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Abstract: It is known that finite fields with d elements exist only when d is a prime or a prime power.
When the dimension d of afinite dimensional Hilbert space is a prime power, we can associate to each basis state of the Hilbert space an element of
afinite or Galois field, and construct a finite group of unitary transformations, the generalised Pauli group or discrete Heisenberg-Weyl group. Its
elements can be expressed, interms of the elements of a Galoisfield.
This group presents numerous
applications in Quantum Information Science e.g. tomography, dense coding, teleportation, error correction and so on.
The aim of our talk isto give ageneral survey of these properties and to present recently obtained results in connection with three problems:
-the so-called "Mean King's problem" in prime power dimension,

-discrete Wigner distributions,
-and quantum tomography .

Finally we shall discuss a limitation of the possible dimensions in which the so-called epistemic interpretation can be consistently formulated, in
relation with the existence of finite affine planes, Euler's conjecture and the 36 officers problem.
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Preliminary remark.

e In many applications of Quantum Information. it happens that different
states from a same basis play an identical role.

e Example: Bennett and Brassard protocol for Quantum Key Distribution ( B-
B'84). two polarisation bases are chosen to encode the signal. and between
each of them the two basis states that carry the binary signal (0 and 1) could
be intertwined:
we could permute the values O and 1 without changing the essence of the
protocol.

e SO it is interesting to consider groups of permutations of a same basis
of the Hilbert space. Those groups constitue a NATURAL SYMMETRY
in many applications that were developed in the framework of Quantum
Information.
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Example d=2. permutations versus

displacement operators in the qubit space.

e Most simple case: two-level svstems (QUBITS): d=2.

e Two possible permutations: the identity and the negation (exchange of 0
and 1) which permutes the qubit basis state |0) with |1).

e We can express the identity by the identity operator |0) (0| + |1) (1].

e The operator associated to the negation can be written |1) (0| + |0)(1].
e This operator is equal to the Pauli o, operator itself!

e It is diagonal in the basis (5(|0) + |1)). (/0) — [1))).
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e We can now repeat the reasoning and consider the two possible permuta-
tions of the eigenstates of 7.

e We find then the identity operator while the operator that corresponds to the
negation is equal to |0) (0] — [1)(1].

e This operator is the Pauli operator o.!

e The composition of the operators o. et o, is equal. up to a global phase. to
oL
e o, is diagonal in the basis (%HO} +|1)), %([O) —1|1})).

e We find so the 4 Pauli operators:. the identity and the 3 o (Pauli) operators.
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Useful properties of the

Pauli displacement operators (1).

e Such operators form a group (up to global phases). the Pauli group. This
oroup itself consists of 3 commuting subgroups which consist of the identity
and one of the 3 operators o, -.

e These 3 subgroups are diagonal in the bases:
|0> 1))
7 IU) +11)). 5(10) —[1)))
et (5(]0) +i.|1)). 55(]0) —i|1))).
] Such bases are said to be "mutually unbiased”™ (MUB’s):

Definition: “A collection of orthonormal bases of a d dimensional
Hilbert space is said to be mutually unbiased if whenever we choose
two states from different bases, the modulus squared of their in-
product is equal to 1/d. ’

e The transition probabilities between states from different MUB’s are all

oren oriooos €Ul to 1/d (in the qubit case they are 50-50 probabilities as when, wg,
toss an UNBIASED COIN).
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Useftul properties of the

Pauli displacement operators (2).

The Pauli operators are in one-to-one correspondence with the so-called Bell

states:
g0 = [0)(0] + |1){1| < |B)os = 5
= [0){1] +[1){0] — |B>m—*—
O-y :i(|0><1| [D{0) — [B)nn =
= [0){0] — [1){1] « |B>m =7

|0)
|>
el

(o)l

0) +[1)
1) +1)
0)|1) —

—|1)

1))
0))
1)[0))
1))

The Bell states possess plentv of appljca[ioﬁs in Quantum Information (telepor-
tation, cloning). They are maximally ENTANGLED. maximally NON-LOCAL
and form an orthonormal basis of the two-qubit Hilbert space (d = 4).
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Useftul properties of the

Pauli displacement operators (3).

e Pauli operators as well as the Bell states form an orthonormal basis of a
d = 4 Hilbert space.
Actually, the Pauli displacement operators form an orthonormalised basis
of the linear 2x2 operators (relatively to the Trace-norm product).

e As a consequence, any qubit DENSITY MATRIX or density operator is a
linear combination of Pauli operators:

p == %(Jl] 5 k‘.{'o.r -+ kygy + k:ﬂ':).
We recognize here Bloch parameters (NMR) or Stokes-Poincaré parameters
(polarimetry).

e In order to estimate these parameters it is enough to measure the transition
probabilities in the 3 corresponding bases (MUBs).

e By doing so we realize a QUANTUM TOMOGRAPHIC PROCESS so to
say we can estimate the qubit quantum state.
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Remarks.

e The tomographic procedure based on MUB’s is OPTIMAL because there is
NO REDUNDANCY between data collected in different bases:

the information is thus never wasted during the data acquisition.

e The MUB'’s play an important role in quantum crvptography because thev
maximize the uncertainty relations: whenever a spy measures the signal on
a basis that is mutually unbiased with the basis of encryption. his Shan-
non information about the signal is equal to zero. so that he does not learn
anvthing about the secret kev.

Therefore encryption bases are often MUB’s (examples: BB™84 or 6 states
qubit protocols for Quantum Key Distribution).

In the 6 states protocol for instance the authorized users of the cryptographic
channel (Alice and Bob) are able to realize a full tomographyv of the quan-
tum state that thev share, which maximizes the constraints to be met by the
spy in order to dissimulate the fact that he eavesdrops the signal. The secu-
rity of the full protocol (for a given signal to noise ratio) is thus maximal.
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Generalisations in dimensions higher than 2.

Dimension 4.

e There exist. in dimension 4. 4.3.2=24 permutations between states from a
same basis. Two subgroups of this group of 24 elements are particularly

interesting:
e The cvclic group with 4 elements generated by the permutation

P, = 0) — [1):1) — [2):2) — [3):13) — |4).

It also contains the identity F),. and the powers 2 and 3 of the generator:

P, =|0) — [2}:]1) — [3):12) — |0):]3) — |1).

P =10) — [3);]1) — [0):]2) — [1)3]3) — [2).
e The “Galois™ group that contains the identity and the 3 following permuta-

tions:

P =10} — |1);]1} —|0);
0} — [2):]1 —8);
0) —|3):]1) — [2);

I

) — 0)3]3) — |1).
) — |1):]3) — |0).

o
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Such algebraic structures are called "“COMMUTATIVE RINGS™: the Galois
multiplication is endowed with a remarkable property:

THERE IS NO DIVIDER OF ZERO. EXCEPTED ZERO ITSELEF...

Therefore the Galois ring is also called a FIELD (finite field).

Finite fields were studied by Evariste Galois in the 19th century.

On the basis of such operations we can now define generalised Pauli operators:
those operators form a finite displacement group. the generalised Pauli or
Heisenberg-Weyl group which constitutes a discrete version of the continuous
phase-space displacement operators (largelv used in quantum optics).

Such operators are unitary and can be defined as follows (T. Durt: A new
expression for mutually unbiased bases in prime power dimensions™. J. Phys.
A: Math. Gen. 38 (2005) 5267-5283):

d—1
Vi =Y 76k @ i (k] )
k=0

where ¢ and - represent the operations (addition and multiplication) of the
finite field while ¢ is a well-chosen phase (pth root of unity: ¢ = e“>/?).
This construction works in PRIME and PRIME POWER DIMENSIONS
ONLY. Whenever the dimension is prime, these operations reduce to mod-
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The generalised Pauli group presents numerous applications in Quantum Infor-
mation (tomograpy. dense coding.teleportation. cloning. error correction and so
on). One can show that:

d—1
E : 1%61) 5
T =do; (6)
=0
~t o omd AT
e e Ie (7)

Besides. the Galois addition factorizes: for instance. in dimension 4. if we
express quartits like tensorial products of 2 qubits: [0)y = [0)2 @ [0)s,
1)y = [0)s @ |1)a, |2}y = |1)2 ® |0)a, |3}y = |1)2 ® |1)2,we can check
at the level of the addition table that

if [2)4 = [|21)2 @ |i2)2. et |J)a = |J1)2 @ |J2)2.

then [i B¢ j)1 = |11 Tmoa2 J1)2 R |2 a2 Ja)2-

This means that the (quartit here) addition FACTORIZES to the modulo p (=2
here) addition COMPONENTWISE. In dimension p™, with p prime and m a
positive integer the Galois addition always FACTORIZES to the modulo p (=2
here) addition COMPONENTWISE.

The Galois multiplication table is more involved but the corresponding tables
are well known and are available, for instance on the web.
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Applications: teleportation and dense coding:

We can now define generalized Bell states as follows:

d—1
|Bm*.n> - d—lfi ,,:r_r‘gt"lﬂ:'sﬂ}[k*!} | k De m} ( 10)
k=0

The amplitudes of |£*) in the reference (computational) basis are defined to be
equal to the complex conjugates of the amplitudes of |k).
The equation of teleportation is:

d—1 d1 d—1
| | e | S

(Z 07) 4)| Boo)Bec = Z E|Bm.-n)_4.ﬂ(vm_c(z oilt)e)) (11)
—0 m.n— —0

The equation of dense coding is:

V- 1@ 1p|Boo)sn = |Bnn)ab- (12)
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d—1
|Be) =d 2 Y 127N K Dem) (10)
k=0

The amplitudes of |£*) in the reference (computational) basis are defined to be
equal to the complex conjugates of the amplitudes of |k).
The equation of teleportation is:

d—1 d—1 d—1
f - 1 \ & Wl -y
(Z &;ili) 4)| Boo) o = Z E|Bm.-n_)_4ﬂwm_c(z oili)e)) (A1)
+—0 m.n—h i—0
The equation of dense coding is:
I/::._{ & lBiBD.D>A.B = IBm.ﬂ>:'LB* (12)
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Galois versus modulo.

We can define similarlv Bell states through the modulo d ring.

The “teleportation equation™ and “dense coding equation™ are still valid in those
cases.

Nevertheless. if we want to generalize mutually unbiased bases in higher di-
mensions (MUB’s) a field is required.

We can indeed derive d+1 MUB’s by simultaneously diagonalising well-chosen
subgroups of the generalized Pauli group (1} T

This technique works only because the Galois operations form a field so
that only the Galois operations are convenient therefore.

BESIDES. IT IS WELL-KNOWN THAT FINITE FIELDS ONLY EXIST
WHEN THEIR NUMBER OF ELEMENTS IS EQUAL TO A PRIME POWER
(p™ with p a prime and m a positive integer) so a set of d +1 MUB’s can be
built only when d is a prime power.

We found for instance that in ODD prime dimension p™ MUB'’s can be ex-
pressed as follows:

- Seedck(_((i—1)0eacea)/c2\ | 0
|€i} LS ,?Cr::!r c (,:H,é; c9ce)/c )]E_.qj (13)
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Remarks:
-In even prime power dimensions (2™ m qubits). all is more complicated. be-
cause even and odd finite fields are totally different: we find:

\‘3&) ey \/*Z SeqC fo n:ﬁqﬂﬂzu —1)ee?™2e2™ . IE_IJ 9e2"0e2™ \E’ ) (14)

here g = Z o qn_“ while n’ is the smallest integer strictly superior to 72 such
that ¢, == 0. whenever it exists. 0 otherwise.

-When the dimension of the Hilbert space is not a prime power (for instance
d = 6) NOBODY KNOWS HOW TO DERIVE d + 1 MUB’s (open problem).
Nobody even knows how many MUB'’s exist!!!
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Application (1): quantum tomography

in prime power dimension d = p'".

As there are d + 1 MUB'’s in dimension d = p™, that each von Neumann-
measurement of an operator diagonal in a MUB provides d — 1 independent
parameters, and that the results collected in different MUB's are also indepen-
dent. we get Y independent parameters.

This is precisely equal to the number of independent parameters that are neces-
sary in order to reconstruct the density matrix of an unknown d-level quantum
state. We can thus perform a FULL TOMOGRAPHIC process by measuring
transition probabilities in d+1 MUB’s ( W.K. Wootters. and B.D. Fields. ~“Opti-
mal state-determination by mutually unbiased measurements™ Ann. Phys. 191,
363 (1989)).

Example: d = 2: we get the d° — 1 = 3 Bloch (Stokes) coefficients by mea-
suring the transition probabilities in 3 MUB’s (in polarimetry: we measure the
populations of circular left and right polarisations. horizontal-vertical and diag-
onal.)

Pirsa: 07100013 Page 46/123




Application (2): Solution of the Mean King’s problem

in prime power dimension d = p"".

A. d = 2 Vaidman-Aharonov 1987:
Is it possible to ascertain the spin component of a spin 1/2 particle along 3
complementary directions?

A Mean King challenges a physicist, Alice, who got stranded on the
remote island ruled by the king, to prepare a spinl/2 atom in any state
of her choosing and to perform a control measurement of her liking.
Between her preparation and her measurement, the king’'s men deter-
mine the value of either ox, oy or 0z. Only dafter she completed the
control measurement, the physicist is told which spin component has
been measured, and she must then state the result of that intermediate
measurement correctly. How does she do it?
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A priori. no solution: if Alice has only one qubit at her disposal. the optimal
strategy consists of preparing a pure state polarised along one of the 3 directions
(for instance £): thereafter. when the Mean King performs his measure Alice
can still measure the spin along a direction in-between X and Y (Breidbart
basis). which allows her to infer correctly the spin value along X or ¥ witha
probability equal to cos?(22.5) ~ 0,85. In average Alice infers correctly the
spin value with a probability =~ 0.9 = (1 +2.0.85)/3.

Nevertheless. a solution of the problem exists, provided we make use of the
resources provided by entanglement (Vaidman et al. 1987). One can express
this solution elegantly in function of Bell states as we shall now show .
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Alice’s strategy is the following.
She prepares two entangled qublts (one for her one for the King) in the Bell

. nZ
state: B g9 =

20310)% + |11D311)%)

This state. as well as other Bell states. is “covariant” when it is reexpressed in
the two other MUB’s (along X and Y'):

|Bgo)ax = | Bop)ax = |Bpp)ax
|B 1> AN IBw AN — B}:.U>A-ff
| B} ﬁ> AK = |B Ak =1 B};J}A_ﬁ*
|Bf))ax = —1Bi3)ax = (—9)IByy)ax (15)

During his measurement the King projects thus the initial state prepared by
Alice onto one of the 6 product states:

0)&1119 &

0)%:119 :
0>Ki-ng

0) Ehce or I 1>ﬁmg |1> Alicer
D*‘; Alicer OT I 1>Emg I 1*) Aliee?
0);113&' or |1> King < | l) Alicer

the job of Alice consists of DISCRIMINATING those 6 product-states.
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She can discriminate between those 6 states with CERTAINTY [ by measuring
them in the following basis:

)7 = (1B ax + 1B ax +|Biax +ilBL)ax)  (16)
W)Z = (1B ax+ 1B ax — B ax —ilBE) ax)
W) = (1BL)ax — |BE) ax +1BL)ax — i1BE) ax)
)i = i( Bgo)ax — |Byy) ax — | Bfg) ax +i|Biy) ax)

Indeed. as |B)w = 5(0)0) + [1)[1)) and [B)o = (]0)[0) — [1)[1)),
whenever one of the two first (last) detectors clicks. and that the King measured
in the Z basis. he certainly observed the result 0 (1). because the corresponding
projectors are orthogonal to |1)%|1)Z (|0)£|0)%).

By covariance this result generalizes to the 2 other directions (X and Y ).
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Alice’s strategy is the following.
She prepares two entangled qublts (one for her one for the King) in the Bell

state: B% o0

= L(0)Z[0)Z + |1)%]1)2)

This state. as well as other Bell states. is “covariant” when it is reexpressed in
the two other MUB’s (along X and Y'):

|Big)ax = |Byp)ax = |Byg) ax
IB 1> AK — |Bm AN — B}:_G)A.ﬁf
IBw AK = |B AK =1 B};_J);-LE
|BL)ax = —1Bi)ax —(—5) B{EJ}A_H (15)

During his measurement the King projects thus the initial state prepared by
Alice onto one of the 6 product states:

0):!}:1'119 &
0)?}'1’-119 &
0>King b

0) Ehr_‘e .- OF | 1>ﬁm.g |1> Alicer
0*‘;__“?&3 or I ]‘>Ezng I 1*) Aliece>
D) Alicer OT ‘]‘>Emg &

the job of Alice consists of DISCRIM[NAZ[‘ING those 6 product-states.
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She can discriminate between those 6 states with CERTAINTY 1| by measuring
them in the following basis:

1
)y =
#)F =
i B
W= 1(
)7 =

Indeed. as | B
whenever one of the two first (last) detectors clicks. and that the King measured
in the Z basis. he certainly observed the result 0 (1). because the corresponding
projectors are orthogonal to |1)%4[1)4 (|0)4]0)4).
By covariance this result generalizes to the 2 other directions (X and Y ).

: 07100013

BE{G)AJ{ +
Bfo)ax —

Bio)ak —

Bl{lﬁA_K + | Bgﬁ AK T

Z \
BD.lz’fLﬁ'

B{‘}Zif AK T

Bi:i):llf Dt Bfn)_i_a: 42

Bio)ax —1

‘ B‘Eﬁﬂ.&')

1(10)10) + [1)]1)) and [B)oy = &

Bf)ax +i|BE) ax)

Bl[] AK ! Bfl)&.ﬁ')

Bfﬂﬂ-ﬂ)

(10)/0)

(16)

— |DI1)),
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Alice’s strategy is the following.
She prepares two entangled qubits (one for her one for the King) in the Bell

state: B%o0

L(0ZI0Z + |1)311)%)

This state as well as other Bell states. is “covariant” when it is reexpressed in
the two other MUB’s (along X and Y'):

|Bio)ax = | Byg)ax = |Byg) ak
IB 1) AK — |BID ARK — B};.GM.K
|Bli] AK — |B VAK =1 B};__ﬁAK
IBi)ax =B ax = (9 B{}}:J}:LK (15)

During his measurement the King projects thus the initial state prepared by
Alice onto one of the 6 product states:

0)%1’119 &

0> ifing g

0}y @
ing <

0) 53&' or I 1)&;11.9 |1>Ah::f
U*g_:ihce or | 1>Emg | 1*) Alice?
D> Alicer OT |1> King & ]‘> Alicer

the job of Alice consists of DISCRIMINATING those 6 product-states.
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She can discriminate between those 6 states with CERTAINTY [ by measuring
them in the following basis:

)7 = (1B axe + 1B ax +|Biax +ilB)ax)  (6)
0)F = (1B s+ 1BE) ax — 1B ase — i1 BE) ax)
)5 = _}L( Byo)ax — | Byy) ax +|Big)ax — i Byy) ax)
)= i( Bgo)ax — | Byy) ax — | Bfg)ax +iBfy) ax)

Indeed. as |B)o = (10)[0) + [1)]1)) and [B)ox = (]0)[0) — [1)[1)),
whenever one of the two first (last) detectors clicks. and that the King measured
in the Z basis. he certainly observed the result 0 (1). because the corresponding
projectors are orthogonal to |1)%|1)Z (|0)£]0)%).

By covariance this result generalizes to the 2 other directions (X and }').
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B. Generalisation in dimension p™ (T. Durt: “About the Mean King’s problem
and discrete Wigner distributions™, International Journal of Modem Physics B.
20, 11-13, 1742-1760 (2006)).

The covariance of Bell states reflects the properties of Clifford group: it can be
generalized to higher prime power dimensions p™:

IBD )_ f—'GmGﬂ}( gﬂ 1)& Gmucm) [B

(E—1)=0—d—1
The two-qubit basis used by Alice also generalizes:

(ConEtglk—1)=gm)*. m)

d—1

B
|1I'>?f1.-e:g} o E( Z fEl o Jm Gl [ ) KA

me_n—{)

here - (- < represents the quadratic extension of Galois multiplication. that can
be obtained on the basis of the field with d elements by adding a new element
(in the same way that complex numbers can be derived from real numbers by
adding a new element 2. the square root of -1.
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Application (3): Wigner distribution

in prime power dimensions p'"'.

We have seen before that displacement operators are in 1-1 correspondence with
Bell states.

Similarly, the measurement basis associated to the resolution of the Mean
King's problem is in 1-1 correspondence with a basis of linear qudit operators.
It appears that these operators form a DISCRETE COUNTERPART of contin-
uous WIGNER OPERATORS-they are thus DISCRETE PHASE-SPACE LO-
CALISATION OPERATORS (T. Durt: “About the Mean King’s problem and
discrete Wigner distributions™. International Journal of Modern Physics B. 20,
11-13, 1742-1760 (2006)).
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B. Generalisation in dimension p™ (T. Durt: “About the Mean King's problem
and discrete Wigner distributions™, International Journal of Modem Physics B.
20, 11-13, 1742-1760 (2006)).

The covariance of Bell states reflects the properties of Clifford group: it can be
generalized to higher prime power dimensions p™:

IBO n) - —'Gmcﬂ}'( f“ﬂ 1)e Gm_xGm)) LB

(k—1)=—0—d—1
The two-qubit basis used by Alice also generalizes:

(ontglk—1l)=gm)*®, m.)

d—1

1 By.23 JEE . =t
|@>?€1._52}:E(Z HinIO0ctmn)( (mOen)yz B0y )

m_n—4)

here - - < represents the quadratic extension of Galois multiplication. that can
be obtained on the basis of the field with d elements by adding a new element
(in the same way that complex numbers can be derived from real numbers by
adding a new element 2. the square root of -1.
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Application (3): Wigner distribution

in prime power dimensions p’".

We have seen before that displacement operators are in 1-1 correspondence with
Bell states.

Similarly, the measurement basis associated to the resolution of the Mean
King's problem is in 1-1 correspondence with a basis of linear qudit operators.
[t appears that these operators form a DISCRETE COUNTERPART of contin-
uous WIGNER OPERATORS-they are thus DISCRETE PHASE-SPACE LO-
CALISATION OPERATORS (T. Durt: “About the Mean King’s problem and
discrete Wigner distributions™, International Journal of Modern Physics B. 20,
11-13, 1742-1760 (2006)).
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Wigner distribution is equal to the average value of Wigner operators.

As its continuous counterparts it obeys the following constraints (W.K. Woot-
ters. “Picturing qubits in phase-space”. IBM Journal of Research and Develop-
ment archive Volume 48. Issue | (January 2004). quant-ph/0406032 (2004)):
(a) Translational invariance: W; , , = (V‘ VW, DB}V‘ -

(b) The sum of the d° Wigner amplitudes Tr. p.W;, ;) is normalized to unity:
(¢) Marginals: if we consider STRAIGHT LINES in phase-space defined by
the relations a =g iy = b g 12 =g . with a b and ¢ elements of the finite
(Galois) field with d elements. the averages of Wigner operators along such
lines (marginals) are equal to a projector onto one of the MUB'’s states.
Moreover. marginals along non-intersecting parallel lines correspond to projec-
tors onto orthogonal states of a same MUB while marginals taken along non-
parallel directions correspond to projectors onto states from different MUB'’s.
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Example: the simplest case d = 2:

Woo+Woi+ Wig+ Wy = Id. by normalisation:

in virtue of the marginal’s properties:

Woo+ Wy, and W, W, are projectors onto eigenstates of o x. while W+
Wigand Wy, + W, are projectors onto eigenstates of o

Finally Wy + W, and W, 3 + W, are projectors onto eigenstates of oy
We can choose such states to be up (0) or down (1), so that: (W, + W,,) +
(Woo + Wip) + (Woe + Why) = 3(Id.(+/—)xox) + 3(Id.(+/—)yoy) +
é(Id-(_[_/_)ZJZ) 4. Wop + Id.
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Example: the simplest case d = 2:

Woo +Woi+ Wig+ Wiy = Id. by normalisation:

in virtue of the marginal’s properties:

Woo+ Wy, and W, ,+ W, are projectors onto eigenstates of o x. while W+
Wi and Wy, + W, are projectors onto eigenstates of o

Finally Wy + Wy and W, 4 + W, are projectors onto eigenstates of oy
We can choose such states to be up (0) or down (1), so that (Woo + W'O 1)
(Woo + Wig) + (Woe + Wyy) = Id (+/—)xox) + Id (+/—)voy) +
s(Id.(+/—)z0z) = 4 Wop + Id.
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Once we fix the phases +/— we can derive Wigner operators. Let us for in-
stance choose the + value evervwhere. we obtain so the following candidate for
the Wigner distribution (expressed in function of Bloch-Stokes parameters)

PMZ%F1+PY+p}*+pZ}:41
Pﬂlz._ i
Pw:%lﬂLPi— Py —Pzl =y
Fo—3H—px+Pr— Pzl =

=< O+ o,

1<JB+JI+JH+JI =
1—px —py +p7l ¥<:U'{}—(T£—Jy+ﬂ'::}
] — Oy — O >
|=3<®m—ato,—0. >

(17)

-THIS IS DIRECTLY RELATED TO THE SOLUTION OF THE QUBIT

MEAN KING's PROBLEM (EQN.16) :

)7 = S(BE)ax +|BE)ax + B ax +2
lIf}.’_f—:%( Beaxt B Y ax—|Bigax —1i
W) = L(1BZ) s — | BE) asc + | Blax —i
W) f = i( B[{{])A__K 5 BEEi) AK — Bfﬂ):l_[{ +-3
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Once we fix the phases +/— we can derive Wigner operators. Let us for in-
stance choose the + value evervwhere. we obtain so the following candidate for
the Wigner distribution (expressed in function of Bloch-Stokes parameters)

i =
Pm:%l—PY—PE +PZ]:%
Pm:% 1+px — Py —Pz]:%
Phu=:[1—px+pr—pzd=

< Og+ 0,

F1+pv(+py+pg] %{JQ+JI+JH+J: =
{JQ—JI—JE—I—J: -
=0
TSmOt —a>

(17)

-THIS IS DIRECTLY RELATED TO THE SOLUTION OF THE QUBIT

MEAN KING's PROBLEM (EQN.16) :

)7 = $1BE)ax +|B)ax + B ax +il B ax)
)5 = __11( Byg)ax +|Byy)ax —|Big)ax — il Biy) ax)
)5 = E( Bgo)ax —|Byy)ax +|Big)ax —ilBiy) ax)
)7 = (1B ax — |BE) ax — | Bl ax +ilBE)ax)
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Recently, the qubit Wigner distribution has been measured through a SIC
POVM measurement on a 2 qubit RMN svstem by chinese experimentalist col-
leagues (J-F Du, T. Durt et al.. in collaboration with NUS Singapore. and Hefei
Quantum Information group, China, Physical Review A 2006).

The 2 qubit Wigner distribution has also been measured on entangled in polar-
isation photon pairs through two simultaneous local SIC POVM measurements
at NUS (Durt, Ling. Lammas-Linares and Kurtsiefer-submitted to PRA).

Pirsa: 07100013 Page 75/123




Appendix: Epistemic interpretation

and the role of dimensions.

-The labels of the Wigner operators form a ¢ times d square that plays the role
of a discrete phase space.

-The horizontal and the vertical axes correspond to a discrete version of the
position-impulsion representations.

-Then, in virtue of the marginal property, we have that each vertical line of the
square (there are d of them) corresponds (o a state of the computational basis.
each horizontal line corresponds to a state of the dual (Galois-Fourier) basis and
more generally each set of parallel straight lines corresponds to a state of one of
the MUB’s.

-This property agrees with the fact that when the Mean King prepares such a
state d detectors among d” detectors are likely to fire. with the same probability.
which reflects a complementary relation between pairs of MUBs.
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Wigner distribution is equal to the average value of Wigner operators.

As its continuous counterparts it obeys the following constraints (W.K. Woot-
ters. “Picturing qubits in phase-space™. IBM Journal of Research and Develop-
ment archive Volume 48, Issue I (January 2004), quant-ph/0406032 (2004)):
(a) Translational invariance: W, , , = (V" )W, 00 Vi s

(b) The sum of the d* Wigner amplitudes Tr. p.W; ., is normalized to unity:
(¢) Marginals: if we consider STRAIGHT LINES in phase-space defined by
the relations a =g i; = b “g 12 £¢ . with a b and ¢ elements of the finite
(Galois) field with d elements. the averages of Wigner operators along such
lines (marginals) are equal to a projector onto one of the MUB'’s states.
Moreover. marginals along non-intersecting parallel lines correspond to projec-
tors onto orthogonal states of a same MUB while marginals taken along non-
parallel directions correspond to projectors onto states from different MUB's.
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Appendix: Epistemic interpretation

and the role of dimensions.

-The labels of the Wigner operators form a d times d square that plays the role
of a discrete phase space.

-The horizontal and the vertical axes correspond to a discrete version of the
position-impulsion representations.

-Then, in virtue of the marginal property. we have that each vertical line of the
square (there are d of them) corresponds to a state of the computational basis.
each horizontal line corresponds to a state of the dual (Galois-Fourier) basis and
more generally each set of parallel straight lines corresponds to a state of one of
the MUB’s.

-This property agrees with the fact that when the Mean King prepares such a
state d detectors among d” detectors are likely to fire. with the same probability.
which reflects a complementary relation between pairs of MUBs.
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Geometrical correspondence.

-Two non-parallel straight lines intersect in only one point

because non-parallel directions correspond to different MUB's (states from dif-
ferent MUB'’s present an overlap 1/d).

-Two distinct parallel lines do not intersect

because MUB's are orthogonal bases (different states of a same basis do not
overlap).

There is thus a one-to-one correspondence between MUB’s and an affine
times « plane.

-From this point of view, one has that to each straicht line (there are d” + d of
them) corresponds a question, and when the state belongs to one of the MUB's,
the questions are either deterministic (for d of them) or totally underteministic
(for d* of them).
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What do we learn from this about the epistemic interpretation?

-Roughly speaking. the epistemic interpretation (Robert W. Spekkens. “In de-
fense of the epistemic view of quantum states: a toy theory™”, quant-ph/0401052)
is an attempt to develop an axiomatic framework in which the basic objects
belong to a set of 7° + d questions, and of d° + d states.

-To each state would correspond d deterministic questions and ¢” undetermin-
istic questions.

-In principle. the interpretation does not require to introduce the machinery of
the Hilbert space.

-Nevertheless. it captures the main features of specific quantum properties such
as MUB’s. uncertainty relations. no cloning. teleportation and so on.
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fense of the epistemic view of quantum states: a toy theory™”. quant-ph/0401052)
is an attempt to develop an axiomatic framework in which the basic objects
belong to a set of 7° + d questions, and of d° + d states.

-To each state would correspond d deterministic questions and ¢” undetermin-
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-In principle, the interpretation does not require to introduce the machinery of
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We shall show that the epistemic interpretation cannot be pursued in all dimen-
sions.

The reason therefore is that if the epistemic interpretation might be done, then
we would be able

-to find sets of d” points that can be partitioned into d + 1 sets of d parallel
straight lines.

-with the property that non-parallel lines intersect in only one point, and that
parallel distinct lines do not intersect.

Such a structure is called a finite affine plane, and it has been shown that such
planes with @ points do not exist when d = 6 and d = 10.

It is conjectured that such planes exist only when d is a prime power.

This conjecture is fundamental in the study of finite geometries but explicit
proofs exist only for d = 6 and d = 10. This is because the proofs are of
combinatorial nature and the lenght of computation increases dramaticallv with
the dimension.
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Le probleme des 36 officiers d " Euler

« Une guestion fort cuneuse. gm a exerce pendant quelque
wemps la sagacite de bien du monde. m’a ensage a faire les
combmaisons. Cette guestion roulont sur une assembice de
36 officiers de 6 différens grades ot orés de 6 rfomens
differens qu il s apissort de ranger dans un carré. de mamere
wouvat ¢ officiers tant de differens caracteres que de
reommens differens. Or. apres toutes les pemes qu on s’ est
donnees pour resoudre ce probleme. on a = cblige de
mmpessible. guoigu on ne pumsse pas en donner de

Ce probleme est eguivalent & rouver 2 carrés lanns d ordre 6
orthogonaux.

En 1900 un douamer aleénen Tarry. a prouve par cpmsement
des cas qu'il n existat pas de tels camrés lanns:
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Le probleme des 36 officiers d "Euler

« Une guestion fort caneuse. gm a exerce pendant quelgue
temps la sagaciteé de bien du monde. m’a engagé a faire les
camere dams | analyse. et en particulier dans [a doctnne des
combmarsons. Cette guestion roulont sur une assemblee de
36 officzers de 6 diffErens grades et nrés de 6 regamens
differens qu il s apissont de ranger dans un carré. de mamere
trouvat ¢ officiers tant de differens caracteres que de
remmens differens. Or. apres toutes les pemes gu on s est
donnees pour resoudre ce probieme. on a t= oblige de
mmpessible. gquoigu on ne pumsse pas en donner de

Ce probléme est equivalent a rouver 2 carrés lanns d ordre 6
orthogonaux.

En 1900 un douamer aleénen Tarry. a prouve par écpmsement
des cas qu'il n” existait pas de tels carrés lanns.
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This implies that no finite affine plane with 36 elements exist: otherwise 4 non
parallel directions (associated to the 4 properties “regiment”, “rank™, “room™,
and “table™) would provide a solution to the problem of the 36 officers.

As a consequence the epistemic approach cannot be followed in dimension
6. As d times ( finite affine planes seemingly exist only for prime power
dimensions, the epistemic approach seems to be confined to those dimen-
sions.
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TO CONCLUDE CERTAIN DIMENSIONS SEEM TO PLAY A SPECIAL
ROLE IN QUANTUM INFORMATION,

PRIME DIMENSIONS SEEM TO BE “ATOMS OF DIMENSIONS™,
AND THE FACTORISATION OF INTEGER DIMENSIONS INTO
PRODUCTS OF PRIME POWERS COULD INDICATE A PHYSI-
CAL FACTORIZATION OF FINITE DIMENSIONAL SYSTEMS INTO
SUBSYSTEMS CONSTITUTED BY (EQUIVALENT) QuPits WITH P
PRIME.
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