Title: Quantum Reference Frames and the Classification of Rotationally-Invariant Maps

Date: Oct 24, 2007 04:00 PM

URL: http://pirsa.org/07100033

Abstract: We give a convenient representation for any map which is covariant with respect to an irreducible representation of SU(2), and use this representation to analyze the evolution of a quantum directional reference frame when it is exploited as a resource for performing quantum operations. We introduce the moments of a quantum reference frame, which serve as a complete description of its properties as a frame, and investigate how many times a quantum directional reference frame represented by a spin-j system can be used to perform a certain quantum operation with a given probability of success. We provide a considerable generalization of previous results on degradation of reference frame, from which follows a classification of the dynamics of spin-j system under the repeated action of any covariant map with respect to SU(2). Joint work with Lana Sheridan, Martin Laforest and Stephen Bartlett

## Quantum Reference Frames and the Classification of Rotationally-Invariant Maps

Jean Christian Boileau (University of Toronto)

Lana Sheridan (University of Waterloo)
Martin Laforest (University of Waterloo)
Stephen Bartlett (University of Sydney)

Reference: arXiv:0709.0142



Presented at the Perimeter Institute
October 24th 2007

## Topics:

- Introduce a representation for any map which is covariant with respect to an irreducible representation of SU(2).
  - Proof
- Use this representation to study the dynamics of quantum directional reference frame
  - What is a quantum directional reference frame (QDRF)?
  - We introduce the moments of a QDRF.
  - We generalize the concept of quality and longevity of a QDRF, and analyze them in function of the evolution of the moments.
  - Examples:
    - Measurement of a spin-1 particle.
    - One qubit Rotation
- Conclusion and Open Questions

### Part I:

The classification of Rotationally-Invariant Maps

### Background about SU(2)

- SU(2): set of 2 by 2 unitary complex matrices with determinant one
  - ✓ SU(2) is isomorphic (up to a sign) to the group of space rotations SO(3)
- SU(2) is a (simply connected) Lie group, and the corresponding Lie Algebra is spanned by the three Pauli matrices
- Consider an irreducible representation of SU(2) acting on a (2j+1)-dimensional Hilbert space

A representation R is a homomorphism  $R: SU(2) \rightarrow U(H_{2j+1})$ 

It is irreducible if there exist no none-trivial subspace  $S \in H_{2j+1}$  such that  $R(\Omega)s \in S$  for all  $\Omega \in SU(2)$  and  $s \in S$ .

### Background about SU(2)

- There exists operators  $J_x$ ,  $J_y$  and  $J_z$  such that  $[J_x, J_y] = iJ_z$   $[J_y, J_z] = iJ_x$   $[J_z, J_x] = iJ_y$
- In physics,  $J_x$ ,  $J_y$  and  $J_z$  represented the angular momentum operator of a spin-j.
- Every element R of the irrep of SU(2) can be written as  $e^{iv\hat{J}}$  for some vector v and where  $\hat{J} := (J_x, J_y, J_z)$ .

## Covariance With Respect to SU(2)

• We say that a map  $\chi$  is covariant with respect to SU(2) iff

$$\chi[R(\Omega)(\cdot)R(\Omega)^{\dagger}] = R(\Omega)\chi(\cdot)R(\Omega)^{\dagger}$$
 for all  $\Omega \in SU(2)$ .

*i.e.* R is the irrep of SU(2) for some (2j+1)-dimensional Hilbert space.

# Representation for maps which are covariant with respect to an irreducible representation of SU(2)

Define

$$\zeta(\rho_j) = \frac{1}{j(j+1)} \sum_{k \in \{x,y,z\}} J_k \rho_j J_k$$

where  $\rho_j$  is a state associated to the Hilbert space of dimension 2j+1.

**Theorem 1**: Any map  $\xi$  which is covariant with respect to a spin-*j* irreducible representation of SU(2) has the form

$$\xi(\rho_j) = \sum_{n=0}^{2j} q_n \zeta^{\circ n}(\rho_j)$$
 for some real coefficients  $q_n$ .

### Proof

First show that  $\zeta(\rho_j) = \frac{1}{j(j+1)} \sum_{k \in \{x,y,z\}} J_k \rho_j J_k$  is covariant with respect to SU(2):

$$R(\Omega)^{-1}\zeta(R(\Omega)\rho_jR(\Omega)^{-1})R(\Omega) = \zeta(\rho_j) \quad \forall \ \Omega \in SU(2).$$

Any SU(2) element can be decomposed into rotations around the Y and Z axes:

$$R(\Omega) = R_z(\theta)R_y(\psi)R_z(\phi)$$

Consider: 
$$R_z(\theta)$$

$$J_x \to \cos \theta J_x + \sin \theta J_y$$
 $J_y \to -\sin \theta J_x + \cos \theta J_y$ 
 $J_z \to J_z$ 

- Therefore any map of the form  $\xi(\rho_j) = \sum_{n=0}^{2j} q_n \zeta^{\circ n}(\rho_j)$  must also be covariant.
- To prove that every covariant map can be written as above, we use the Liouville representation:

$$ho_j 
ightarrow |
ho_j
angle
angle$$
 vector of dimension  $d^2$ 

### Proof

• First show that  $\zeta(\rho_j) = \frac{1}{j(j+1)} \sum_{k \in \{x,y,z\}} J_k \rho_j J_k$  is covariant with respect to SU(2):

$$R(\Omega)^{-1}\zeta(R(\Omega)\rho_jR(\Omega)^{-1})R(\Omega) = \zeta(\rho_j) \quad \forall \ \Omega \in SU(2).$$

Any SU(2) element can be decomposed into rotations around the Y and Z axes:

$$R(\Omega) = R_z(\theta)R_y(\psi)R_z(\phi)$$

Consider: 
$$R_z(\theta)$$

$$J_x o \cos\theta J_x + \sin\theta J_y$$
 $J_y o -\sin\theta J_x + \cos\theta J_y$ 
 $J_z o J_z$ 

- Therefore any map of the form  $\xi(\rho_j) = \sum_{n=0}^{2j} q_n \zeta^{\circ n}(\rho_j)$  must also be covariant.
- To prove that every covariant map can be written as above, we use the Liouville representation:

$$\rho_j \rightarrow |\rho_j\rangle\rangle$$
 vector of dimension  $d^2$ 

# Liouville Representation of a superoperator

Kraus Representation:

$$\xi(\cdot) = \sum_{k} E_k \cdot E_k^{\dagger}$$

Liouville Representation:

$$\mathcal{K}(\xi) = \sum_{k} E_k^* \otimes E_k$$

# Covariance in the Liouville Representation

$$(R^*(\Omega)\otimes R(\Omega))\mathcal{K}(\xi) = \mathcal{K}(\xi)(R^*(\Omega)\otimes R(\Omega))$$

for all  $\Omega \in SU(2)$ .

For an irrep of SU(2): 
$$R^*(\Omega) = e^{-i\pi J_y} R(\Omega) e^{i\pi J_y}$$

So 
$$(R_-(\Omega) \otimes R_+(\Omega))\mathcal{K}'(\xi) = \mathcal{K}'(\xi)(R_-(\Omega) \otimes R_-(\Omega))$$
  
where  $\mathcal{K}'(\xi) = (e^{i\pi J_y} \otimes I)\mathcal{K}(\xi)(e^{-i\pi J_y} \otimes I)$ 

- For  $\Omega \in SU(2)$ , all irreps of the group generated by  $R(\Omega) \otimes R(\Omega)$  have multiplicity one. Each irrep correspond to an integer from 0 to 2j.
- By Schur's Lemma,  $\mathcal{K}'(\xi) = \sum_{k=0}^{2J} c_k \Pi_k$

for some complex parameter  $c_k$  and orthogonal projectors  $\Pi_k$ .

- Therefore, there is exactly 2j+1 linearly independent matrix that can be used as a basis to write -- in the Liouville representation -- any covariant map  $\mathcal{K}(\xi)$  with respect to SU(2).
  - We need to find the right set of linearly independent matrices.

# Covariance in the Liouville Representation

$$(R^*(\Omega) \otimes R(\Omega))\mathcal{K}(\xi) = \mathcal{K}(\xi)(R^*(\Omega) \otimes R(\Omega))$$

for all  $\Omega \in SU(2)$ .

Page 16/65

For an irrep of SU(2): 
$$R^*(\Omega) = e^{-i\pi J_y} R(\Omega) e^{i\pi J_y}$$

So 
$$(R(\Omega) \otimes R_i(\Omega))\mathcal{K}'(\xi) = \mathcal{K}'(\xi)(R(\Omega) \otimes R(\Omega))$$
  
where  $\mathcal{K}'(\xi) = (e^{i\pi J_y} \otimes I)\mathcal{K}(\xi)(e^{-i\pi J_y} \otimes I)$ 

- Therefore any map of the form  $\xi(\rho_j) = \sum_{n=0}^{2j} q_n \zeta^{\circ n}(\rho_j)$  must also be covariant.
- To prove that every covariant map can be written as above, we use the Liouville representation:

$$ho_j 
ightarrow |
ho_j
angle
angle$$
 vector of dimension  $d^2$ 

# Covariance in the Liouville Representation

$$(R^*(\Omega)\otimes R(\Omega))\mathcal{K}(\xi) = \mathcal{K}(\xi)(R^*(\Omega)\otimes R(\Omega))$$

for all  $\Omega \in SU(2)$ .

For an irrep of SU(2): 
$$R^*(\Omega) = e^{-i\pi J_y} R(\Omega) e^{i\pi J_y}$$

So 
$$(R_-(\Omega) \otimes R_+(\Omega))\mathcal{K}'(\xi) = \mathcal{K}'(\xi)(R_-(\Omega) \otimes R_-(\Omega))$$
  
where  $\mathcal{K}'(\xi) = (e^{i\pi J_y} \otimes I)\mathcal{K}(\xi)(e^{-i\pi J_y} \otimes I)$ 

- For  $\Omega \in SU(2)$ , all irreps of the group generated by  $R(\Omega) \otimes R(\Omega)$  have multiplicity one. Each irrep correspond to an integer from 0 to 2j.
- By Schur's Lemma,  $\mathcal{K}'(\xi) = \sum_{k=0}^{2J} c_k \Pi_k$

for some complex parameter  $c_k$  and orthogonal projectors  $\Pi_k$ .

- Therefore, there is exactly 2j+1 linearly independent matrix that can be used as a basis to write -- in the Liouville representation -- any covariant map  $\mathcal{K}(\xi)$  with respect to SU(2).
  - We need to find the right set of linearly independent matrices.

Kraus representation:

$$\zeta(\rho_j) = \frac{1}{j(j+1)} \sum_{k \in \{x,y,z\}} J_k \rho_j J_k$$

Liouville representation:

$$\mathcal{K}(\zeta) = \frac{1}{j(j+1)} \sum_{k \in \{x,y,z\}} J_k^* \otimes J_k$$

$$\zeta^{\circ n}(\rho_j)$$

Liouville representation:

$$\mathcal{K}(\zeta^{\circ n}) = \left(\frac{1}{j(j+1)} \sum_{k \in \{x,y,z\}} J_k^* \otimes J_k\right)^n$$

Need to show that the matrices  $(\sum_{k \in \{x,y,z\}} J_k^* \otimes J_k)^n$ 

are linearly independent for  $0 \le n \le 2j$ .

It is not to hard to

show:

(a) 
$$\sum_{i} J_{i}^{*} \otimes J_{i} = -e^{-i\pi J_{y}} \otimes I\left(\sum_{i} J_{i} \otimes J_{i}\right) e^{i\pi J_{y}} \otimes I$$

(b) 
$$\sum_{i} J_{i} \otimes J_{i} = \frac{1}{2} (\mathcal{J}^{2} - 2j(j+1)I)$$

where 
$$\mathcal{J}^2 = \sum_i \left(J_i \otimes I + I \otimes J_i\right)^2$$

(total angular momentum)

- (a) implies  $\sum_{i} J_{i}^{*} \otimes J_{i}$  and  $\sum_{i} J_{i} \otimes J_{i}$  share the same number of distinct eigenvalues.
- (b) implies that  $\sum_{i} J_{i} \otimes J_{i}$  has 2j+1 distinct eigenvalues.

- By the fundamental theorem of algebra, this implies that there exist no polynomial of degree 2j that has the 2j+1 distinct eigenvalues as roots.
- This implies the matrices  $(\sum_{k \in \{x,y,z\}} J_k^* \otimes J_k)^n$  for  $0 \le n \le 2j$  are linearly independent.

- We showed that  $\xi(\rho_j) = \sum_{n=0}^{2j} q_n \zeta^{\circ n}(\rho_j)$  where the  $q_n$  are complex.
- The  $q_n$  are in fact real.
  - Proof by induction based on the fact that  $\xi$  is a positive map.

### Open Question

- What about covariance with respect to other Lie Group? Is there any interesting representation in function of the associated Lie Algebra generators?
- What are the restrictions on the q<sub>n</sub> parameters?

### Part II:

## Dynamics of Quantum Directional Reference Frame

## What is a Quantum Directional Reference Frame?

- Consider the initial state of a spin-j:  $\rho_j^{(0)}$
- Suppose that  $\rho_j^{(0)}$  depends only on some "classical" direction  $\hat{n}$ .
  - If R is the rotation that transforms  $\hat{n}$  to  $\hat{n}'$ , then  $R\rho_j^{(0)}(\hat{n})R^{-1} = \rho_j^{(0)}(\hat{n}')$
  - The state  $\rho_j^{(0)}$  is also covariant under rotations about the  $\hat{n}$ -axis.
- Therefore,  $\rho_j^{(0)}$  is diagonal in the basis consisting of the eigenvectors of  $J_{\hat{n}}$ .

### Scenario

#### Quantum Reference Frame

**Reservoir**: contains many identical subsystems of dimension *d*.

apply the map 
$$\chi(
ho_j^{(0)}\otimes 1)$$

$$\rho_j^{(1)} = \xi(\rho_j^{(0)}) = Tr_{\mathbf{1}}[\chi(\rho_j^{(0)} \otimes \mathbf{1})]$$

## What is a Quantum Directional Reference Frame?

- Consider the initial state of a spin-j:  $\rho_j^{(0)}$
- Suppose that  $\rho_j^{(0)}$  depends only on some "classical" direction  $\hat{n}$ .
  - If R is the rotation that transforms  $\hat{n}$  to  $\hat{n}'$ , then  $R\rho_j^{(0)}(\hat{n})R^{-1} = \rho_j^{(0)}(\hat{n}')$
  - The state  $\rho_j^{(0)}$  is also covariant under rotations about the  $\hat{n}$ -axis.
- Therefore,  $\rho_j^{(0)}$  is diagonal in the basis consisting of the eigenvectors of  $J_{\hat{n}}$ .

Pirsa: 07100033 Page 30/65



はは、ようかくま、計十月1日まる

### Scenario

#### Quantum Reference Frame

**Reservoir**: contains many identical subsystems of dimension *d*.

apply the map 
$$\chi(
ho_j^{(0)}\otimes 1)$$

$$\rho_j^{(1)} = \xi(\rho_j^{(0)}) = Tr_{\mathbf{1}}[\chi(\rho_j^{(0)} \otimes \mathbf{1})]$$

#### Quantum Reference Frame

Reservoir: contains many identical subsystems of dimension d.







apply the map

$$\chi(\rho_j^{(n-1)}\otimes \mathbf{n})$$

X: discarded

$$\rho_j^{(n)} = \xi(\rho_j^{(n-1)}) = Tr_{\mathbf{n}} \left[\chi(\rho_j^{(n-1)} \otimes \mathbf{n})\right]$$

## Extra Assumptions:

- The joint map  $\chi$  is rotationally-invariant.
- The state of the subsystems in the reservoir are invariant under space-rotations.
- ✓ *This implies that* the back-action map  $\xi$  on the quantum reference frame is rotationally-invariant.
  - Which implies that  $ho_j^{(k)}$  for all k is diagonal in the basis given by the eigenvectors of  $J_{\hat{n}}$

Pirsa: 07100033 Page 35/65

#### Quantum Reference Frame

Reservoir: contains many identical subsystems of dimension d.







apply the map

$$\chi(\rho_j^{(n-1)}\otimes \mathbf{n})$$

X: discarded

$$\rho_j^{(n)} = \xi(\rho_j^{(n-1)}) = Tr_{\mathbf{n}} \left[\chi(\rho_j^{(n-1)} \otimes \mathbf{n})\right]$$

### Extra Assumptions:

- The joint map  $\chi$  is rotationally-invariant.
- The state of the subsystems in the reservoir are invariant under space-rotations.
- ✓ *This implies that* the back-action map  $\xi$  on the quantum reference frame is rotationally-invariant.
  - Which implies that  $ho_j^{(k)}$  for all k is diagonal in the basis given by the eigenvectors of  $J_{\hat{n}}$

#### Previous Related Works

- 1) S. Bartlett, T. Rudolph, R. Spekkens, and P. Turner, **Degradation of a Quantum Reference** Frame, New J. Phys. 8, 58 (2006).
- 2) D. Poulin and J. Yard, **Dynamics of a Quantum** Reference Frame, New J. Phys. 9, 156 (2007).
  - a) The joint operator (χ) considered is restricted to measurements
  - b) d=2
  - c) the *quality function* is fixed (somewhat arbitrarily).

In 2), the states of the subsystems of the reservoir are not necessarily rotationally-invariant.



We use the term **quality function** for any function *F* that is meant to quantify the ability of the reference frame to perform a particular task.

Page 40/65

We use the term **quality function** for any function *F* that is meant to quantify the ability of the reference frame to perform a particular task.

The quality measure should not be biased such that it favors a quantum reference frame that is pointed in any particular direction relative to some external frame. All directions must be equally valid. Therefore, F does not depend on the direction of  $\hat{n}$ , but only on the eigenvalues of  $\rho_j$ .

#### Moments

• An equivalent set of parameters to the eigenvalues of  $\rho_j$  are the moments of  $\rho_j$ :

$$\{Tr[\rho_j J_{\hat{n}}^\ell] \mid 1 \le \ell \le 2j\}$$

- Any quality function F depends only on those moments.
- To analyze the behavior of F, it is sufficient to study the evolution of the moments.

## General Recursion Formula for the Moments

$$Tr[
ho_j^{(k)}J_{\hat{n}}^{\ell}] = \sum_{i=0}^{2j} A_i^{(\ell)} Tr[
ho_j^{(k-1)}J_{\hat{n}}^i]$$

where the  $A_i^{(\ell)}$ 's are real coefficients.

## Get ride of some of the coefficients

#### Theorem 2:

If  $\ell$  is even, then  $\mathrm{Tr}[\rho_j^{(k)}J_{\hat n}^\ell]=\sum_{i=0}^{\ell/2}A_{2i}^{(\ell)}\mathrm{Tr}[\rho_j^{(k-1)}J_{\hat n}^{2i}]$ 

and if ℓ is odd, then

$$\operatorname{Tr}[\rho_j^{(k)}J_{\hat{n}}^{\ell}] = \sum_{i=1}^{(\ell+1)/2} A_{2i-1}^{(\ell)} \operatorname{Tr}[\rho_j^{(k-1)}J_{\hat{n}}^{2k-1}].$$

Proof: Corollary of Theorem 1 (by induction using commutator relations).

### Longevity

We are interested in the scaling, with respect to Hilbert space dimension, of how many times a quantum reference frame can be used before the value of its quality function F falls below a certain threshold.

**BRST06**: Longevity scales as  $O(j^2)$ . (specific F)

- Because we consider any quality function F, the longevity of the reference frame can be arbitrary (in general).
- But we can study the scaling of the moments.

**Theorem 3:** Consider a quantum reference frame with initial state  $\rho_j^{(0)}$ , which is used for performing a rotationally-invariant joint operation  $\chi_j$ . If this operation induces a disturbance map

$$\xi = \sum_{n=0}^{2j} q_n(j) \zeta^{\circ n}$$

that satisfies the following assumptions:

- there exists some  $n_{max}$  such that  $q_n = 0$  for all  $n \ge n_{max}$
- $q_n \le O(1)$  and

$$Tr[\rho_j^{(0)}J_{\hat{n}}^{\ell}] = O(j^{\ell}).$$

then the number of times that such a quantum reference frame can be used before its  $\ell^{th}$  moment falls below a certain threshold value scales as  $j^2$ .

# Example A.1: Measurements of spin-1/2

- Suppose that the reservoir consists of spin-1/2 systems. Each spin is either parallel or anti-parallel to n (with the same probability).
- The goal is to use the quantum reference frame to guess the direction of each spin-1/2.
- The optimal joint measurement χ is a projection onto the subspaces corresponding to different values of the total angular momentum.

$$F_{rac{1}{2}}^{(k)} := Tr \left[ rac{1}{2} \sum_{\mu \in \{-rac{1}{2},rac{1}{2}\}} \Pi_{j+\mu}(
ho_j^{(k)} \otimes |\mu
angle \langle \mu|) 
ight]$$

### Measurement of spin-1/2

• In term of the first moment, we can rewrite the quality function:

$$F_{\frac{1}{2}}^{(k)} = \frac{1}{2} + \frac{1}{2j+1} Tr[\rho_j^{(k)} J_z]$$

Theorem 2 tells us

$$Tr[\rho_j^{(k)}J_z] = Tr[\rho_j^{(0)}J_z] (A_0^{(1)})^k$$
.

Simple calculation give us

$$A_0^{(1)} = 1 - \frac{2}{(2j+1)^2}$$

# Example A.2: Measurements of spin-1

- Suppose that the reservoir consists of spin-1 systems. Each spin has either 1, 0 or -1 angular momentum in the  $\hat{n}$  direction (with the same probability).
- The goal is to use the quantum reference frame to guess the angular momentum in the  $\hat{n}$  direction of each spin-1.
- The optimal joint measurement χ is a projection onto the subspaces corresponding to different values of the total angular momentum.

$$F_1^{(k)} = Tr \left[ rac{1}{3} \sum_{\mu \in \{-1,0,1\}} \Pi_{j+\mu}(
ho_j^{(k)} \otimes |\mu
angle \langle \mu|) 
ight]$$

Page 49/65

### Measurements of spin-1

• In terms of moments:

$$F_1^{(k)} = \frac{1}{6} + \frac{\left[ (2j+1)^2 - 2 \right]}{6j(j+1)(2j+1)} Tr[\rho_j^{(k)} J_z] + \frac{1}{2j(j+1)} Tr[\rho_j^{(k)} J_z^2].$$

We can use again Theorem 2 to evaluate the moments. Simple calculations give us the values of the three A's coefficients.

### Example B: Pauli Operator

Suppose, we want to implement a Pauli Z operation on a qubit:

$$Z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

using a quantum reference frame to define the z-axis.

 Cannot be implemented without errors if the reference frame is quantum and restricted to a finite space.

### Gate Fidelity

We can pick the quality function to be

$$F_{
m gate}(Z, au) \equiv rac{\int_{\Omega} d\mu_{\Omega} ig| Tr[E(\Omega)^{\dagger}Z]ig|^2 + d}{d^2 + d}$$

where  $E(\Omega)$  are the Kraus operators of the approximate gate.

1. Projective Measurement

$$\{\Lambda(\Omega) = (2j+1)R(\Omega)|e\rangle\langle e|R(\Omega)^{\dagger}, \ \Omega \in SU(2)\}$$

where 
$$|e\rangle := |j, m_z = j\rangle$$

### Gate Fidelity

We can pick the quality function to be

$$F_{
m gate}(Z, au) \equiv rac{\int_{\Omega} d\mu_{\Omega} ig| Tr[E(\Omega)^{\dagger}Z]ig|^2 + d}{d^2 + d}$$

where  $E(\Omega)$  are the Kraus operators of the approximate gate.

1. Projective Measurement

$$\{\Lambda(\Omega) = (2j+1)R(\Omega)|e\rangle\langle e|R(\Omega)^{\dagger}, \ \Omega \in SU(2)\}$$

where 
$$|e\rangle := |j, m_z = j\rangle$$

#### 2. Filtering operation:

$$(2j+1)\int_{\Omega}d\mu_{\Omega}R_{j}(\Omega)\otimes R_{1/2}(\Omega)\Big[|j,j\rangle_{z}\langle j,j|\otimes Z\Big]R_{j}(\Omega)^{-1}\otimes R_{1/2}(\Omega)^{-1}\\ =\\ \frac{2j}{2j+2}\Pi_{j+\frac{1}{2}}-\Pi_{j-\frac{1}{2}} \qquad \text{(not unitary)}$$

where  $\Pi_k$  is the projector into the subspace of total angular momentum k.

3. Use coupling between the spins of the quantum reference frame and of the reservoir:

Use 
$$H=w\left(J_x^{\left(\frac{1}{2}\right)}J_x^{(j)}+J_y^{\left(\frac{1}{2}\right)}J_y^{(j)}+J_z^{\left(\frac{1}{2}\right)}J_z^{(j)}\right)$$
 to implement 
$$\Pi_{j+\frac{1}{2}}-\Pi_{j-\frac{1}{2}} \qquad \text{(unitary)}$$

#### 2. Filtering operation:

$$(2j+1)\int_{\Omega}d\mu_{\Omega}R_{j}(\Omega)\otimes R_{1/2}(\Omega)\Big[|j,j\rangle_{z}\langle j,j|\otimes Z\Big]R_{j}(\Omega)^{-1}\otimes R_{1/2}(\Omega)^{-1}$$
 
$$=$$
 
$$\frac{2j}{2j+2}\Pi_{j+\frac{1}{2}}-\Pi_{j-\frac{1}{2}} \qquad \text{(not unitary)}$$

where  $\Pi_k$  is the projector into the subspace of total angular momentum k.

3. Use coupling between the spins of the quantum reference frame and of the reservoir:

Use 
$$H = w \left( J_x^{\left( \frac{1}{2} \right)} J_x^{(j)} + J_y^{\left( \frac{1}{2} \right)} J_y^{(j)} + J_z^{\left( \frac{1}{2} \right)} J_z^{(j)} \right)$$
 to implement  $\Pi_{j+\frac{1}{2}} - \Pi_{j-\frac{1}{2}}$  (unitary)

#### Different Results



A plot of the gate fidelity with number of repetitions, *n*, for *j*=8 for the three methods, (2.1) (dot-dashed line), (2.2) (dashed line), and 2.3) (solid line). This behavior of this value of *j* is representative

### Longevity



#### Conclusion

- We generalize the concept of quality function and introduce the moments of a quantum reference frame.
- We give recursive equations (Theorem 2) for how the moments evolve with the number of uses of the quantum reference frame.
- We derive sufficient conditions (Theorem 3) for the longevity of a quantum reference frame to scale by a factor proportional to square the dimension of the quantum reference frame.
- Finally, we applied our results to different examples such as the use of a quantum directional reference frame to measure a spin-1 particle or to implement an Pauli operator on a qubit. The tools that we developed can be use to compare different methods to perform some operation using a quantum reference frame as we showed in our last example.

### Longevity



#### Conclusion

- We generalize the concept of quality function and introduce the moments of a quantum reference frame.
- We give recursive equations (Theorem 2) for how the moments evolve with the number of uses of the quantum reference frame.
- We derive sufficient conditions (Theorem 3) for the longevity of a quantum reference frame to scale by a factor proportional to square the dimension of the quantum reference frame.
- Finally, we applied our results to different examples such as the use of a quantum directional reference frame to measure a spin-1 particle or to implement an Pauli operator on a qubit. The tools that we developed can be use to compare different methods to perform some operation using a quantum reference frame as we showed in our last example.

### Acknowledgements

- Perimeter Institute
- University of Sydney
- Rob Spekkens
- Terry Rudolph

