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Abstract: We give a convenient representation for any map which is covariant with respect to an irreducible representation of SU(2), and use this
representation to analyze the evolution of a quantum directional reference frame when it is exploited as a resource for performing quantum
operations. We introduce the moments of a quantum reference frame, which serve as a complete description of its properties as a frame, and
investigate how many times a quantum directional reference frame represented by a spin-j system can be used to perform a certain quantum
operation with a given probability of success. We provide a considerable generalization of previous results on degradation of reference frame, from
which follows a classification of the dynamics of spin-j system under the repeated action of any covariant map with respect to SU(2).
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Topics:

& Introduce a representation for any map which 1s covariant
with respect to an irreducible representation of SU(2).

= Proof

Se this representation to study the dynamics of quantum
fectional reference frame

= What is a quantum directional reference frame (QDRF)?

BEWe introduce the moments of a QDRF.

SWe seneralize the concept of quality and longeviry of a QDRF, and
analvze them n function of the evolution of the moments.

s Measurement of a spin-1 particle.
* One qubit Rotation

jon and Open Questions
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Part 1:

The classification of

Rotationally-Invariant Maps




Background about SU(2)

= SU(2): set of 2 by 2 unitary complex matrices with
determinant one

v SU(2) is isomorphic (up to a sign) to the group of space rotations SO(3)

U(2) 1s a (stmply connected) Lie group. and the

sorresponding Lie Algebra 1s spanned by the three Pauli

ynsider an irreducible representation of SU(2) acting on a
S1)-dimensional Hilbert space
- A representation R is a homomorphism
: R : S(/?(Q) — (/T(ng_._l)
i there exist no none-trivial subspace S € H,

R0

- _ j+1
JS< S forall Q< SU(2) and s€S.
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Background about SU(2)

= There exists operators J_, J and J_ such that
[JI, -]y] — Zr]: i_]y ]: B E"]I [j: J_r] = ljy
iIn physics. J_, J and J_ represented the angular

fnomentum operator of a spin-;.

2ty element R of the irrep of SU(2) can be
jiten as e’’’  for some vector v

and where J :—= s g o )-
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" Covariance With Respect to SU(2)

= We say that a map X 1is covariant with
respect to SU(2) iff

X[R(Q)(R(Q)] = R(Q)x(-)R(Q)T

forall 2 € SU(2).

SRS the irrep of SU(2) for some (2j+1)-dimensional Hilbert space.




Representation for maps which are
covariant with respect to an irreducible
representation of SU(2)

)= ——— Y Jepidi

of LS s
EC1E.Y.Z |

where P£; 1s a state associated to the Hilbert
space of dimension 2j+ /.

gtorem 1: Any map § which is covanant with respect to a
)in-; irreducible representation of SU(2) has the form

for some real coefficients 9n .
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Proof

= First show that e T

— T

1) C(R(Q)p; R(2) !

BV SU(2) element can be decomposed 1nto rotations
yund the Y and Z axes:

R(Q) — R.(6)R,(¥')R.(o)

A, — cos0J, +sml.J,
et | J, — —sinf@J,; + cos0J,

" — [ 4 —_
e o
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Therefore any map of the form <))
must also be covanant.

To prove that every covariant map can be written
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Proof

s 1
= First show that ~"  iG+1

covariant with respect to SU('))

- I} - -
-i'r,‘-JLJ ol =

BO) C(R(Q)p;R(Q)"

SU(Z) element can be decomposed nto rotations
yund the Y and Z axes:

R(Q) = R.(O)R,(V)R.(9)

' . — cos0.J, +sm0.J,
. (9) ' e — —sin0.J; + cos0J,
‘ \ . — J.
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Therefore any map of the form <,
must also be covariant.

To prove that every covarnant map can be written
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Liouville Representation of a
superoperator




Covariance 1n the Liouville
Representation

LR (Q) ® R(Q))K(E) = K(€)(R™(Q) ® R(Q))

forall Q2 € SU(2).

"_;_: of SU(2): Rx(Q) — e_irrJyR(Q)eiTrjy

R () (6) = K'(6)(R () @ R ()
e (7 © DE(E)(e ™ 2 1)




= For Qe su(2), all ureps of the group generated by
R(2) ® R((2) have multiplicity one. Each irrep

correspond to an integer from 0 to ;’j._j _
23

= By Schur’s Lemma, K (£) = Z -

—

for some complex parameter ¢, and orthogonal
projectors I, .

ilherefore, there is exactly 2j+ / linearly

€ in the Liouville representation -- any
flant map AC(§)with respect to SU(2).
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Covariance 1n the Liouville
Representation

i (2) @ R(2))K(E) = K(§)(R™(Q) @ R(Q))

forall €2 € SU(2)

epof SU(2: R*(Q) = e v R(Q)e*™ v

EORS R (Q))KC'(€) =K'(6)(R () @ R ()
k. K:f(é-) - (eéwjy o I)K:(EE) (6_";‘_‘“{’*’ R I)




Therefore any map of the form <(,)
must also be covarant.

p To prove that every covariant map can be written
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Covariance 1n the Liouville
Representation

“(©2) @ R(2))K(E) = K(&)(R™(2) ® R(Q2))

forall €2 € SU(2).

'Zi_l of SU(2) Rx(()) — F_LTJJ R(Q) i gy

BREORE R (2))K'(6) =K'(§)(R (2) @ R (2))
(S — (' ® DK(¢) (e—”-ﬁ 2 I)




= For Qe sSu(2), all irreps of the group generated by
R(2) ® R({)) have multiplicity one. Each irrep
correspond to an iteger from 0 to _3;'.__jj
= By Schur’s Lemma, K’ (€) = Z sl
k=0
for some complex parameter ¢, and orthogonal
projectors I,

hcrefore, there 1s exactly 2j+ / linearly
: y 4 3

€= in the Liouville representation -- any
fiant map /C(&)with respect to SU(2).

Page 19/65




representation:
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kc{r.y.z}

fy independent for 0 < n < 27.
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It is not to hard to
show:

b) ) JL®JLi=_-(J*-2iG+ 1))

L

where J°=) (LI+I®J;)°

(total angular momentum)

npl 2. 772J and 2.%=7  share the same
3r of distinct eigenvalues.

j@sthat > /.=J. has 2j+1 distinct

T
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= By the fundamental theorem of algebra,
this implies that there exist no polynomaal
of degree 2j that has the 2j+1 distinct

Sigenvalues as roots.

mmplies the matrices >, i@ )"

ke{x.y.z}

for 0<n<23

are linearly independent.
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= We showed that <) =. ¢ (e;) where the q,,
are complex.

The q_are in fact real.

Proof by induction based on the fact that £ is
a positive map.
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Open Question

= What about covariance with respect to other
Lie Group? Is there any interesting
presentation in function of the associated
Ibie Algebra generators?

¥hat are the restrictions on the g,
arameters’
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Part 11:;

Dynamics of Quantum

Directional Reference Frame




What 1s a Quantum Directional

Reference Frame?

_ - _ (0)
= Consider the initial state of a spin-j: #;

0)
Suppose that pi— ' depends only on some
“classical” direction 7.

5 . = - N,
= |f R i1s the rotation that transforms 7! to 7Tl . then
(0) / ~ —1 __ (0)s~r
L j ( n,) R — P ( I )
Bhlhe state . is also covariant under rotations about

jU) 1s diagonal in the basis consisting

> eigenvectors of Je
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Scenario
Quantum Reservoir: contains many

Reference Frame identical subsystems of
dimension d.

| apply the map--- E
0
x(pS"® @)

((O))—Tr [x(p e
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What 1s a Quantum Directional

Reference Frame?

_ . _ (0)
= Consider the initial state of a spin-j: #;

(0) _
Suppo'se that. Py degends only on some
“classical” direction 7.

, ! : _ ~ ~f
= If R i1s the rotation that transforms 7! to 71 _ then
' | ~ —1 __ (0)g, =

" 1S also covarnant under rotations about

_ ) is diagonal 1n the basis consisting
1e e '-u vectors of J5;.
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Scenario

Quantum Reservoir: contains many

Reference Frame identical subsystems of
dimension d.

0)
o0

apply the map- i
0
x(p"® @)

BEE(0L”) = Tr g [x (0!
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Quantum Reservoir: contains many
Reference Frame identical subsystems of

pgn—l)

dimension d.

—

apply the map
X(ﬂj—n_l'} @) X: discarded

=
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Extra Assumptions:

= The joint map X 1s rotationally-invariant.

The state of the subsystems in the reservoir are
invariant under space-rotations.

fiis implies that the back-action map £ on the
atum reference frame 1s rotationally-invariant.

Which implies that pj 7 for all k 1s diagonal in the basis
gven by the eigenvectors of [
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Quantum Reservoir: contains many
Reference Frame identical subsystems of

(_n—l) _ =
< R » © .9 0.

dimension d.

apply themap ~—

X(Pf;n_l'} X '5) X: discarded
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Extra Assumptions:

= The joint map X 1s rotationally-invarnant.

The state of the subsystems in the reservoir are
invariant under space-rotations.

:mpl:es that the back-action map £ on the
itum reference frame 1s rotationally-invanant.

Which implies that p; ” for all k is diagonal in the basis
wen by the eigenvectors of , ]ﬁ
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Previous Related Works

1) S. Bartlett, T. Rudolph, R. Spekkens, and P.
Turner, Degradation of a Quantum Reference
Frame, New J. Phys. 8, 58 (2006).

2) D. Poulin and J. Yard, Dynamics of a Quantum

tReference Frame, New J. Phys. 9, 156 (2007).

) The joint operator () considered is restricted to
measurements
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We use the term quality function for any
function F that 1s meant to quantify the ability of
the reference frame to perform a particular task.
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We use the term quality function for any
function F that 1s meant to quantify the ability of
the reference frame to perform a particular task.

1 he quality measure should not be biased such

at it favors a quantum reference frame that 1s
pointed in any particular direction relative to some
external frame. All directions must be equally
lid: Therefore, F does not depend on the
ction of 72 . but only on the eigenvalues of £j-
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Moments

= An equivalent set of parameters to the
eigenvalues of p; are the moments of pj

{Trlp;J ] | 1 <€ <25}

ANy quality function F depends only on
10S€ moments.

analyze the behavior of F, it i1s sufficient
mdy the evolution of the moments.




" General Recursion Formula for
the Moments

where the Ai.""”s are real coefficients.




Get rnide of some of the
coefficients

Theorem 2:

If £is even, then /2

Tl g = 3 AL

v of Theorem 1 (by induction using commutator relations).
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Longevity

= We are interested in the scaling, with respect to
Hilbert space dimension, of how many times a
_quantum reference frame can be used before the
Walue of its quality function F falls below a certain
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Theorem 3: C 0ns1der a quantum reference frame
with initial state ), which is used for performing
a rotationally-invarnant joint operation X;. If this
operation induces a disturbance map

E — E J".f"': __lli. l‘:; r-.

that satisfies the following assumptions:

here exists some n, _such that g, =0 for all n=

max

1

= O(1) and

B P
E } ] Ty O(JE)
> nn of times that such a quantum
nce frame can be used before its /*moment

~ f.:it'?_?; g a certain threshold value scales as j-.
e proof is based on Theorem 2. -




Example A.1: Measurements of
spin-1/2

= Suppose that the reservoir consists of spin-1/2
systems. Each spin 1s either parallel or anti-parallel to
71 (with the same probability).

Bl he goal is to use the quantum reference frame to
guess the direction of each spin-1/2.

—m
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Measurement of spin-1/2

= |n term of the first moment., we can rewrite the
quality function:

1 1

Fik):§l2 TT'[
2 j+l

fheorem 2 tells us

-
R o ()




Example A.2: Measurements of
spin-1

= Suppose that the reservoir consists of spin-1 systems.
_ Each spin has either 1, O or -1 angular momentum in
the 7 direction (with the same probability).

ilhe goal 1s to use the quantum reference frame to
suess the angular momentum in the 73 direction of
ach spin-1.
i€ optimal joint measurement Y is a projection onto
SSubspaces corresponding to different values of the
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Measurements of spin-1

= |n terms of moments:

(27 +1)2 -2

We can use again Theorem 2 to evaluate the
joments. Simple calculations give us the
€S of the three A’s coefficients.

!
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Example B: Pauli Operator

= Suppose, we want to implement a Pauli Z
operation on a qubit:

ey

fig a quantum reference frame to define the z-axis.

— =

nnot be implemented without errors if the
etcnce frame 1s quantum and restricted to a
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Gate Fidelity

= We can pick the quality function to be

el [ dua|Tr[E(Q)Z]|" +d

.-"I — '.'u b, (

d? +d

© '. ﬂ(,Q) are the Kraus operators of the




- Different Methods To Implement
the Gate

I. Projective Measurement

where 2) — . — 3)




Gate Fidelity

= We can pick the quality function to be

vy [ dua|Tr[E(Q)Z]|" +d

j< (

d? +d

© E(Q) are the Kraus operators of the
oximate gate.




Different Methods To Implement
' the Gate

1. Projective Measurement

BR(Q) = (2j + 1)R(Q)|e)(e| R(Q)T .

where le) =|3,m.=3)




‘Different Methods To Implement
' the Gate

2. Filtering operation:

. -

PR 1) / dpaR;(Q) @ Ry /2(D) 17,50, 3l @ Z| R;(Q) '@ Ry »(Q) !
Jo L ]

&

(not unitary)

I IS the projector into the subspace of total
B i K
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Different Methods To Implement
the Gate

3. Use coupling between the spins of the
quantum reference frame and of the
IESErvolir :

(1) (Z) 1)

4

B — (Jr 1O + 5B I 4+ 5




" Different Methods To Implement
the Gate

2. Filtering operation:

. -

% l) / fjﬁi{lﬁjif}.ﬁ _ R;_‘)l‘f-\!x'J,J :JJ : ZRJ |£?,]_ : R] ) f} ik
o ) - -

&
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Different Methods To Implement
the Gate

3. Use coupling between the spins of the
quantum reference frame and of the
IESErvolIr :




Different Results

of the gate fidelity with number of repetitions, n.

for the three methods, (2.1) (dot-dashed line),
ashed line), and 2.3) (solid line). This behavior
3lue of J Is representative
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Longevity




Conclusion

We generalize the concept of quality function and introduce the
‘moments of a quantum reference frame.

We give recursive equations (Theorem 2) for how the moments
golve with the number of uses of the quantum reference frame.

- oped can be use to compare different methods to
I ' 0perat10n u:,mﬂ a quantum reference frame as we
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Longevity




Conclusion

We generalize the concept of quality function and introduce the
moments of a quantum reference frame.

We give recursive equations (Theorem 2) for how the moments
ve with the number of uses of the quantum reference frame.

e derive sufficient conditions (Theorem 3) for the longevity of

O :n_ mplement an Pauh operator on a qublt The tools
jeveloped can be use to compare different methods to
3"‘11 >operation using a quantum reference frame as we
1 our last example.
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