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Abstract: Some recent investigations into the structure of the AAS/CFT correspondence rely on input from increasingly complicated technical
calculations. Two related examples in planar N=4 super Y ang-Mills theory include testing consequences of integrability and exploring iteration
relations amongst multiloop gluon scattering amplitudes. | will review the latest developments in these areas and the methods used to carry out
relevant cal culations through four loops.
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Snapshot

!1‘2

The meat of this work is a very efficient new
algorithm for extracting certain quantities
(the cusp anomalous dimension) from L-loop
gluon amplitudes in ' = 4 super-Yang Mills.

k1 ka

The method does have wider applicability, but our interest in these particular
calculations stems from their important impact on studies of integrability and

iteration relations in " = 4 super-Yang Mills. Concrete calculations are
needed to test various conjectures and to shed light on hidden structure.

| will however begin at the beginning...
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Intfroduction: Yang-Mills Theory

Of course there are many reasons to be interested in YM theory.
e The unique theory of interacting vector bosons
e A great deal of interesting mathematics

e And, of course, QCD and the ‘Real World’!

The journey towards an analytic solution of this important and rich theory has
been long and profitable.

Like in many areas of physics, if we can't solve the theory we're most inter-
ested in, we look for a simpler, similar model that we can solvel

This leads us to consider the \" = 4 supersymmetric version of the theory,
which has even richer mathematical structure and is of course is of great
independent interest since it is a theory of quantum gravity.
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e The unique theory of interacting vector bosons
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e And, of course., QCD and the ‘Real World’!

The journey towards an analytic solution of this important and rich theory has
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independent interest since it is a theory of quantum gravity.
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Motivation

The motivation for our work was two-fold

e To unlock previously hidden mathematical richness lurking deep inside
multi-loop gluon amplitudes in ' = 4 SYM, and

e To exploit that structure to help simplify otherwise formidable computa-
tions.
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Gluon Scattering Amplitudes in \/ = 4 SYM

Feynman diagrams are not the most efficient way to calculate scattering am-
plitudes: too messy, too many terms, hide structure.

Much interest in and progress on the calculation of tree-level amplitude cal-
culations was stimulated by twistor sring theory. [Witten]

In fact, within a period of less than two years, the problem of calculating
closed-form expressions for tree-level scattering amplitudes went from pos-
sible only in certain special cases to essentially completely solved.

[Cachazo, Svrcek, Witien] [Britto, Cachazo, Feng, Witten] [Roiban, MS, Volovich
[Brandhuber, Spence, Travagilini] [Dixon, Glover, Khoze] [Bern, Dixon, Kosower]
[Badger, Glover, Khoze]
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One-Loop Amplitudes in \/ = 4 SYM

In the \' = 4 theory, all one-loop integrals which appear in any Feynman
diagram calculation can be reduced to a set of scalar box integrals using
Passarino-Veliman reduction. Therefore scalar box integrals provide a com-
plete basis for all one-loop amplitudes in \' = 4 [Bern, Dixon, Kosower].

----------

;“1‘.,..: ‘i‘Tf—I—l.,,,.ﬂ

All one needs to calculate are the coefficients for a desired amplitude.
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Unitarity-Based Methods

Any supersymmeiric one-loop amplitude is completely determined by its branch
cuts and discontinuiiies [Bern, Dixon, Dunbar, Kosower]. Therefore, it is nat-

ural to use unitarity cuts to compute these coefficienis —— ‘unitarity based
method’ [Bern, Dixon, Kosowerl].

Each scalar box integral has has a unique leading singularity (though one
has to use complex momentia to see itl), and the discontinuity of any desired

amplitude across this singularity is given by a quadruple cut. [Britto, Cachazo.
Feng]

The coefficient of this singuarity is = > A7 A= A== A7
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Unitarity-Based Methods at Higher Loops

Unitarity based methods for computing the coefficients can be generalized to
higher loop amplitudes [Cachazo, Buchbinder] [Bern, Dixon, Smirnov] [Bern,

Carrasco, Johansson, Kosower]

The first step in calculating an L-loop amplitude is to express it in terms of
a (hopefully) small number of relatively simple scalar integrals. For example,
the two-loop four-particle amplitude is given by [Bern, Rozowsky, Yan]

-/“lf" ~‘ltree = — I
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Unitarity-Based Methods at Higher Loops

Unitarity based methods for computing the coefficients can be generalized to
higher loop amplitudes [Cachazo, Buchbinder] [Bern, Dixon, Smirnov] [Bern,

Carrasco, Johansson, Kosower]

The first step in calculating an L-loop amplitude is to express it in terms of
a (hopefully) small number of relatively simple scalar integrals. For example,
the two-loop four-particle amplitude is given by [Bern, Rozowsky, Yan]

-f‘i.f'lv—itree =M = *
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Beyond one loop it is in general very difficult to determine which integrals

contribute to any particular amplitude.

We call this step ‘finding the integrand’. For example, the two-loop amplitude

on the previous slide is

/ dPp dPgq 1

(2m)P (2m)P p?q?(p— k1)?(p — k1 — k2)*(q + ka)? (g + ks + ka)?(p — q)*

The four-loop amplitude is equal to the sum of 8 integrals:

| | | /;,-
| | V /

[Bern, Czakon, Dixon, Kosower, Smirnov]

But unitarity doesnt offer much help with evaluating these nasty integrais!
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Beyond one loop it is in general very difficult to determine which integrals
contribute to any particular amplitude.

We call this step ‘finding the integrand’. For example, the two-loop amplitude
on the previous slide is
dPgq 1
210 (2m)YP p2g?(p — ki )i (p — kr — k2)2(g + ka)2(qg + k3 + ka)2(p— @)%

The four-loop amplitude is equal to the sum of 8 integrals:

i | " b/ ;”f

[Bern, Czakon, Dixon, Kosower, Smirnov]

But unitarity doesnt offer much help with evaluating these nasty integrais!

PirSg. 07100012 Page 26/115



N = 4 Yang-Mills Status Report
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Beyond one loop it is in general very difficult to determine which integrals
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N = 4 Yang-Mills Status Report
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Universal Infrared Behavior of Loop Amplitudes

Resummation work by Sterman and Tejeda-Yeomans , and infrared singular-
ity work by Catani, shows that in dimensional regularization to [ = 4 — 2¢,
planar n-particle L loop MHV amplitudes satisfy iterative relations of the form

MY (e) = PO (ML (e), ..., M (€)) + (FB) + egTNDMY (Le) + O(2) ,

where P'%) are some known polynomials.
The quantities f'“'and ¢'") are the L-loop terms in the functions
=9 25 o)—3 o
= =3

respectively called the cusp anomalous dimension and collinear anomalous
dimension. These two functions capture all information about the infrared

singularities.
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The Cusp Anomalous Dimension

The cusp anomalous dimension
FON) = 4\ —4C(2)A% + (4C(2)% + 12¢(4))A\° + O(\*)
governs the behavior of twist-two operators in the Iimit of very large spin:

A(Te[ZD°Z]) =S+ f(A\)log S+ O(S?). S> 1.

This quantity has long played an important role in quantitative checks of
AdS/CFT: Gubser, Klebanov, Polyakov identifled a certain siring state in
AdSs x S® whose energy is f(\) thereby providing a prediction for the strong
coupling behavior of this function.

Recently there has been much work on the apparent integrability of planar
N = 4 Yang-Mills, culminating in an exact prediction for [(\)[Beisert, Eden.
Staudacher].
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The Cusp Anomalous Dimension

The cusp anomalous dimension
FX) = 4X — AC(DANZ + (AC(2)2 + 12¢(A))N3 + O
governs the behavior of twist-two operators in the limit of very large spin:

A (Tr[ZDSZ]) = S+ f(A) log S + O(SY). 5% 1

This quantity has long played an important role in quantitative checks of
AdS/CFT: Gubser, Klebanov, Polyakov identifled a certain string state in
AdSs x S® whose energy is f(\) thereby providing a prediction for the strong
coupling behavior of this function.

Recently there has been much work on the apparent integrability of planar
N = 4 Yang-Mills, culminating in an exact prediction for f(\)[Beisert, Eden.
Staudacher].
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Targets: f(\)and g(\)

Much less is known about ¢(A); I'll mention its AdS/CFT prediction later...

The one-loop four-particle amplitude takes the form

| 2 log(st) 272
]--'. 1 _— t'}:liﬂl'.:‘ | P |
J_!_IL €)— — - —_I_{_j}_]';.‘i lt._in;]"—|— =

€ € )

1+ O(e)
From the relation
_-‘l{_lij;.’{"f'l —— _P':L:'I: J.[_;il]EF'] ...... A . ”':'} o j_.-;L_- & ,-—’_.r_;lf_l JI_IIT—? Le) & C}[:FU:]

we see that we can read off the L loop contribution to f(A) and g(A) from
the 1/e? and 1 /e singularities in the L loop amplitude.

Our interest in exploring the hidden structure in these amplitudes was partly

motivated by the desire to develop an efficient algorithm for computing these
quantities, which | will now briefly describe.
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Preliminary Comments

e We consider the L-loop four-gluon amplitude in D — 4 — 2e.

e Supersymmetry determines the helicity structure of the amplitude to be
the same as that of the tree-level amplitude.

e The ratio MY} = AW /A is therefore a function only of € and the
Mandelstam variables s, 7.

e By crossing symmetry, the amplitude is symmetric under s — 7.

e The amplitude has dimensions of M/ ~ [length]*<".

e [ herefore, it can be written as

_ 1 |
e o B A (L) .
NGnE) = e

MW (e, z) =M (e 1/2).
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o Amplitudes are almost always studied in an expansion around € = ().

e The leading singularity is e 2L with higher order terms in the € expansion
becoming more and more complicated. For example at one-loop

\ | _ 3 j a7 (& &

|i — B (2 ] [fﬂ}u1{~l‘i—|—lﬂmii‘)

T 1 3

. 1 .
+€ [Hmm(-l‘T + Hoo11(—x) + Horo1(—x) + Hiooa(—x) — ;Lﬂnm{—ﬂl‘i

| L’
—LHgll{—l F—— LHlDl{—l } S - _Hll{—l 3 3'-.,[ )}Hlli —E)F FHIE_E)

3
—CiSHH—=)+ —Q(E_Lﬂli—1}+ g 7 =

j i G2y _5 €l 4_-4&17*1 .
64 24 * 720 i

where L. = In . Adapted from Bern.Dixon,Smirnov.
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The Transcendentality Hypothesis

It is apparently a property of the expansion of any L-loop amplitude that all
of the terms which appear at any given power in € have the same degree of
transcendentality.

= _} - g = - = = = =
The coefficient of e 22 7% is a linear combination, with rational coefficients,

of terms with degree of transcendentality A

il ) — &
dilnx} — L
d(¢C(k)) = K,
d(AB)

None of the numbers ((5). (7). ... has been proven to be irrational—
let alone franscendentall
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o Amplitudes are almost always studied in an expansion around € = ().

e The leading singularity is e 2L with higher order terms in the € expansion
becoming more and more complicated. For example at one-loop
2

L _, . .
‘ = |:IL‘—|—4C{2)] —I—F[Hﬂm{i‘i—l—ﬁﬂmi-t‘)

€

|

| e _ R 3 I3 17¢(3)
/—\_EL’HJJ—IJ—39{2)1:11(_—,1%—.—uzu: e ]

2 i 3

. 1 :
+€ [HDl]ﬂl{*f]' + Hop11(—x) + Ho1o1(—x) + Hio01(—x) — ;Lﬂnm{—i‘?

| % _ B
—LHgyi(—x) — LHj01(—x) + ?Hn{ —x}- F- 2 =) |+ l—,)Hli—i‘)
B 2 C(3) 417t

3 2
Y e S L5 & ey i 5 : e e e
C(3)Hal ‘1)+2(,{__‘:LH1( =) I 4 == Y L 5 L+ 72[]] -+

where L. = In . Adapted from Bern.Dixon,Smirnov.
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The Transcendentality Hypothesis

It is apparently a property of the expansion of any L-loop amplitude that all
of the terms which appear at any given power in € have the same degree of

transcendentality.

The coefficient of ¢ 2£7* is a linear combination, with rational coefficients,
of terms with degree of transcendentality A

il ot =)} — E
dilbx; — 1,
HMclk)) = k.

d(AB)

—

@ For the Nitpicky Mathematician
None of the numbers ((5). (7). ... has been proven to be irrational—

let alone franscendentall
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e Amplitudes are almost always studied in an expansion around € = ().

e The leading singularity is e 2L with higher order terms in the € expansion
becoming more and more complicated. For example at one-loop
/ )

| 1 o .
S |:IL2+4C;{2}] "‘F[ﬂ}m{«”ﬂLlﬂﬂlﬂ”

€

| ) 3.
N -Le2m (o) —3@B(—2) - Sc@)L

E };3 " 17¢(3)
12 3

. _ 1 :
+€ Hogo1(—=x) + Hop11{—x) + Hor01(—=) + Hipo1(—x) — ;Lﬂnml—ﬂl‘}

, L? _ o
— Loy} — L gt )} THII{ —r)+3((2)H 1 (—x) + 1—‘)H1;—*r)

B2 2 ¢(3) 417t

3 >
S f__ S a0 e e = i e s
CB)H(—=) + 5C(LH(—x) + o + 5 L7 — 5L+ 72:}] &

where L — In r. Adapted from Bern.Dixon,Smirnov.
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The Transcendentality Hypothesis

It is apparently a property of the expansion of any L-loop amplitude that all
of the terms which appear at any given power in € have the same degree of
transcendentality.

The coefficient of ¢ 2£7% is a linear combination, with rational coefficients,
of terms with degree of transcendentality £

L. o =) — &
dilnx; — 1,
ik} — &

d(AB) d(A) +d(B).

g% For the Nitpicky Mathematician

None of the numbers ((5). (7). ... has been proven to be irrational—

let alone franscendentall

PirSg: 07100012 Page 41/115



o Amplitudes are almost always studied in an expansion around € = ().

e The leading singularity is e 2L with higher order terms in the € expansion
becoming more and more complicated. For example at one-loop

[ l ; .
‘ — + {IL2+4C{3)] +F[H001{~1‘3—|—£Hmi-fl

2 12 3

i ' 3 LS 17¢(3
/ \——L Hy(—x) —3¢(2)H1(—=z) — 5€(2)L — + L1 }]

. : : 1 :
+€ [Hmm{-f‘} + Hop11{—x) + Ho101(—=) + Hi001(—x) — ;Lﬂnmi—i"i

] F | /s
—LHgy(—=x) — LHyg1(—x) + —Hn{—l ) +3C(2)Hy1(—=) + FHI {(—=)

< C(3) 417t

(3)Hi(—x) + . 2y LH +L +g{2}L2 —F —
Sty =)t U=l o b o > 720

where L — In r. Adapted from Bern.Dixon,Smirnov.
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Preliminary Comments

e We consider the L-loop four-gluon amplitude in D — 4 — 2e.

e Supersymmetry determines the helicity structure of the amplitude to be
the same as that of the tree-level amplitude.

e The ratio M'F) = A /A" is therefore a function only of € and the
Mandelstam variables s, 7.

e By crossing symmetry, the amplitude is symmetric under s — 7.

e The amplitude has dimensions of M/ ~ [length]*<".

e [ herefore, it can be written as

M\EX e 5. 8) = ML) (e, 1),

(st)<L/2

MW (e, 2) = M) (e, 1/z).
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o Amplitudes are almost always studied in an expansion around € = ().

e The leading singularity is e 2L with higher order terms in the € expansion
becoming more and more complicated. For example at one-loop
2

| | . .
‘ ==+ |:IL2_|__LC{2)] —f—F|: Hooi1(—x)+ LHo1(—x)

€

| 2 : 5 L3 17¢(3
/—\_EL_HH_«F}—39{"3)H11—.1‘}—3t;{2}£— & A }]

12 3
2 - 1 ;
+e” | Hogo1(—x) + Hop11(—x) + Hor01(—x) + Hip01(—x) — ;LHIJGH—I?

| _ J | i
—LHgy3(—=) — LHip1(—x) + ?Hn{ —xF- - (2 En(—=) Fﬂli—«l‘}

E® )

F(VH --3"?‘LH ) (2) 12 g(S}L 417*
—&£ k<H) 1{—‘1}1—5(._.(—} li—i)—i—a—F 51 ~ g = =0 S Tt

where L. = In . Adapted from Bern.Dixon,Smirnov.
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The Transcendentality Hypothesis

It is apparently a property of the expansion of any L-loop amplitude that all
of the terms which appear at any given power in € have the same degree of

transcendentality.

- _} - = - - = - =
The coefficient of e 22 7% is a linear combination, with rational coefficients,

of terms with degree of transcendentality 4.

dtl,....(—=)) = kK
dilex} — 1,
d(¢C(k)) = &,
d(AB) = d(A)+d(B).

@ For the Nitpicky Mathematician
None of the numbers ((5). (7). ... has been proven to be irrational—

let alone franscendentall
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Transcendentality allows for a tremendous compression of the amount of
‘data’ required to specify any amplitude.

Any amplitude can be expressed, order by order in €, not in terms of com-
pletely arbitrary functions of 1, but rather in terms of a finite collection of
rational numbers.

1 number g | " 2 numbers ‘' 5 numbers
2L = 2L—2 2L—3

M) =

It is unfortunate that current technologies for evaluating multi-loop amplitudes
obscure this structure. Reducing a desired amplitude to its rational ‘coeffi-
cients’ is like picking needles out of a haystack...
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Transcendentality allows for a tremendous compression of the amount of

‘data’ required to specify any amplitude.

Any amplitude can be expressed, order by order in €, not in terms of com-
pletely arbitrary functions of 1, but rather in terms of a finite collection of
rational numbers.

1 number ' 2 mumbers 5 numbers

tL)
M [ 2L T = T e2L—2 £ e2L—3

It is unfortunate that current technologies for evaluating multi-loop amplitudes
obscure this structure. Reducing a desired amplitude to its rational ‘coeffi-
cients’ is like picking needles out of a haystack...
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The Transcendentality Hypothesis

It is apparently a property of the expansion of any L-loop amplitude that all
of the terms which appear at any given power in € have the same degree of
transcendentality.

The coefficient of e 227" is a linear combination, with rational coefficients,

of terms with degree of transcendentality A

St b Tl — &
dilexz} — 1.
d(C(k)) = Kk,
d(AB) = d(A)}+d(B)

@ For the Nitpicky Mathematician

None of the numbers ((5). (7). ... has been proven to be irrational—
let alone franscendentall
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o Amplitudes are almost always studied in an expansion around € = ().

e The leading singularity is e 2L with higher order terms in the € expansion
becoming more and more complicated. For example at one-loop

\J%jL[L

ILE - J:C{ﬂ)] e [ — Hoo1(—x) + LHo1(—x)

€

~J= " 3

| _ 3
/ —= L Hy(—x) —3C(2)H 1 (—=) — ;g(ill

L3 1.1;{3)]

. 1 :
+€ Hooo1(—x) + Hop11(—x) + Hor01(—=) + Hioo1(—x) — ;LHIJDI(_'”

| N 5 L3
—EHosit—x}— Lt —=) -+ ?Hn{ —r) +3(2)H1(—x) + FH1(—~E‘)

B €2 C(3) 417

3 2
g e —C(2 —r e
C(3)Hi(—x) + gg(_)ﬂﬂﬂ )1 61 = = o1 L 5 L + 72”] o

where L. = In . Adapted from Bern.Dixon,Smirnov.
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The Transcendentality Hypothesis

It is apparently a property of the expansion of any L-loop amplitude that all
of the terms which appear at any given power in € have the same degree of
transcendentality.

- _) T . . - . . . .
The coefficient of e 2L 7" is a linear combination, with rational coefficients,

of terms with degree of transcendentality A

et il ..t =} — k&
dilhx} — 1L
iy — &
d(AB) = d(A)+d(B)

| @ For the Nitpicky Mathematician

None of the numbers ((5). (7). ... has been proven to be irrational—
let alone franscendentall
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Transcendentality allows for a tremendous compression of the amount of

‘data’ required to specify any amplitude.

Any amplitude can be expressed, order by order in €, not in terms of com-
pletely arbitrary functions of r, but rather in terms of a finite collection of
rational numbers.

1 number 2 mumbers 5 numbers

V(L) —
M*™ = 2L +_- + 2E—2 w 2L—3

It is unfortunate that current technologies for evaluating multi-loop amplitudes
obscure this structure. Reducing a desired amplitude to its rational ‘coeffi-
cients’ is like picking needles out of a haystack...
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Beyond one loop it is in general very difficult to determine which integrals
contribute to any particular amplitude.

We call this step ‘finding the integrand’. For example, the two-loop amplitude
on the previous slide is

dPp dPgq 1
J (2m)P (2=)P pPa?(p — k1)?( -

The four-loop amplitude is equal to the sum of 8 integrals:

. 77
|| W

i | /

[Bern, Czakon, Dixon, Kosower, Smirnov]

But unitarity doesnt offer much help with evaluating these nasty integrais!
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N = 4 Yang-Mills Status Report
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Transcendentality allows for a tremendous compression of the amount of

‘data’ required to specify any amplitude.

Any amplitude can be expressed, order by order in €, not in terms of com-
pletely arbitrary functions of =, but rather in terms of a finite collection of
rational numbers.

1 number 0 2 mumbers 5 numbers

V(L) —
MY = 2L +4,:,2,i:—1+ 2L—2 * 2L—3

It is unfortunate that current technologies for evaluating multi-loop amplitudes
obscure this structure. Reducing a desired amplitude to its rational ‘coeffi-
cients’ is like picking needles out of a haystack...
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Searching for Golden Nuggets

The iterative relations imply that one has to sift all the way through to the e 2in
order to find any ‘new’ information—the vast majority of the rational coef-
ficients which specify the L-loop amplitude are completely determined in
terms of lower loop amplitudes.

fixed fixed fixed +
— o —+
£ €
fixed + |
_|_

M)

+[t"u.:e{1+ : ]—FC}{E}- 1)

The one unfixed number at order € 2 is f‘L\J. This quantity of particular
interest to us: in fact it is the L-loop contribution to the cusp anomalous

dimension.
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Targets: f(A) and g(\)

Much less is known about ¢(A); I'll mention its AdS/CFT prediction later...

The one-loop four-particle amplitude takes the form

: 2  log(st) 272
inl'[rf]:— — L —log slogt +

€ € 3

+ O(€)

From the relation

inL'{F] — J.fil]f.ﬁ] ...... \ fJEL_l] (e)) + (% + eqg'V ._LUJ':L:-_J[,-_-} 1 €™
we see that we can read off the L loop contribution to f(A) and g(A) from

the 1/¢* and 1 /¢ singularities in the L loop amplitude.

Our interest in exploring the hidden structure in these amplitudes was partly

motivated by the desire to develop an efficient algorithm for computing these
quantities, which | will now briefly describe.
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Searching for Golden Nuggets

The iterative relations imply that one has to sift all the way through to the e 2in
order to find any ‘new’ information—the vast majority of the rational coef-
ficients which specify the L-loop amplitude are completely determined in
terms of lower loop amplitudes.

fixxed fixed fixed +
.7}_-. _|_ e _|_ 3 +
€2 €

fixed + |
_|_

M)

+[fb:a-1+ _ ] + O(e). 1)

The one unfixed number at order € 2 is f"“. This quantity of particular
interest to us: in fact it is the L-loop contribution to the cusp anomalous

dimension.
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A Sieve?

It would be nice to develop some kind of technology which would act like a
sieve to help us seek out these golden nuggets.

For example, it would be great if there were a procedure to isolate those

integrals which contribute to any particular coefficient of interest, say

4. 9 : :
€ Hﬂlml —

and that would enable us to calculate the rational number multiplying any
given term without calculating everything else.

This is probably too much to hope for, but there is an efficient algorithm for
reading off the coefficient of any term of the form

' k
FF LJg o 3

These are precisely the terms touched by the cusp anoamlous dimension...
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Searching for Golden Nuggets

The iterative relations imply that one has to sift all the way through to the e 2in
order to find any ‘new’ information—the vast majority of the rational coef-
ficients which specify the L-loop amplitude are completely determined in
terms of lower loop amplitudes.

. fixed fixed fixed +
MY — _}L‘ + o+ 3'“ Ty
€2 €

fixed + |
_|_

+[&md+. ]+Cﬁﬂ. (1)

The one unfixed number at order € 2 is f“[j. This quantity of particular
interest to us: in fact it is the L-loop contribution to the cusp anomalous

dimension.
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A Sieve?

It would be nice to develop some kind of technology which would act like a
sieve to help us seek out these golden nuggets.

For example, it would be great if there were a procedure to isolate those

integrals which contribute to any particular coefficient of interest, say

4-9F
€ Hmm =

and that would enable us to calculate the rational number multiplying any
given term without calculating everything else.

This is probably too much to hope for, but there is an efficient algorithm for
reading off the coefficient of any term of the form

FF‘ LJg 5 o i3

These are precisely the terms touched by the cusp anoamlous dimension...
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Targets: f(\)and g(\)

Much less is known about ¢(A); I'll mention its AdS/CFT prediction later...

The one-loop four-particle amplitude takes the form

. 2 log(st) 27
S 2 og (ST =
M, (e) = ——=+ —log slogt +

€ € 3

+ Ol e€)

From the relation

f‘nfibifl — plE) J[_il]{_-‘-'} ..... JfJEL_l]{'F] b ) L cqgt™ .*1[4'7-5'-1[,: ) = O(e9)
we see that we can read off the L loop contribution to f(A) and g(A) from

the 1/¢* and 1 /¢ singularities in the L loop amplitude.

Our interest in exploring the hidden structure in these amplitudes was partly

motivated by the desire to develop an efficient algorithm for computing these
quantities, which | will now briefly describe.

PirSg. 07100012

Page 61/115



Targets: f(\)and g(\)

Much less is known about ¢(A); I'll mention its AdS/CFT prediction later...

The one-loop four-particle amplitude takes the form

-. 2 log(st) P
.Uril'[F] — ——— —log slogt + =

€ € )

+ O(e¢)

From the relation

f‘lfib{ﬁ'} — J.fil]{ac] ...... \ [JEL_“{'F} } 4 ) gt :U::"JEF] 1 O
we see that we can read off the L loop contribution to f(\) and g(\) from

the 1/¢* and 1 /¢ singularities in the L loop amplitude.

Our interest in exploring the hidden structure in these amplitudes was partly

motivated by the desire to develop an efficient algorithm for computing these
quantities, which | will now briefly describe.
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o Amplitudes are almost always studied in an expansion around € = ().

— 2L

e The leading singularity is € ., with higher order terms in the € expansion

becoming more and more complicated. For example at one-loop

\_/ 2 B |
| =—=+ {ILE - J:Cfﬂ}] +*"[ Hoo1(—x) + LHo1(—x)

‘ €

. | . 3 I_3 17CE3
/j_.?[’ﬂﬂ—l‘}—3¢;{2_}H1(—.z"1—;§(2}£ =y }]

12 3

1 .
2| Hooo1 (—x) + Hoo11(—x) + Horo1(—=x) + Higor(—x) — ;LHmn{—-l‘l

= LB

, o |
—LHegyi(—=) — LHijga(—<x) + 7H11{ —x - 32 =)+ Uﬂﬂ— x)

C(3) 417

3 E {2 - (¢
—((3)Ha(—x) + 5 C(2)YLHy(—x) + 6—L+ 51 L= — 5 L+ ,1_2[}] = ade

where L. = In . Adapted from Bern.Dixon,Smirnov.
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Searching for Golden Nuggets

The iterative relations imply that one has to sift all the way through to the e 2in
order to find any ‘new’ information—the vast majority of the rational coef-
ficients which specify the L-loop amplitude are completely determined in
terms of lower loop amplitudes.

fixed fixed fixed +
— o+ —— +
< €
fixed + |
_|_

M

4—[{'1}:&-{114— 2 unt ] + Ofe€). (1)

The one unfixed number at order ¢ 2 is f“zj. This quantity of particular
interest to us: in fact it is the L-loop contribution to the cusp anomalous

dimension.
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A Sieve?

It would be nice to develop some kind of technology which would act like a
sieve to help us seek out these golden nuggets.

For example, it would be great if there were a procedure to isolate those

integrals which contribute to any particular coefficient of interest, say

4—-2L
€ Hoio1(—x)

and that would enable us to calculate the rational number multiplying any
given term without calculating everything else.

This is probably too much to hope for, but there is an efficient algorithm for
reading off the coefficient of any term of the form

Fé luj.{k I

These are precisely the terms touched by the cusp anoamlous dimension...
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Some New Loop Technology

STEP 1. We observe that any dimensionally regulated L-loop four-particle
Feynman integral can be written in the form (Mellin-Barnes representation)

[Smirnov, Tausk, Czakon, ._]

—+i
=t / dy 9 F (y. €), Fly,e) = F(—y,€)

for some function F'( y. €), which is relatively easy to determine. As an exam-
ple (not representative, because of its simplicity):

Vi

= F(y.€) =T(1+3e+y)[*(y—3€) % (—y—3e)[(1—1e—y).

The final integral over y is the really nasty one.
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« Amplitudes are almost always studied in an expansion around € = ().

e The leading singularity is e 2L with higher order terms in the € expansion
becoming more and more complicated. For example at one-loop

N *3 Al 7 (4 =
Vo ——L Hi(—x) —3¢(2)Hy(—x) — 5¢(2)L " }}

|: e ] [ — Hoo1(—x) + LHo1 (—x)

2 12 3
2 - ; j .
+€° | Hooo1(—=) + Hoo11(—x) + Horo1(—x) + Hioo1(—x) — ;Lﬂnmi—i"i

| } Ve B
—LHgy(—x) — LHyg3(—x) + —Hn{—l +- (2 Hn(—=)+ FHI —x)

3 Er & . €35 4174
_." - e ey ) ey - o s o
C(3)Hy(—x) + Q(_ LH:(—r) + = =5 = 7 ] 5 " — 2t

where L — In r. Adapted from Bern.Dixon,Smirnov.
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Some New Loop Technology

STEP 1. Any four-particle integral = [ dy Y F(y.€).

STEP 2. It we want to study some iterative equation, it is clearly tempting to
try to collect all of the terms appearing in some relation inside one i integral,
and then expand through O(¢) under the 1y integral.

This is not possible, because F'( y. ) has poles which collide with the integra-
tion contour Re(y) =0 ate =0, eg.

F(y.e) =T(1+ ze+y)T*(y — 36)T*(—y — 36)T(1 — 3e —y).

This signals that expanding in ¢ and performing the y integral do not com-
muie—we are not allowed to expand in € under the integral. We call these
annoying poles obstructions because they obsiruct our ability to collect ev-
erything under a single integral which is valid near ¢ = 0.
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Obstructions

The singularities which appear at y = 0 in the € — 0 limit can be isolated
by using the formula

IS R

Dyze Ty W
(and its derivatives). This leads to a simple, unique decompaosition of any

amplitude into

[ dy =¥ [PF(y) + G(y)],

— 0

where the first term is nonsginular and the obstruction terms (- (y ) are given
by a polynomial in derivatives acting on O y). If we note that
. ~+200 {.gzk

>
(" z)" — dy r¥—
J —ioe g dﬂ'zk

oy).

then we see that, in r space, obsiructions are always polynomial in In? r
(they must be even in In o because of the r — 1/ symmetry.
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Product Algebra Structure

Thus, there Is a canonical way to write any amplitude as a sum of two pieces:

obstructions < singular part of the amplitude’s Mellin transforn
P(In? r) contributions to the amplitude
bulk term < smooth part of the Mellin transform at y = 0

harmonic polylogs in the amplitude.
One useful aspect of this decomposition is that

obstruction x obstruction obstruction
obstruction x bulk term bulk term

bulk term x bulk term bulk term

This means that obstructions must separately satisfy any iterative relation.
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Obstructions

The singularities which appear at y = 0 in the € — 0 limit can be isolated
by using the formula

: 1 (e

}1_11%' =1 — P; + 7o(y).
(and its derivatives). This leads to a simple, unique decomposition of any
amplitude into
[ dy x¥ [PF(y) + G(y)],

— ¥

where the first term is nonsginular and the obstruction terms G (v) are given
by a polynomial in derivatives acting on o ( y ). If we note that

= - ~+200 ﬂrzk
(In® z)* = [ - dy J-ydyﬂ_ 5(y).
of — T OO0 -

then we see that, in r space, obsiructions are always polynomial in In? r
(they must be even in In & because of the r — 1/ symmetry.
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Product Algebra Structure

Thus, there Is a canonical way to write any amplitude as a sum of two pieces:

obstructions < singular part of the amplitude’s Mellin transforn
P(In? r) contributions to the amplitude
bulk term <— smooth part of the Mellin transform at y = 0

harmonic polylogs in the amplitude.
One useful aspect of this decomposition is that

obstruction x obstruction obstruction
obstruction x bulk term bulk term
bulk term x bulk term bulk term

This means that obstructions must separately satisfy any iterative relation.
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Targets: f(\)and g(\)

Much less is known about ¢(A); I'll mention its AdS/CFT prediction later...

The one-loop four-particle amplitude takes the form

-. 2 log(st) 272
Jir_lil'[f?'l == — 5 —11_11}_1;.‘_&' luj_{f—|— =

ik
€ € 3

+ O(e)
From the relation
*1{4[15'{5} — PtL) ij‘l]{ﬁ} ...... \ fJEL_I".fF:H 4+ (FE) 4 gD __UJLL:-I_LF] + O

we see that we can read off the L loop contribution to f(A) and g(A) from
the 1/¢? and 1 /¢ singularities in the L loop amplitude.

Our interest in exploring the hidden structure in these amplitudes was partly

motivated by the desire to develop an efficient algorithm for computing these
quantities, which | will now briefly describe.
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Some New Loop Technology

STEP 1. Any four-particle integral = [ dy Y F(y,€).

STEP 2. It we want to study some iterative equation, it is clearly tempting to
try to collect all of the terms appearing in some relation inside one y integral,
and then expand through O(¢) under the y integral.

This is not possible, because F'( 4. ) has poles which collide with the integra-
tion contour Re(y) = 0Oate =0, eg.

Fly.e)=T(1+ e+ y)T?(y — 2e)T*(—y — 2e)T(1 — 2e — y).

This signals that expanding in ¢ and performing the y integral do not com-
muie—we are not allowed to expand in € under the integral. We call these
annoying poles obstructions because they obsiruct our ability to collect ev-
erything under a single integral which is valid near e = 0.
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For example, the one, two and three loop obstructions are given by

2 272 log’z 17¢(3
05 :|—|—¢_:{ (((I)

MY~ =t - —
— 3 4 &

¥ 5 2 4
m~log”x log hr]

i 4 62

5972((3) 11¢(3)log? =
36 24
A ) R Ap. X W
i {]L. { '3 j " '—]'3-“- _]_i‘J__.I Az _|_ ]'OJ': ;1 C}( f5 j /
5760 4605

“x - 1 65¢(3) - e - 72 log? r
€ 6 90 24

e S~ i .
! i l;" 5 .2'_]' ﬁi} ]_ b |
S S sl s ((3) log
10 12 12
19997° " 95¢(3)? i 7t log” x i 72 log™ x % log® =
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+e

] 1 ).



———F . = -
1632960 13 20160 256 256

[244261:*5 107¢(3)2 253ntlog’z 13n%log’z  3log® *r]

+QO(€e).

It is straightforward to verify that these expressions satisfy the two-loop and
three-loop iteration relations through order e
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Summary

To summarize: In order to read off the L-loop cusp anomalous dimension
from an L-loop four-gluon amplitude, we don’t need to calculate the entire
amplitude.

It is sufficient to start with the (relatively far simpler) expressions for the Mellin
transform of the amplitude, and then just read off the coefficient of

y)
F-z

since only this particular coefficient contributes to the cusp anomalous di-
mension.

This algorithm is easily implemented in Mathematica (building on some code
written by Czakon. and greatly optimizes the calculation of the cusp anoma-

lous dimension.
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Punchline

This method allows us direct access to the cusp anomalous dimension with-
out having to first calculate both sides of the relation

J[{—H = i[-Jlr{_l_'! }—L . {_‘wur[l?.}ijiriii —I—JIQI}JI[SJ S é! J{{'E_’] }2 = if,{_HJIIl-:u

as (complicated) functions of ., and then relying on delicate cancellations to
expose the number f (4) that we are ultimately interested in.
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Results

As an application of our method we have obtained the four-loop cusp anoma-
lous dimension

£ — _117.1789 + 0.0002

In very good agreement with the BES conjecture

& = —(4¢(2)3 + 24€(2)C(4) + 50€(6) + 4¢€(3)%) = —117.1788285. . .

and a significant improvement over the BCDKS result
fH = 1172402

The improvement is possible because we only need to compute the ‘obstruc-
tions’, not the full amplitude—we can throw most of the terms away.

We also found the four-loop collinear anomalous dimension

) = 12409+ 0.3

[Thanks to SHARCNETI]
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The ABDK Relations

Similar relations hold in any gauge theory.

However, it is has been conjectured that in \" = 4 Yang-Mills something
special happens: the

1O ]

term in the iterative relation is believed to actually be
+ e 1 (et)

where (') is a constant (independent of all of the gluon momenta)!

This conjecture has only been checked in three cases so far: 4 particles at 2
and 3 loops, and 5 particles at 2 loops [Anastasiou, Bern, Dixon, Kosowerl],
[Bern, Dixon, Smirnov], [Cachazo, MS. Volovich], [Bern, Czakon, Kosower,
Roiban, Smirnov]. It seems innocent but the consequence is profound...
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The ABDK Relations

Similar relations hold in any gauge theory.

However, it is has been conjectured that in \" = 4 Yang-Mills something
special happens: the

+O()

term in the iterative relation is believed to actually be
+e\B) L o)

where (') is a constant (independent of all of the gluon momenta)!

This conjecture has only been checked in three cases so far: 4 particles at 2
and 3 loops, and 5 particles at 2 loops [Anastasiou, Bern, Dixon, Kosower],
[Bern, Dixon, Smirnov], [Cachazo, MS, Volovich], [Bern, Czakon, Kosower,
Roiban, Smirnov]. It seems innocent but the consequence is profound...
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| now want to move on to the ‘and AdS/CFT’ part of my talkl

Recall the iterative formula

JI,I?L () = P(L)( _11","11 e - \ f,lf_l el L LB F_{;':L:' IIJLI'II '(Le) - O™
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The ABDK Relations

Similar relations hold in any gauge theory.

However, it is has been conjectured that in \" = 4 Yang-Mills something
special happens: the

+O(2)

term in the iterative relation is believed to actually be
+C) + O(eh)

where (') is a constant (independent of all of the gluon momenta)!

This conjecture has only been checked in three cases so far: 4 particles at 2
and 3 loops, and 5 particles at 2 loops [Anastasiou, Bern, Dixon, Kosowerl],
[Bern, Dixon, Smirnov], [Cachazo, MS. Volovich], [Bern, Czakon, Kosower,
Roiban, Smirnov]. It seems innocent but the consequence is profound...
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The BDS Ansatz

If true, then the all-loop, planar, four-particle amplitude sums up to

() gl ) tX)
fA) gl y T(A

2e2 - 3

log?(t/s) 4+ c(X) + O(e)

].'[Jl';ll. ‘_—.ll_ ".II.,'—.II_'.I:I'EE- ] — —

where s. ¢t are the usual Mandelstam invariants.

[A few inconsequential liberties have been taken in writing this equation.]

Recently, Alday and Maldacena have given a prescription for using AdS/CFT
to calculate gluon scattering amplitudes at strong coupling. For four particles,
an explicit calculation yields precisely the structure shown above.

For more than four particles the calculation is more difficult but the singularity
structure has been reproduced [Buchbinder] .
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The ABDK Relations

Similar relations hold in any gauge theory.

However, it is has been conjectured that in \" = 4 Yang-Mills something
special happens: the

+O(2)

term in the iterative relation is believed to actually be
HOEY 1 Oet)

where (') is a constant (independent of all of the gluon momenta)!

This conjecture has only been checked in three cases so far: 4 particles at 2
and 3 loops, and 5 particles at 2 loops [Anastasiou, Bern, Dixon, Kosowerl],
[Bern, Dixon, Smirnov], [Cachazo, MS, Volovich], [Bern, Czakon, Kosower,
Roiban, Smirnov]. It seems innocent but the consequence is profound...
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The BDS Ansatz

If true, then the all-loop, planar, four-particle amplitude sums up to

(A g(A) (A)
f(A) g 4 TA

LS St LIRS id 1
log=(t/s) + () + O(e")

log( A/ Atree) = —

262 - 3
where s.t are the usual Mandelstam invariants.

[A few inconsequential liberties have been taken in writing this equation.]

Recently, Alday and Maldacena have given a prescription for using AdS/CFT
to calculate gluon scattering amplitudes at strong coupling. For four particles,
an explicit calculation yields precisely the structure shown above.

For more than four particles the calculation is more difficult but the singularity
structure has been reproduced [Buchbinder] .
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Alday-Maldacena

Their prescription is computationally equivalent to evaluating a certain Wilson
loop composed of null line segments:

A byproduct of their calculation is the strong coupling prediction

A
(X)) =2(1 — Joe=2) ==
4 - o \( 16
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The BDS Ansatz

If true, then the all-loop, planar, four-particle amplitude sums up to

flA)

2e? - 3

g(A) (A) :
= ¥ 1Y lugz[f,-‘ s)+e(X) + O(eh)

1'[_."&' .,—:ll_ "Ilr..'—.ll.'}:re.;_:- j —
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Alday-Maldacena

Their prescription is computationally equivalent to evaluating a certain Wilson
loop composed of null line segments:

A byproduct of their calculation is the strong coupling prediction

- FH 1)
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The BDS Ansatz

If true, then the all-loop, planar, four-particle amplitude sums up to

() gl A) X .
—’ZFQ' T ";'_ + ] = log?(t/s) + c(X) + O(e)
4E € ~

log( A/ Atree) =
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Alday-Maldacena

Their prescription is computationally equivalent to evaluating a certain Wilson
loop composed of null line segments:

A byproduct of their calculation is the strong coupling prediction
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The BDS Ansatz

If true, then the all-loop, planar, four-particle amplitude sums up to

F(N)

2e2 - 3

alA) (X) : :
IA) | TN 102(2/5) +-c(X) +O()

1'[_}&' .,—:ll_ "III..Jl.tre.;_:- j —_

where s.t are the usual Mandelstam invariants.

[A few inconsequential liberties have been taken in writing this equation.]

Recently, Alday and Maldacena have given a prescription for using AdS/CFT
to calculate gluon scattering amplitudes at strong coupling. For four particles,
an explicit calculation yields precisely the structure shown above.
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Alday-Maldacena

Their prescription is computationally equivalent to evaluating a certain Wilson
loop composed of null line segments:

—\.- -\HX""
I-l .\. -\-\\\
£F | =%
i p

1l|'|I

T18
(|
1

-1 I|
Wi

A byproduct of their calculation is the strong coupling prediction

A .
P + O(1)

19

g(A) = 2(1 — log 2) \
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Alday-Maldacena

Their prescription is computationally equivalent to evaluating a certain Wilson
loop composed of null line segments:

A byproduct of their calculation is the strong coupling prediction

GgiA) = 2 N Ton
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A Guess for What g( )\ ) Might Look Like

A Pade approximant for ¢(\) based upon all available data (through four
loops at weak coupling and leading order at strong coupling) looks like

It is an interesting open problem to relate ¢( \) to more familiar observables
that one might compute from integrability, for example.
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Alday-Maldacena

Their prescription is computationally equivalent to evaluating a certain Wilson
loop composed of null line segments:

A byproduct of their calculation is the strong coupling prediction

A

=5

19

5,:%\}:2{1—11;5;‘23\{ + O(1)
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Results

As an application of our method we have obtained the four-loop cusp anoma-
lous dimension

F — _117.1789 £+ 0.0002

In very good agreement with the BES conjecture

Y = —(4¢(2)* +24¢(2)¢(4) + 50¢(6) +4¢(3)%) = —117.1788285 . ...

and a significant improvement over the BCDKS result
fFA = _117.2+0.2

The improvement is possible because we only need to compute the ‘obstruc-
tions’, not the full amplitude—we can throw most of the terms away.

We also found the four-loop collinear anomalous dimension

gt = -1240.910.3

[Thanks to SHARCNETI]
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| now want to move on to the ‘and AdS/CFT’ part of my talkl

Recall the iterative formula

JL'?L () = P(L) _Ur,lgl i 2 \ f_.'-fi_l "(e)) ('™ - g™ IIJLIEI'[LF ) + O(eY)
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The ABDK Relations

Similar relations hold in any gauge theory.

However, it is has been conjectured that in \" = 4 Yang-Mills something
special happens: the

+O(2)

term in the iterative relation is believed to actually be
LGP Oet)

where C'') is a constant (independent of all of the gluon momenta)!

This conjecture has only been checked in three cases so far: 4 particles at 2
and 3 loops, and 5 particles at 2 loops [Anastasiou, Bern, Dixon, Kosowerl],
[Bern, Dixon, Smirnov], [Cachazo, MS. Volovich], [Bern, Czakon, Kosower,
Roiban, Smirnov]. It seems innocent but the consequence is profound...
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The BDS Ansatz

If true, then the all-loop, planar, four-particle amplitude sums up to

: (A () () . |
log( A/ Atree) = —’f £ L3 + / - 'J lug%ﬁ; s)+clA) + L’,){Flﬁ

262 - 3

where s. t are the usual Mandelstam invariants.

[A few inconsequential liberties have been taken in writing this equation.]

Recently, Alday and Maldacena have given a prescription for using AdS/CFT
to calculate gluon scattering amplitudes at strong coupling. For four particles,
an explicit calculation yields precisely the structure shown above.

For more than four particles the calculation is more difficult but the singularity
structure has been reproduced [Buchbinder] .
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Alday-Maldacena

Their prescription is computationally equivalent to evaluating a certain Wilson
loop composed of null line segments:

A byproduct of their calculation is the strong coupling prediction

A

1672

f;i,\]:f{l—lugﬂi\( + O(1)
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A Guess for What ¢g( )\ ) Might Look Like

A Pade approximant for ¢(\) based upon all available data (through four
loops at weak coupling and leading order at strong coupling) looks like

It is an interesting open problem to relate ¢(\) to more familiar observables
that one might compute from integrability, for example.
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Many Open Questions Remain

The Alday-Maldacena prescription reveals thatthe four-particle scattering am-
plitude is equal to a Wilson loop composed of null line segments, at least at
strong coupling. Could this actually true at strong coupling? [Drummond et
al., Brandhuber et. al ]

An important role in this story is apparently played by a mysterious sym-
metry of planar scattering amplitudes called dual conformal symmetry. This
symmeitry is manifest in the Alday-Maldacena setup. but mysterious at weak
coupling (though it has been shown to hold through five loops). It is partially
responsible for fixing the form of the BDS ansatz.
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Obstructions

The singularities which appear at y = 0 in the € — 0 limit can be isolated
by using the formula

et kL

}E% =1 = PE +mo(y).
(and its derivatives). This leads to a simple, unique decomposition of any

amplitude into |
/ﬁﬂl dy ¥ [PF(y) + G(y)].
where the first term is nonsginular and the obstruction terms (- (y) are given
by a polynomial in derivatives acting on 0 ( y ). If we note that
: +ioc 42k

(In? z)* = dyp=>_——
J —ioc dfa’-'

o(y).

then we see that, in r space, obsiructions are always polynomial in In? r
(they must be even in In r because of the r — 1/ symmetry.
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Targets: f(\)and g(\)

Much less is known about ¢(A); I'll mention its AdS/CFT prediction later...

The one-loop four-particle amplitude takes the form

log(st) 22

—log s 1ugf+%+0r_fa

| 2
M — —t

-.-)
<

€

From the relation
M (e) = PEY ML (e), . . ., ] ML"(€) +(FP) + egEYMLY (Le) + O()

we see that we can read off the L loop contribution to f(A) and g(A) from
the 1/¢* and 1 /¢ singularities in the L loop amplitude.

Our interest in exploring the hidden structure in these amplitudes was partly

motivated by the desire to develop an efficient algorithm for computing these
quantities, which | will now briefly describe.
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Beyond one loop it is in general very difficult to determine which integrals
contribute to any particular amplitude.

We call this step ‘finding the integrand’. For example, the two-loop amplitude
on the previous slide is

/ dPp dPgq 1

(2m)P (2m)L p2q2(p — k1 )%( : 2 )2(q + kg)?(q+ ks + kg)?(p— q)*

The four-loop amplitude is equal to the sum of 8 integrals:

ul =N Eesl

[Bern, Czakon, Dixon, Kosower, Smirnov]

But unitarity doesnt offer much help with evaluating these nasty integrais!
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Conclusion

We developed some techniques to aid in direct tests of the conjectured planar
N = 4 Yang-Mills S-matrix and multiloop iterative relations. As an applica-
tion, we computed four-loop cusp and collinear anomalous dimensions.

The motivation behind this research is the desire to explore and uncover the
rich mathematical structure underlying \' = 4 Yang-Mills theory.

Discovering such structures also has the pleasant side benefit of making
previously difficult calculations much simpler.

Prospectis are great for continued progress, both in supersymmetric gauge
theories as well as QCD. There is definitely a lot more to learn and discover.
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