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Abstract: The one clean qubit model is a model of quantum computation in which al but one qubit starts in the maximally mixed state. One clean
gubit computers are believed to be strictly weaker than standard quantum computers, but still capable of solving some classically intractable
problems. I\'ll discuss my recent work in collaboration with Peter Shor which shows that evaluating a certain approximation to the Jones polynomial
at afifth root of unity for the trace closure of abraid is a complete problem for the one clean qubit complexity class.
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Problem for One Clean Qubit
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Qutline

* Jones polynomials and knot theory
* One Clean Qubit model
» Sketch of Completeness Proof
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Knots And Links

* A knot is an embedding of the circle into R’

* A link is an embedding of one or more circles
Into R*
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Distinguishing Knots

* Are two knots equivalent?

VES

>
* This seems to be hard. Equivalence to the

unknot was shown to be computable in 1968
and contained in NP in 1998.
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Reidemeister Moves

* Two knots are equivalent if and only if one can
be reached from the other by a sequence of
Reidemeister moves

- - m -

* This gives us a more combinatorial way to think
about knot theory.
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Reidemeister Moves

* Two knots are equivalent if and only if one can
be reached from the other by a sequence of
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about knot theory.
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Knot Invariants

* function on knots

* gives the same value for equivalent knots
* may not distinguish all knots

* Jones polynomial

— distinguishes many knots
- Is #P-hard to compute exactly
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Jones Polynomial Examples
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Describing Knots

» knots are continuous objects

* they can be described in the discrete language
of the braid group
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Braid Groups

* The braids on n strands form a group B,

generated by:
- | \/
!

] i 1+l n

n

 with the relations:

0:0; = 0;0; o |§—gJ| =2

J;+10i0;4+1 — 0;0;4+10; for all 2
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Reidemeister Moves

* Two knots are equivalent if and only if one can
be reached from the other by a sequence of
Reidemeister moves

A= v - m -

* This gives us a more combinatorial way to think
about knot theory.
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Braid Closures
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Quantum Complexity

» a certain additive approximation to the Jones
polynomial of the plat closure of a braid is BQP-
complete ( + = ¢27/% )~

 trace closure: approximable in BQP
* Open question:

— what is the complexity of approximating the Jones
polynomial of the trace closure of a braid?

* Answer (Shor, Jordan): DQC1-complete
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One Clean Qubit

* One qubit starts in pure state, all the rest start
In maximally mixed state

* |dealized model of high entropy quantum
computer such as NMR

* general mixed states can be converted to clean
and maximally mixed qubits by algorithmic
cooling

Pirsa: 07100034



One Clean Qubit

* One qubit starts in pure state, all the rest start
In maximally mixed state

* |dealized model of high entropy quantum
computer such as NMR

* general mixed states can be converted to clean
and maximally mixed qubits by algorithmic
cooling

Pirsa: 07100034



DQCH

* the class of problems solvable by polynomial
size quantum circuits using one clean qubit

BQP

)
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Main Result

* Approximating the Jones polynomial of the
trace closure of a braid is DQC1-complete

(t _ _i37/5 )

— can be efficiently computed on a one clean qubit
computer

- the problem of simulating a one clean qubit
computer is reducible to this Jones polynomial
problem

* This is one of only three DQC1 algorithms
thought to provide exponential speedup

PPPPP : 07100034
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DQCH

* the class of problems solvable by polynomial
size quantum circuits using one clean qubit

BQP

e
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Jones Representation

* The trace of the Jones representation of a braid
gives the Jones polynomial of its trace closure

* A certain matrix element of the Jones
representation of a braid gives the Jones
polynomial its plat closure
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» Jones representation is unitary for ¢ = ¢>7/*%

* |t iInduces an approximate correspondence
between quantum circuits and braids

* matrix element: BQP-complete
* trace: DQC1-complete

[pittif& from Hormozi et al. quant-ph/0610111] Page 34187



Trace Estimation

* One clean qubit computers can efficiently
estimate the normalized trace of a quantum
circuit to polynomial accuracy

1+Re((¢|U|w))

o —{A——{FHA po= "5
‘L:‘ ;’I [f' ;E
) 7 __ 1+Re(TrU)
0) — H T HHH £ Po St

I I.- 2 ' "_,u LJ___ ;_f
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Trace Estimation

* One clean qubit computers can efficiently
estimate the normalized trace of a quantum
circuit to polynomial accuracy

1+Re({(¢|U|w))

‘ (12, } ;‘; U _Jf
\ ' __ 1+Re(TrU)
0 7 — H T H /—{,é PO = n+1

I ;’.- 2 I ;; [r ;‘,
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Trace Estimation

* The problem of simulating a one clean qubit
computer is reducible to trace estimation

po = Tr[(|0){0| ® I)p]
1 e
p==-U(0)(0] ® T

* po IS proportional to the trace of the following
nonunitary operator
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Trace Estimation

Tr[(|0)(0] ® I)U(|0){0] ® U]

U U

-
— Tt -

N

1L/

» Trace estimation is DQC1 complete

* log(n) clean qubits give no more power
than one clean qubit
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Part |I: The algorithm

* The braid group representation acts on some
vector space V.

* Make a correspondence between V and the
qubits' Hilbert space, which allows the

representation to be implemented efficiently by
quantum circuits.

 Use trace estimation.

Pirsa: 07100034



Trace Estimation

Tr[(|0){0] ® N)U(|0){0| ® I)U]

[7 T U/

—
— Lt -

dl

1/

» Trace estimation is DQC1 complete

* log(n) clean qubits give no more power
than one clean qubit

Pirsa: 07100034



Trace Estimation

Tr[(|0)(0] ® I)U(|0){0] ® U]
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Fibonaccl Representation

* the trace of this representation gives the Jones
polynomial at ¢t = —e™™/?

« for the plat closure, t = —e*™/* is BQP-hard
* basis of V is P*-strings

/N




Fibonacci Representation

* the trace of this representation gives the Jones
p0|yn0m|al = | = _Ei:}r,--’a

« for the plat closure, t = —e”™/* is BQP-hard
* basis of V is P*-strings
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Fibonacci Representation
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Fibonacci Representation

* the trace of this representation gives the Jones
p0|yn0mial af { — —g?=/>

« for the plat closure, t = —e*™/* is BQP-hard
* basis of V is P*-strings
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Fibonacci Representation

p P P P P P P
3 2 |
c= AT — A%r
D >
d: flthfu ‘i‘fl._li-?”“
_l :t_14 _:633_*'{'3
.- /=
T=2/(1+V5H)
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Fibonacci Representation
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Fibonacci Representation

* the trace of this representation gives the Jones
polynomial at ¢ = —e™/3

« for the plat closure, t = —e”™/* is BQP-hard
* basis of V is P*-strings
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Fibonacci Representation
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Fibonacci Representation
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The Direct Mapping

e xppxp — 10010

* the problem:

— trace estimation is over all 2" bitstrings

— only an exponentially small fraction of these have
no two adjacent ones

Trick
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Treat :
¥ 759 Leckendorf Representation

«x B
p p P P 7
e — 1 px=1 pp* =
kD = 2 pxp=2
xpp = 3

xpk = 4
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* an elementary crossing performs a unitary
transformation on three neighboring symbols

P * P L P P P

* in DQC1 the circuit is given a random bitstring

* by the Zeckendorf representation, most such
bitstrings correspond to some P* -string

* reversibly extract the relevant three symbols
Into a clean ancilla register

* transform them, then undo the extraction
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Barrington's Theorem

* which reversible circuits can be implemented
using O(1) ancillas?

* anything in NC1 can be done using 5-
dimensional ancilla space!

* the standard arithmetic operations
+ — X+
are in NC1 as are comparisons

>=<
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Extracting Symbols

* extracting the leftmost symbol is easy:
2(s) = fa—1 iff the leftmost symbol is *
— flip ancillato 1 if = > fn.—1
- subtract f»—1 from z if ancilla is 1

* the general case can be reduced to the leftmost
bit case by dividing the string into two pieces

13 &
p p

P 2
*

#* Ut
x O

Y is {65)
p

g~ T A

3
p

g~
" W
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Part |I: DQC1-hardness

 we want to find a braid such that the trace of its
Fibonacci representation is the trace of a given
quantum circuit

* we will use a many to one encoding: many
p* -strings correspond to the same bitstring

* “many” must be independent of the bitstring to
make the trace unweighted
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The Direct Mapping
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Extracting Symbols

» extracting the leftmost symbol is easy:
z(s) = fa—1 iff the leftmost symbol is *
— flip ancillato 1 if = > fn—1
- subtract f»—1 from z if ancilla is 1

* the general case can be reduced to the leftmost
bit case by dividing the string into two pieces
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Part |I: DQC1-hardness
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Encoding

 divide string into groups of three
ppp — 0
pxp—1

* consider blocks of logarithmically many such
groups

» each block corresponds to a bit

* the leftmost coding group within a block
determines the bit value

Sp—— pp * |p * p| * pp| * pp|ppp| * p*



Reduction of DQC1 to Jones

* construct a braid whose Fibonacci
representation linearly transforms the encoded
bitstring according to the quantum circuit

* the Jones polynomial for the trace closure will
then be equal to the trace of the quantum circuit

* since trace estimation is DQC1-hard, then so is
estimating the Jones polynomial
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Solovay-Kitaev Theorem

* SUpPpPOSe you have:

— a space of dimension d

— a finite set of unitaries which generate a dense
subgroup of SU(d)

* one can multiply these to approximate an
arbitrary element of SU(d) within ¢

« the length of the product is polylog(e)
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Density

* The Fibonacci representation is reducible and
has blocks depending on the initial and final
symbols

* the *P.-P*. and =+ blocks are dense in the
corresponding special unitary groups

* The rpr block is not

* we can efficiently perform an arbitrary unitary
on logarithmically many symbols using the
Solovay-Kitaev theorem provided the first or

~"fdst symbol is *



* to simulate a gate one needs to bring a = within
logarithmic distance of the encoded qubit(s) it
acts upon

* we can use an encoded CNOT to guarantee
two initial stars

« we bring these where they are needed using
the inchworm
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Summary

* One clean qubit computers can efficiently
estimate the Jones polynomial of the trace
closure of a braid at a fifth root of unity

* Any problem solvable on one clean qubit
computers is reducible to this

« Assuming DQC1 £ P, this is an exponential
speedup over classical computation
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Open Questions

* extend this to:
— t=¢e"""*F for k#5
- HOMFLY or Tutte polynomials

* knot invariants for other quantum complexity
classes

- BQP
- pact ¢
-QMA @
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More Open Questions

* What are the hard instances”?
* Topological problems (e.g. unknot)
« Khovanov's invariant

* Implementing one clean qubit computers
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