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Abstract: | will present a construction of supersymmetric Wilson loop operators in N=4 SYM for an arbitrary path on an S3 subspace of space-time.
I will show how they are evaluated in AdS and in particular that the string world-sheet is a generalized calibration with respect to an almost-complex
structure associate to the supersymmetries preserved by the loop. | will present some special examples and in the case when the loop is restricted to
an S2, some evidence that the calculation reduces to a perturbative calculation in YM in 2-dimensions on S2. Thisin turn is exactly soluble in terms
of a 0-dimensional matrix model.

Pirsa: 07100008 Page 1/54



Wilson loops in 4d SYM, in 2d YM and
in Od

Nadav Drukker

Humboldt Universitat zu Berlin

Perimeter Institute

October 30. 2007

based on arXiv:0704.2237. arXiv:0707.2699 and work in progress with

Simone (yiombi. Riccardo Ricel and Diego Trancanelli.

- -
e o

Pirsa: 07100008 Page 2/54




Introduction and motivation

In this talk I study supersymmetric Wilson loops in " = 4
supersvmmetric Yang-Mills theory in four dimensions. Like all
gauge theories it has the vector fields 4,,. with p =1.---4 (I will
work in Euclidean space). In addition there are 4 fermi fields ¥

(with A = 1,---4) and six scalars ®! (with I = 1.---6).

[ will present results both from the gauge theorv side and the dual
string theory on AdS; < S”. where those Wilson loops are
described by macroscopic semi-classical strings.

A

svmmetry is enlarged to a the conformal supergroup PSU (2. 2[4).

-

1 SYM has a remarkable amount of syvmmetry. The Poincaré

S _.«'/.

™
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whose even part is SO(5.1) x SO(6). The symmetry generators are

Like in other supersyvimetric theories there are certain operators
that preserve some of the supersvmmetries and will have special

properties. Consider the complex combinations of the scalar fields

\  Each is charged under a [U(1) subgroup of SO(6). _
l‘&""\-\-._ __'___,/’
Pirsa: 07100008

N. Drukker. Wilson loops

1 9

Ky amw

A0 dim.

et

in

\'.

Page 4/54

Perimeter Institute




f It is easy to show that operators made only from holomorphic )
combinations of those fields will preserve some supersvmmetries.
i.e. they will be annihilated by some of the () generators. For
example the variation of Z7/ is
where the p's are SO(6) gamma matrices and ¢ is made of two
16-component spinors. one constant and one a conformal Killing
spinor
For an operator at the origin the variation will be zero for arbitrarv
e, and half of the ey. This means that Z7 is annihilated by all the
S and by half of the Qs.
Such an operator is a chiral primaryv, and acting on it with the Q)
operators (which do not annihilate it) will generate the
supermultiplet it belongs to. /

' L5
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[ A lot is know about local operators in this gauge theorv. Those
supersvimmetric operators have protected dimensions and 3-point
functions. which are given completely by their charges. Actually in
the study of local operators a lot of progress has been achieved in

the past few vears and there is a good understanding of the

spectrum of verv long operators. even those not preserving any
supersyvmmetry and a good agreement between the gauge theory

and the dual string theorv in AdSs5 x S§°

In this talk I will not discuss local operators. but rather Wilson
loops. Those can be also supersvmmetric. as I will show. but a lot
less is known about them. Those operators form a verv interesting
set of observables. in a confining theory they exhibit the famous
area-law. In our case theyv will not confine. but theyv still provide
non-local data on the theorv. In the string dual theyv are described

bv semi-classical strings (or branes) and therefore touch on stringy

\  properties of the gauge theory.
H\\-..\_\_\_\_ _._‘_/

Pirsa: 07100008 Page 6/54

,

N. Drukker. Wilson loops 1n 4. 2. &0 dim. 5 Perimeter Institute



In anv gaunee theorv one mav define Wilson loop operators as
s &= 3 - .

along a closed path *(s). Those operators turn out to be
supersvminetric only when the path is light-like (which of course

will not occur in the Euclidean theorv).

To find supersymmetric operators it’s possible to add extra terms,
couplings to the Fermi-fields and scalars. I will consider the

modification

where ©° are arbitrary functions of s.

How does one choose those & to get supersymmetric operators”?

|
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The “*Zarembo loops™

Consider the straight Wilson loop in the r* direction coupled to

the scalar ®!

[ts supersymmetry variation will be proportional to (i~' + p')e(x).

This combination of gamma matrices has half vanishing

eigenvalues. so this loop is 1/2 BPS.

The same will be true if we take the line in the »* direction coupled
to the scalar ®°. and gets the projector i~> + p? which commutes
with the above one. so the combined system is 1/4 BPS. More
generally. one can consider an arbitrary curve. and if 4,, is always
accompanied by M,/ ®; (with some norm-preserving matrix M).

the loop will be supersvmmetric. At every point along the loop we

will find a linear combination of the equations above.

Pirsa: 07100008 Page 9/54
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If the curve is confined to a straight line. the loop will be 1/2 BPS.
in a plane, 1/4, in R? it will be 1/8. and for an arbitrary curve,
1/16.

Quite amazingly all those loops have expectation value unity. which
can be seen (perturbatively) both in the gauge theory and in string
theorv. There are also arguments why this would apply to all

orders in perturbation theory.

This is an amazing fact. and those operators are quite interesting,
but there isn't much to calculate with them... Also this familv of
loops does not include the 1/2 BPS circular loop. This is a circle
coupled to only one scalar. which turns out to be supersymmetric
too. That operator has non-trivial VEV. and we want to find

cgeneralizations of it in the rest of the talk.

Lt _.-'I
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The Wilson loops on S°

The previous construction effectively replaced

where four of the scalars are related to a vector in space-time by

D

g = '®,. which can be considered as a topological twist.

We will use a different twist that will relate three of the scalars to a
self-dual tensor @, = o/ I_,Jffffﬁf, These o' give the decomposition
into Pauli matrices of the Lorentz group generators in the

anti-chiral representation

Thev are essentially the same as the 't Hooft svmbol 1 and are also

|
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related to the invariant 1-forms on S~
by o' = —20° z*dz”.
Now we can write our loops as
which byv the above discussion is the replacement
(I will take M that identifies / and [).
.H*-\-..___ _.-“'/
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/ We should verifv that this construction indeed leads to

supersvminetric operators. The variation of the loop gives

Expanding €(.r). the terms with 0 and 2 ~'s are

For this to vanish for a general curve we get

This can be solved. since o 1s related to the action of ~ on

anti-chiral spinors. So the two spinors should be anti-chiral and in

)

addition (7" are representation matrices for the anti-chiral SU(2)gz)

Imposing this condition also guarantees that the terms with a

\  single v matrix in the equation vanish.
S B
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( Consider the breaking of SO(6) to SU(2) 4 x SU(2)g. where the

) 5.
loop leaves SU(2) g unbroken but the SUSY equations involve three

»

of the p’s, which are the generators of SU(2) 4

. . - f - - -
Eliminating €7 from the last equation we get the relation

and the same is true for € .
So under the sum of the two groups SU(2) g + SU(2) 4, the
supercharges have to be singlets. Using a. a indices for SU(2) 4 and

SU(2)p. the supercharges preserved by the loops are

For special curves. when the pull-backs of the forms are not
independent. there will be more solutions and the Wilson loops will

preserve more supersymmetry. We will demonstrate this in some

\_ special cases below.
b g
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Calibration equation in AdS; x 5"
Imposing SUSY on the gauge theory side introduced the relations
And one can also check that
Together with the SU(2) 4 algebra
this can be viewed as a multiplication rule relating the seven
camina matrices.
We will use this as a guide for our construction of supersvmimetric
| string surfaces in AdS5; x S”. The seven gamma matrices (with |
\‘l\-\-\-\-\-\- -.-J/
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[ curved-space indices) will satisfy a similar multiplication rule

Now consider the AdS, x S~ subspace with metric

The above product allows us to introduce the linear operator on
7 M M yvL o, L e .

the tangent space J-\ = X/, X~. where X'* represents the seven

coordinates. Explicitly

S
.,
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This matrix is in fact an almost complex structure on the

AdS, x S? where the string dual of the Wilson loops should live.

The construction is similar to that of the almost complex structure

on S" related to the multiplication rules of the imaginaryv octonions.

Our claim is that the strings describing those Wilson loops will be
calibrated with respect to this almost complex structure. So the
complex structure on the world-sheet agrees with the pullback from
space-time

Some straight-forward algebra allows us to prove that any surface
satistving this first-order equation will preserve the same

supersyminetries as the Wilson loops in the gauge theory.

Moreover one can use this to simplify the expression for the

classical action. unfortunately. we do not know how to evaluate it

\_ without an explicit solution. -
e _,_,-/
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[ curved-space indices) will satisfy a similar multiplication rule
Now consider the 4dS, x S- subspace with metric
The above product allows us to introduce the linear operator on

M Al £ i L : . :

the tangent space J 'y = Y, X ™. where X"~ represents the seven
coordinates. Explicitly

\.H.\_\_\_\___ _F___.-'/.
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( aurved-space indices) will satisfy o sbmilar multiplication rule

N | |
i i i

Now consider the AdS; = 5 subspace with metric

. | "
i " ‘ll I.II f.||1 l,'r I_'
The above product allows s Lo introduee the linear operator ol

the tangent spnee J"‘J. ). J"', AL whore X7 represents the seven

coordinntes. Explicitly
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[ curved-space indices) will satisfyv a similar multiplication rule
Now consider the AdS; x S~ subspace with metric
The above product allows us to introduce the linear operator on

M A & i : . :
the tangent space J 'y = X3, X ~, where X"~ represents the seven
coordinates. Explicitly
- -
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Calibration equation in AdS; x 5”

Imposing SUSY on the gauge theory side introduced the relations
And one can also check that
Together with the SU(2) 4 algebra
this can be viewed as a multiplication rule relating the seven
camina matrices.
We will use this as a guide for our construction of supersyvmimetric

| string surfaces in AdS; x S”. The seven gamma matrices (with

\HM Y
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[ curved-space indices) will satisfyv a similar multiplication rule
Now consider the AdS; x S~ subspace with metric
The above product allows us to introduce the linear operator on

M LY . o P .

the tangent space J 'y = X\, X~, where X~ represents the seven
coordinates. Explicitly

b r
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This matrix is in fact an almost complex structure on the

AdS, x S? where the string dual of the Wilson loops should live.

The construction is similar to that of the almost complex structure

on S* related to the multiplication rules of the imaginary octonions.

QOur claim is that the strings describing those Wilson loops will be
calibrated with respect to this alimost complex structure. So the
complex structure on the world-sheet agrees with the pullback from
space-time

1 . Sy P . ]
P % i / L

Some straight-forward algebra allows us to prove that any surface
satistving this first-order equation will preserve the same
supersvminetries as the Wilson loops in the gauge theoryv.

Moreover one can use this to simplify the expression for the

classical action. unfortunatelyv. we do not know how to evaluate it

\_ without an explicit solution.
Ry I Py
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Examples:

1/2 BPS: Circle

2 z : . ( o _ 2
Consider a circle in the .r*. r= plane. Along this curve

So it will couple to a single scalar ®*. Most of the constraints on €
derived before for the general curve do not appear now. and this
loop is annihilated by half the supersvmmetries. Of the

PSU(2.2]|4) of the vacuum it preserves the supergroup OSp(4*[4).

An interesting fact about this loop is that in perturbation theorv

the combined propagator. including both the scalar and the gauge

field
i — 5 L= 2 —2 .7
~ between two arbitrarv points is just a constant.
H\"""‘-\-\_ _,-f"'/
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This allows one to represent all ladder diagrams in terms of a

O-dimensional Gaussian matrix model and calculate it exactly

The result of this integral can be expressed in terms of a Laguerre
polynomial and it can then be studied in the large N and/or the

3 = 3 = - —y
large ¢V regime. and compared to string theory on AdS; < S”.

In this calculation the planar result at large g2V is given byv a
semiclassical string, whose action agrees with the leading exponent
in the strong coupling expansion of the matrix model. It was even
possible to go bevond the planar approximation and calculate all
the 1/N corrections by comparing to a certain D3-brane in AdS.

and again the results exactly agreed.

Y -llll
3 ¥
™,

«.__\\-H-H-\_ _.J_/
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[ 1/4 BPS: More circles (1)

I will take now more than one circle. but will make sure that all of

them couple to the same scalar ®*. To do that within our

framework. parameterize the sphere by

Each of the circles will have constant # and o while ¢ will vary
along them. This construction is related to the writing of S* as a

Hopf-fibration. Each circle will be along a different fiber.
This combined system of several different circles will preserve eight
supercharges. all of them with the same chirality. An amazing fact.

that is quite simple to check. is that even between different circles

\ the propagator is the same constant as before.
W —’—/
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So two coincident circles and two that are separated in this way
have exactly the same interactions. This is analogous to the fact
that parallel lines in flat space do not interact. Here thev do

interact. but this interaction is independent of the relative position.

We can again calculate them using the matrix model and they will

be more complicated observables

For k circles.

At the planar level this is just the same as £ non-interacting circles,
and in AdS; x S will be given by & independent string surfaces.

L}

We have not calculated the connected part from the string side.

.'IIII
____,/
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[ 1/8 BPS: S- observables

Let us consider now a much more f;‘:;(:‘Il(:‘I'Eil IUUI}. ally CUrve on -

maximal S- inside our S°. All those loops will preserve 4

. o~y - . ¥
supercharges. since on S* the forms satisty

So in addition to the two anti-chiral supercharges. those loops

preserve two chiral supercharges.

f ; = aim i I 2

A cute fact is that if we have a curve on r(s) on S<. it will have

gauge couplings . and scalar couplings & x r. Note that this if we
gl & 2 -0 .

take |.r| = 1. then this is also a vector on S=. so we can consider the

Wilson loop with that shape. Its scalar coupling would be

This sueeests a dualitv between the cauge and scalar couplines. we
= o ™ 1 3

\ still do not understand the significance of this relation.
"
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[/ 1/1 BPS: Small c_ircler. “latitude”

- - ) - : - -] . -
Now take a non-maximal circle, or a latitude on S<. Explicitly,
Here you see an explicit example of this duality. which is just

Bn e 7/2 —H4.

Those loops preserve 1/4 of the supersvmmetry. Here too the

= - o, i
propagators are constants. proportional to sin” #;. leading to the

\ same matrix model as in the 1/2 BPS case with the replacement
" _,,/'
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Those loops can also be calculated by a string in AdS; x §” and

the result is that the classical action of the string is

- o - i - : G
S = —\/g?N |sinfby|. so the same scaling of g~V works, and

|'J. . N - -
matches the large ¢~V result of the matrix model. Furthermore. in
string theory there is a second saddle point with the sign of the

action reversed. which matches another term in the matrix model.

In the limit of small #y. of infinitesimal loops. the string is very
“small” and one can calculate its fluctuations. Considering just the
contribution of the zero modes broken by the small #, gives an
answer that matches with the full planar result of the matrix model.
Finallyv one can also calculate this loop using a D3-brane rather
than a fundamental string and again the result agrees with the

perturbative matrix model. this time including all 1/N corrections

|
L' ¥
.'III

at large g* V.
" o

Pirsa: 07100008 Page 31/54

,

N. Drukker. Wilson loops 1n 4. 2. & 0 dim. 23 Perimeter Institute



-~ -,
-~ .

i

1/4 BPS: Sx_nall circle_. “latitude”

- - i - ; - -] . -
Now take a non-maximal circle, or a latitude on S<. Explicitly,

Here yvou see an explicit example of this duality. which is just
IF-"J | & = T.j — Ilrjlr.-

Those loops preserve 1,4 of the supersvmmetry. Here too the

= : 3 .
propagators are constants. proportional to sin” #g. leading to the

\ same matrix model as in the 1/2 BPS case with the replacement

- A
-
\\I"'\-\_\__ -
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[ g2N — g2Nsin? 6.

Those loops can also be calculated by a string in AdS; x §” and

the result is that the classical action of the string is

- : - . - 3 . O oy
S = —\/g*N |sinfy|. so the same scaling of g~V works, and

|'J. . X ” -
matches the large ¢=.V result of the matrix model. Furthermore. in
string theory there is a second saddle point with the sign of the

action reversed. which matches another term in the matrix model.

In the limit of small Aj. of infinitesimal loops. the string is very
“small” and one can calculate its fluctuations. Considering just the
contribution of the zero modes broken by the small #, gives an
answer that matches with the full planar result of the matrix model.
Finallyv one can also calculate this loop using a D3-brane rather
than a fundamental string and again the result agrees with the

perturbative matrix model, this time including all 1/NV corrections

\ at laree ¢°N. )
Y _.-.-/
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1/4 BPS: More circles (2), “longitudes”

Take a loop made of two halves of large circles.

That is. going from the north pole of 5= to the southern one and

then back along a different longitude to the northern one.

The loop will couple to ®2 along the first arc and to

Iy - . -
—®= cosd + ®tsind along the second one.

\  This loop will preserve also 1/4 of the supersvmmetries. By a

.'III

7
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[ stereographic map to the plane one gets a cusp with opening angle
0. where along each of the rays it will couple to the combination of
scalars written above. This new loop is of the class studied by
Zarembo. therefore it has trivial expectation value.

But the longitudes on S* is non-trivial. We calculated it at leading

order in perturbation theoryv and found

We haven't calculated the next corrections. but we found the string

solution for this surface. and the finite part of the action is

We see once more that both the perturbative and string theory

result are related to the usual circle by a rescaling of the coupling.

One mayv hope that this loop is also given by the matrix model.

\ even though the propagators are not constant.
e -
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[ 1/3 BPS: Zarembo limit

After all those examples of previously unstudied supersymmetric

Wilson loops. it's also possible to recover the 1/8 BPS loops

considered bv Zarembo.

Consider infinitesimal loops. say around the point +* = 1. Then
R.I o E . el v _ . : 43
"=~ dat for i = 1. 2. 3 and locally the invariant 1-forms on S

are exact differentials. So those loops will approximate the loops of

Zarembo.

More precisely, we can rescale the sphere as we get closer to that
point. keeping the size of the loops finite. In the infinite radius
limit, the curves are in flat ®” and the scalar couplings

plIg
proportional to the tangent vectors. which is exactly the

construction of Zarembo.

Note that we cannot reproduce, by our construction. his 1,16 BPS

P
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Y 1/, and the matrix model

T - . - _—
We saw that in all the explicit examples on 5= the result was the
same as the circle with a modified coupling. How does that come

about?

- “ —~a)
We may write the loop on 5° as
IrPexp Plidur” + (x> M; @7 )ds .

Let me calculate this again in perturbation theorv. For the circle
we saw that the propagator was a constant. More generally this
will not be true. But I will still combine the vector and scalar
terms together. At leading order in perturbation theory one gets

the effective propagator
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[ Evaluating the cross product one finds

Interestingly. though we are in four dimensional space. instead of
having mass dimension two. the resulting effective propagator is

dimensionless.

That would be the expected behavior for a vector propagator in
two-dimensions. Indeed the last expression can serve as a
propagator for ¥ )/, on the unit two-sphere with coupling

D

| J
—9y /4T
So the sum of all non-interacting graphs for those Wilson loops on

Y

5= agrees with that of Y /5. That problem is famously solved and

the result is

)
\ e
%
H“'\-\-..
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Y V[, and the matrix model

- i a z —y )
We saw that in all the explicit examples on S< the result was the
same as the circle with a modified coupling. How does that come

about?

- = —
We may write the loop on 5= as
IrPexp Pidur” +(z > M; P )ds .

Let me calculate this again in perturbation theorv. For the circle
we saw that the propagator was a constant. More generally this
will not be true. But I will still combine the vector and scalar
terms together. At leading order in perturbation theory one gets

the effective propagator

- ._l,'

T
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[ Evaluating the cross product one finds

Interestingly. though we are in four dimensional space. instead of
having mass dimension two. the resulting effective propagator is

dimensionless.

That would be the expected behavior for a vector propagator in
two-dimensions. Indeed the last expression can serve as a
propagator for Y /5 on the unit two-sphere with coupling

9

Y J
—Yy a /2T

So the sum of all non-interacting graphs for those Wilson loops on

S? agrees with that of Y A/;. That problem is famously solved and

the result is

)
\
Y
S
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. S i
where 4, and A4, are the areas of the two parts of 5° defined by

the curve.

This does not agree with the result of the AdS calculation. not for
the 1/2 BPS circle and not for the other examples. So what did I
do wrong?

Such a discrepancy has appeared alreadv in Y A/s as was explored
bv Staudacher-Krauth and resolved by Bassetto-Griguolo. In
perturbation theory one mav be missing instanton corrections that
are included in the full non-perturbative solution. We are doing a
perturbative calculation, so we should compare to the perturbative

results. excluding instantons.
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[ Evaluating the cross product one finds

Interestingly. though we are in four dimensional space. instead of
having mass dimension two. the resulting effective propagator is

dimensionless.

That would be the expected behavior for a vector propagator in
two-dimensions. Indeed the last expression can serve as a
propagator for ¥ A/, on the unit two-sphere with coupling

¥,

Yy '
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So the sum of all non-interacting graphs for those Wilson loops on

) - . - - . N
5= agrees with that of Y V5. That problem is famously solved and

the result is
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where 4, and A4, are the areas of the two parts of 5° defined by

the curve.

This does not agree with the result of the AdS calculation. not for
the 1/2 BPS circle and not for the other examples. So what did I
do wrong?

Such a discrepancy has appeared alreadv in Y A/s as was explored
bv Staudacher-Krauth and resolved by Bassetto-Griguolo. In
perturbation theory one mav be missing instanton corrections that
are included in the full non-perturbative solution. We are doing a
perturbative calculation. so we should compare to the perturbative

results. excluding instantons.
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[ Ewvaluating the cross product one finds

Interestingly. though we are in four dimensional space. instead of
having mass dimension two. the resulting effective propagator is

dimensionless.

That would be the expected behavior for a vector propagator in
two-dimensions. Indeed the last expression can serve as a
propagator for ¥ A/, on the unit two-sphere with coupling

¥,
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So the sum of all non-interacting graphs for those Wilson loops on

S=< agrees with that of Y A/5. That problem is famously solved and

the result is
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Y 1/, and the matrix model

T . . - —y
We saw that in all the explicit examples on 5= the result was the
same as the circle with a modified coupling. How does that come

about?

- : g}
We may write the loop on 5° as
Ir Pexp @ (4 + (>

Let me calculate this again in perturbation theorv. For the circle
we saw that the propagator was a constant. More generally this
will not be true. But I will still combine the vector and scalar
terms together. At leading order in perturbation theory one gets

the effective propagator
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[ Evaluating the cross product one finds

Interestingly. though we are in four dimensional space. instead of
having mass dimension two. the resulting effective propagator is

dimensionless.

That would be the expected behavior for a vector propagator in
two-dimensions. Indeed the last expression can serve as a
propagator for ¥ /5 on the unit two-sphere with coupling
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So the sum of all non-interacting graphs for those Wilson loops on

)

S= agrees with that of Y AM/5. That problem is famously solved and

the result is
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where 4, and 4, are the areas of the two parts of 5° defined by

the curve.

This does not agree with the result of the AdS calculation. not for
the 1/2 BPS circle and not for the other examples. So what did I
do wrong?

Such a discrepancy has appeared alreadv in Y M5 as was explored
bv Staudacher-Krauth and resolved by Bassetto-Griguolo. In
perturbation theory one mav be missing instanton corrections that
are included in the full non-perturbative solution. We are doing a
perturbative calculation, so we should compare to the perturbative

results. excluding instantons.
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[ In those papers theyv found that the perturbative result for Y /5 on
the sphere is given bv the function

\'.

Where L5, , is a Laguerre polynomial.
In the planar approximation this is

At weak coupling this goes as

and at strong coupling

\
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[ Those above expressions agree with ALL explicit calculations done
so far!
For the 1/2 BPS circle. 4, = 4, = 27, and this Laguerre

polvnomial is exactly the result of the Gaussian matrix model.

For the 1/4 BPS latitude A; 2 = 27(1 & cosfqg). so the tull

perturbative result is given by the regular circle with

7 oL AL . . 3
g~ — g~ sin” #. in agreement with the sum of ladders.

For the latitude example we do not have an all-order calculation.
only the first terms at weak and strong coupling. There 4, = 20

and 4> = 2(27 — o) and the weak and strong coupling results are

¥ Y

reproduced by g° — ¢*(27 — §)d/m>.

. . i -4 .
From those calculations it seems that Wilson loops on S= are given
bv the perturbative expansion of 2-dimensional Yang-Mills on the

sphere. This provides a subsector of ' = 1 which is invariant

. under area-preserving diffeomophisms.
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/' In those papers thev found that the perturbative result for Y1/ on

the sphere is given bv the function

\'.

Where L, _, is a Laguerre polynomial.
In the planar approximation this is

At weak coupling this goes as

and at strong coupling
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Those above expressions agree with ALL explicit calculations done
so far!
For the 1/2 BPS circle. 4; = A, = 27, and this Laguerre

polvnomial is exactly the result of the Gaussian matrix model.

For the 1/4 BPS latitude A; 2 = 27(1 & cosfg). so the tull

perturbative result is given by the regular circle with

7 o7 AT . . -
g~ — g~ sin” #y. in agreement with the sum of ladders.

For the latitude example we do not have an all-order calculation.
only the first terms at weak and strong coupling. There 4, = 20
and A> = 2(27 — ) and the weak and strong coupling results are

Y Ty

reproduced by g* — ¢*(27 — §)d/m>.

. . - . .
From those calculations it seems that Wilson loops on S- are given
bv the perturbative expansion of 2-dimensional Yang-Mills on the

sphere. This provides a subsector of ' = 1 which is invariant

\  under area-preserving diffeomophisms. ._
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Discussion

[ presented an infinite family of new supersvmmetric Wilson
loops by adjusting the scalar couplings for anv curve on S*.
Unlike Zarembo's loops. theyv have non-trivial expectation
values. giving manyv new interesting observables that mayv be
calculated in the gauge theorv or AdS- x S°.

We found a very elegant structure in 4dS- x S°. where the
string surfaces describing those loops are calibrated with regard
to a novel almost complex structure on AdS; x S?. These
calibration equations implyv #-syvmmetry for the strings and
also give a simple expression for the action.

A new configuration I described are several circles following the
Hopf-fibers of S*. They preserve eight chiral supercharges and
seem like a natural generalization of parallel lines in flat space.

The interaction between them is independent of the distance.
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e When the curves are restricted to an S<. the supersymmetry is
doubled. Specific curves (longitudes. the latitude) were 1/4
BES.
e For curves on S- the perturbative series seems to agree with
2-dimensional Yang-Mills. Providing a subsector of V' = 1

SYDM which is invariant under area-preserving diffeomorphisms.
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