violating theories that EFT
does not apply to? Why doesn’t EFT apply also to open
quantum svstems”

*Are there interesting theories with Lorentz violation at second
order and not at first order?

o/f there really is a preferred frame, what about dimension
1,2 4 operators” Why should Einstein be so wrong but SR
work so well?
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Some questions for DSRers:

eShouldn 't there be a version of EFT appropriate to DSR or deformec
Poincare symmetry?

e/s DSR a more general category of theories than deformed Poincare
symmetry’

of[s it so hard to write a full interacting QFT with DSR?

*Are there really different versions of DSR? Are the deformed
Poincare, energyv dependent metric, energy dependent h and ¢
different theories or different representations of one class of
theories?

/s there a universal version of DSR, with parameters to represent
different versions?
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A question for everyone:

Effective field theory versus non-locality?
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Questions for quantum gravityists:

Can DSR be derived from some version of quantum gravity:

Would the result be generic, or theory dependent?
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Energy dependence of the metric is a consequence of
quantum gravity. hep-th/05010901
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Energy dependence of the metric is a consequence of
quantum gravity. hep-th/05010901

Assumptions:

eAshtekar variables (AL (). Eb(y)} = pobalad(r.y [p]=length-
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Energy dependence of the metric is a consequence of

quantum gravity. hep-th/05010901

Assumptions:

e Ashtekar variables (AL (). E%(y)} = padalad(r.y [pl]=length-
*Connection rep: Ei(r) = —ihp ;Af <AlW> =W (A)
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Energy dependence of the metric is a consequence of

quantum gravity. hep-th/05010901

Assumptions:

e Ashtekar variables (AL (). E2(y)} = padalad(r.y [pl]=length-

*Connection rep: Et(r) = —ithp ,—4 <AlW> =V (A)

eSemiclassical states: ¥ A4 = S(A)=Hamilton-Jacobi
function
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Energy dependence of the metric is a consequence of

quantum gravity. hep-th/05010901

Assumptions:

*Ashtekar variables (AL (r). EB(y)} = paalad(r.y [pl=length-

eConnection rep: E(r) = —thp ;'i <AlY> =Y (A)

eSemiclassical states: ¥4 * S(A)=Hamilton-Jacobi
function

eMatter fields: ' 4o =¥ A4\ A
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Consider a solution to the Hamilton-Jacobi equations for GR: S|4

S[A] = / S

—
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Consider a solution to the Hamilton-Jacobi equations for GR: S| 4]

S[A] = / S

bradient tlow along S(A) gives a classical solution:
I &5

A, (1) EY%(t) = =—
p OA,

A=AV (¢)
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Consider a solution to the Hamilton-Jacobi equations for GR: S| 4]

S[A] = / S

bradient flow along S(A) gives a classical solution:
1 oS

A ' (t) Ej."‘(f}:___
12 r)_,—l;J

A=AV ()

Dn the classical solution there 1s a time coordinate T proportional to S(A

d 5
dT ~ "3S[A]

[u]=length"
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Consider a solution to the Hamilton-Jacobi equations for GR: S| 4

S[A] = / S

bradient flow along S(A) gives a classical solution:
I a5

"‘_lt: r(f} E:ht(f}:—_—
I“ n"_l:f

A=AY{#)

Dn the classical solution there 1s a time coordinate T proportional to S(A

A9
dl ~ "'5S[A]

[u]=length"!
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Consider a solution to the Hamilton-Jacobi equations for GR: S| 4]

S[A] = / S

—r

bradient flow along S(A) gives a classical solution:
I g5
12 ri_,—l;J

A ' (t) E:,"‘(f) —

A=A {£)

Dn the classical solution there 1s a time coordinate T proportional to S(A

i 9
dl ~ "3S[A]

[u]=length"

E% 1s a densitized frame field. related to frame 1-form e

The metric g is g = —dl'* + E e. e
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Vanations ot A are along the solution and orthogonal to it:

0 | 0 0
—— —F“ T L — Tai
l".,-l:f (!) \[ 1) ' E (‘?H,” =1

NS N’
M:lcngtl*r

(l
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Vanations ot A are along the solution and orthogonal to it:

-

0 l - fi ri
. _- :—E” - | "_ e B -
0.A; () M *as da’ E§'oa,; =0
M=length-

We act on the product state: | 4. 0| = W A|\ | A. O

Since S(A) is a coordinate on C  \ A. o] = X[S. aa;. Q]

L
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Vanations ot A are along the solution and orthogonal to it:

. | . 3 5
y '- = _Ef_'! - I m— Tait o
'()'4:;(-" ) M Yis oa' E§'oa,; =0
M=length-

We act on the product state: W[4, o] = U,[A]\[A. O]

Since S(A) is a coordinate on C  \ | A, 0] = x|5. aq;, Q]

By construction: E:* Uo[A] = El“f W[ A
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Vanations ot A are along the solution and orthogonal to it:

0 L = 0 %)
E : :_Er-! — 1._ Jai § S
‘)-"1:;(-"') MTES oal E§'oaq,; =0
M=length-

We act on the product state: | 4. o = ¥, [_,_U \ ' A. O]

Since S(A) is a coordinate on C  \ P‘L O] = X 'LS (g; - ‘?)]

By construction: E:‘ Uo[A] = E:’” W[ Al

2 . : ri\ L_,—l L'.}}
E'(r)yA. 0o = —hp——
*(x)\[A. 9] P oA (D)

-

= Hh/) A () .
. . (E:“ o/ thp— . ) \ [b“igel“ﬂn. c
AT AST ) SNex . L)




-

Putting it all together, we have thp 0 hp  d

M 0S(r)  Mpdl

ﬁf_}
But dimensionally 77,7 1s a time. But there is only one time in the
problem. so

hp

= il
M g -
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-

Putting it all together. we have //1p 0 hp  d

M 0S(xr)  Mpdl

hp
But dimensionally 77,7 1s a time. But there is only one time in the

problem. so

hp
M g

= alpy

Hence. on all semiclassical states we find to leading order:

. , ‘ e d
Ef(x)U[A. o] = Po[A]E;" (l — 1l py [ ) 4 4 R

* W

(
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-

Putting it all together. we have //1p 0 thp d

M oS(r)  Mpudl

hp
But dimensionally 77, 1s a time. But there 1s only one time in the

problem, so

hp
My

Hence. on all semiclassical states we find to leading order:

~ ) , .= (l
E;J(J‘)‘«P__.A. 0| = lpq'}[.,—le:;m (l — 1l py / ) \ [1 Qi

- (}/[?[

F N

(

Semiclassical states of definite frequency must exist:

' XS,

XIT, Bt 8] = €Ty [0is ]
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-

Putting it all together, we have thp 0 thp d

M oS(r) Mpdl

hp
But dimensionally 77,7 1s a time. But there is only one time in the

problem. so

f?/)
M

Hence. on all semiclassical states we find to leading order:

— (}/[?[

-

, , (l
E;‘(-f')lph_,_l_ f__JJ _ "*Ijq'}[;ﬂE”” (J. - Hl!PIT) \[1 1P

(

Semiclassical states of definite frequency must exist:

L

X|T.aqi.-0] = e X w|@ai. O

]

°”E39 f)lp[~l t)J — D [—lE”” 1—r1f;g_..,)\ IPQ?GP’?]”

!




Hence: in the semiclassical approximation, in the presence of an
energy eigenstate matter state, the frame field has become

energy dependent:

—

E*(xr)P[A. 0] = Uo[A]E* (1 — alpiw) x [T ag;. ©

-
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Hence: in the semiclassical approximation, in the presence of an
energy eigenstate matter state, the frame field has become

energy dependent:
E;! \ L )Lp,.l ‘-"'] — ‘EJ«"ZEM (1 —alpjw) x.. [1 Qais "')]

E””( 1) — E””( gk iy = Ehi-'”(‘r.f"}(l — alpw)

f
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Hence: in the semiclassical approximation, in the presence of an
energy eigenstate matter state, the frame field has become

energy dependent:
Ei(r)P[A. 0] = Uo[A]E? (1 — alpjw) xo[T. aq;. O

e

E'-"’(_;'_ T) — E:'f'(.:'. s — gt 3 )1 — alpjw)

! f

Translated to the metric we have:

g— g(w) = —=dI’ > (/I'*Zr',— < e;(1 —alpjw)

.J.

|
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Hence: in the semiclassical approximation, in the presence of an
energy eigenstate matter state, the frame field has become

energy dependent:

Ef(r)¥[A. o] = Uo[A]E?" (1 — alpw) X [T ag;. 0

R

Ee. T — EM™(2. T, o) = E™@, Tl —ol pjed)

! f

Translated to the metric we have:

g— g(lw) = —d1l - dI + Z e; X ei(l —alpjw)

.J.

This implies modified dispcrsion relations

2
(1 — alpjw)

)

" : P -'}
m° = —g(w)*" k, kpu = w”*

PirsaJ07100039
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Queries:

o]s this DSR or broken Lorentz invariance?
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Queries:
of]s this DSR or broken Lorentz invariance?
The dynamics 1s given by the Wheeler-deWitt equation

HirW | A. ()

This is the statement that there is no preferred slicing. Hence there
1s no preferred frame. Hence this 1s NOT lorentz symmetry breaking
Hence it must be DSR.
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Queries:
ofs this DSR or broken Lorentz invariance?

The dynamics 1s given by the Wheeler-deWitt equation
H(r )| A. ()

This 1s the statement that there 1s no preterred slicing. Hence there
1s no preferred trame. Hence this 1s NOT lorentz symmetry breaking
Hence it must be DSR.

*Can the value of a be predicted?
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Queries:
o[s this DSR or broken Lorentz invariance?

The dynamics 1s given by the Wheeler-deWitt equation
Hir)W|A. ()

This 1s the statement that there 1s no preterred slicing. Hence there
1s no preferred frame. Hence this 1s NOT lorentz symmetry breaking
Hence it must be DSR .

*Can the value of a be predicted?

In principle. in a more detailed treatment.
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*What is the meaning of energy dependence of the metric for a
general state?
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*What is the meaning of energy dependence of the metric for a
general state?

Go back to the definition of E* as an operator:

2 : : - { e
E‘:I(.’]\I";—l f_'JJ — ‘I/n[.,-’?uE:-]” (1 — HIX[U%) \[1 +« Aaia

(
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*What is the meaning of energy dependence of the metric for a
general state?

Go back to the definition ot E* as an operator:

(

: , - [ o
E‘;f(.r)\]?frl. o = ‘IJH[,-'”E;]” (1 — H}/[l{#) \[1 .r.',“-.f_‘)]

s this a form of DSR that predicts an energy dependent speed of
light?
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*What is the meaning of energy dependence of the metric for a
general state?

Go back to the definition of E* as an operator:

(

~ r 1 —() ! —-—
E‘:f(;)\I’;—l ff)l — \Ijq}[,—l'E: < (1 = H}/[J;;—l) \[1 .H,,,‘.r.')]

[s this a form of DSR that predicts an energy dependent speed of
light?

Yes. because only the spatial components of the metric are operators:

g = —JI‘: —+ Z el,-]r “ e‘,-'

I~.J

A'j
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Hence, DSR in the form of an energy dependent metric,
is a consequence of quantum gravity, in the semiclassical
approximation.

Hence, a parity even energy dependent speed of light is a
prediction of quantum gravity, in the semiclassical approximation.

Er-’i'.f')\lj[.,—l.ff}z - lp._}[_ﬁugf;m (1 — ri/p;..‘-_,*) \__CI‘.H”,. )

'

Or. more generally:

2 - . = { o ‘
Eq;! [:.;']1].:}1_—1,.{'}* — 1111][..-1*E{,'m (L S Hl[{!;f—l) [1_!!*”_(1'
f
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What 1s the scale of quantum gravity eftects?
Are they only at the Planck scale?
The vacuum energy 1s a quantum effect.

Is the dark energy then a quantum gravity effect?
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Hence, DSR in the form of an energy dependent metric,
is a consequence of quantum gravity, in the semiclassical
approximation.

Hence, a parity even energy dependent speed of light is a
prediction of quantum gravity, in the semiclassical approximation.

Ef(x)¥|A, ¢ = ‘Lp._}[.,éugt-'” (1 — alpiw) x 1. .a,.0

f e 1

Or. more generally:

- r - 1 7=() f{ . 5
5 | ;-]IIJ'_—L,_-;‘ i 111”[__1'Et_ L (l S ;rlf[*f—j) [1 _r!f”_r_ul;
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Hence, DSR in the form of an energy dependent metric,
is a consequence of quantum gravity, in the semiclassical
approximation.

Hence, a parity even energy dependent speed of light is a
prediction of quantum gravity, in the semiclassical approximation.

Er-ri-.f')qj[.,—l. f._lz — lpu[.ﬁu E?” i | — fil[*,_fw*) X rl Ag;i- D

! - L

Or. more generally:

— r : 1 7—() "'{ - -
59 i ;']IIJ__.-l.r_-;i — 111”[_-'1*Ei. K ([ — Ml/[:;—1) U _rff”-_r';;
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