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Abstract: Entanglement plays a fundamental role in quantum information

processing and is regarded as a valuable, fungible resource,

The practical ability to transform (or manipulate) entanglement from one form to another is useful for many applications.

Usually one considers entanglement manipulation of states which are multiple copies of a given bipartite entangled state and requires that the
fidelity of the transformation to (or from) multiple copies of

amaximally entangled state approaches unity asymptoticaly in the

number of copies of the original state. The optimal rates of these protocols yield two asymptotic measures of entanglement, namely, entanglement
cost and

distillable entanglement.

It is not always justified, however, to assume that the entanglement resource available, consists of states which are multiple copies, i.e.,tensor
products, of agiven entangled state. More generally, an entanglement

resource is characterized by an arbitrary sequence of bipartite states which

are not necessarily of the tensor product form. In this seminar, we address the issue of entanglement manipulation

for such general resources and obtain expressions for the entanglement cost and distillable entanglement.
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» Entanglement plays a crucial role in Quantum Information
Theory.

s |t is a novel resource which can be used to perform tasks
which are impossible in the classical realm, e.g.,
teleportation, superdense coding, quantum cryptography
etc.
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» Entanglement plays a crucial role in Quantum Information
Theory.

s |t is a novel resource which can be used to perform tasks
which are impossible in the classical realm, e.g.,
teleportation, superdense coding, quantum cryptography
etc.

» a fundamental property of entanglement: it cannot be
created by local operations and classical communications
(LOCC) alone.

s However, one can transform one entangled state to another

by LOCC alone: this is called as entanglement manipulation
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if E (pAB) denotes entanglement of state QO,5 then:
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An essential property of any quantity that is used to

characterise entanglement is that it cannot be increased by
LOCC alone

For a bipartite pure state |¥,.) »one such quantity is its
Schmidt number:

“PAB) is entangled if and only if its Schmidt number > 1.

There 1s no such simple quantity characterising the
entanglement of arbitrary bipartite states P,z .

However, one can establish asymptotic measures of
entanglement for any arbitrary bipartite state p,, by
considering suitable entanglement manipulations of it.
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Why do we need entanglement manipulations?

= to convert the entanglement of a state to a standard
form or “currency”.

= This also allows us to compare the entanglements of two
different entangled states.

To obtain “standard form” or “currency” for entanglement:

define the entanglement of maximally entangled state (MES)
of rank M

o -
)= r 2le)

B
€
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Why do we need entanglement manipulations?

= to convert the entanglement of a state to a standard
form or “currency”.

= This also allows us to compare the entanglements of two
different entangled states.

To obtain “standard form” or “currency” for entanglement:

define the entanglement of maximally entangled state (MES)
of rank M

¢
[¥i) = 2let)e?) tobe  E(¥L))-logh (1)
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Why do we need entanglement manipulations?

= to convert the entanglement of a state to a standard
form or “currency”.

= [ his also allows us to compare the entanglements of two

different entangled states.

To obtain “standard form” or “currency” for entanglement:
define the entanglement of maximally entangled state (MES)
of rank M

)= Yle)|e?) tove E(|wL))=logh .......(1

This yields a benchmark against which to measure the
entanglement of other states.
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Why do we need entanglement manipulations?

= to convert the entanglement of a state to a standard
form or “currency”.

= This also allows us to compare the entanglements of two
different entangled states.

To obtain “standard form” or “currency” for entanglement:
define the entanglement of maximally entangled state (MES)
of rank M

AL
\‘P;)=ﬁ;|e§)\e§) tobe E(|¥}))=logM ... (1)

This yields a benchmark against which to measure the
entanglement of other states.

[Note: take logarithm in (1) is taken to base 2]
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entanglement manipulations which convert

multiple copies of P LOCC o multiple Bell pairs

(or vice versa)
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s Asymptotic measures of the entanglement of any arbitrary
bipartite state £ are then obtained by considering :

entanglement manipulations which convert

multiple copies of p LOCC o multiple Bell pairs

(or vice versa)

o pgn - m_ Bell pairs (Entanglement Distillation or

Entanglement Concentration)

equivalently p@n —> a MESofarank M_= 2™- (meN)

= Lm:, Bell Pairs —2 pgn (Entanglement Dilution)
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Sn Sm, Smt’ R
Sl T e A
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with  m m' neN

» Since entanglement cannot be increased by LOCC we have
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s Denoting a the density matrix of a Bell pairby @ the
above transformations can be denoted as follows:

o Bm, Sn "
£ e [ e P —)

' #
with  m m' neN

»  Since entanglement cannot be increased by LOCC we have

1) = E(@"™ )< E(p°"):;
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s Denoting a the density matrix of a Bell pairby @ the
above transformations can be denoted as follows:

with m m’' neN

» Since entanglement cannot be increased by LOCC we have

)= E@°™)<E(p®), ()=>E(P")<E@°™)
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s Denoting a the density matrix of a Bell pairby @ the
above transformations can be denoted as follows:

QQQQQQ

' #
with  m m' neN

» Since entanglement cannot be increased by LOCC we have

)= E@°"™)<E(p®), ({)=>E(P")<E@°™)

Hence ‘ m <E(p)<m - E(o, )=m,
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» Denoting a the density matrix of a Bell pairby @ the
above transformations can be denoted as follows:

71 N @m; @H LB
e Y @ toce 2P . (i)

' ’
with  m m' neN

» Since entanglement cannot be increased by LOCC we have

)= E@°™)<E(p®), ({)=>E(p")<E@°™)

Hence ‘ m <E(p)<m - E(w, )=m,

s Note: transformations (i) and (i1) cannot be achieved
perfectly for finite # . Hence one allows imperfections
.and requires instead that the fidelities of the
transformations anproach unitv asvmptoticallv in 722
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s If Tn :pn LOCC )O-r:

FIDELITY: |F =F(z (o, ),o% )=T(z (p )o.)

[final state [target state]

and we require that | £, >1 as #—>X©

» The asymptotic entanglement measure of the state p
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n I Tn :pn LOCC )O'H

FIDELITY: |F =F(z (p, ),o% )=Tr(z (p,)o.)

[final state [target state]

and we require that | £, 21 as #—>®

» The asymptotic entanglement measure of the state p

g(p)=1lim lE,'(,r::»&")

n—>< y3
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s If Tn :pn LOCC )'O'H

FIDELITY: |F =F(z (p, ),o% )=Tr(z (p,)o.)

[final state [target state]

and we require that | £, 21 as #—>®

» The asymptotic entanglement measure of the state p

1 .
e(p)= }ll_rgnE(p@ )
s We have:
Im inf "<8( - m <E(p°")<m
sl 71—>0 71




UNIVERSITY OF
CAMBRIDGE

= [hus the entanglement manipulation protocol yields two
(different) asymptotic entanglement measures for a
bipartite state.

irsa: 07100000 Page 37/248



UNIVERSITY OF
CAMBRIDGE

» Thus the entanglement manipulation protocol yields two
(different) asymptotic entanglement measures for a
bipartite state.

irsa: 07100000 Page 38/248



=IJN1VERSITY OF
CAMBRIDGE

» [hus the entanglement manipulation protocol yields two
(different) asymptotic entanglement measures for a
bipartite state.

- r @m;' G
= (i) the entanglement co;:' @ T
E (p) =mf lim—=2% | F 31
> 3 L4 i—>aC

: the minimum number of Bell pairs needed to create 2

= (11) the distillable entanglement , o, Sm
L s tocc @
— m —= <
ED(p) supil_l,ﬂ - E: = >1
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» [hus the entanglement manipulation protocol yields two
(different) asymptotic entanglement measures for a
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= (i) the entanglement co;’:' @ oy 2B
= (p) =imf lim—=% * F >1
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FIDELITY: |F =F(z (p, ),o% )=T(z (p )o.)

[final state [target state]

and we require that | £, 21 as #—>®

» The asymptotic entanglement measure of the state p
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» [hus the entanglement manipulation protocol yields two
(different) asymptotic entanglement measures for a
bipartite state.
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= (i) the entanglement co;;c’ @ e
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: the minimum number of Bell pairs needed to create 2

irsa: 07100000 Page 42/248



aumv'f.m*n OF
CAMBRIDGE

» [hus the entanglement manipulation protocol yields two
(different) asymptotic entanglement measures for a
bipartite state.

- i @"l;' G
= (i) the entanglement co;l:' @ ——
Ec(p)zinf Iim —=2% ; F 31
n—>x< §g T n—>aC

: the minimum number of Bell pairs needed to create 2

= (11) the distillable entanglement , o, Sm
1] P tocc 29
— - '<
ED(p) S“P},E,_E - ]f; = >1
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» [hus the entanglement manipulation protocol yields two
(different) asymptotic entanglement measures for a

bipartite state.
= (i) the entanglement cost

E.(p)=inf lim =

> H

4

. Om, ¢
@ LOCC > P
- >1

: the minimum number of Bell pairs needed to create 2

= (i1) the distillable entanglement

m

ED(p) =suplim =

R n

 Bn Sm,
p LOCC > @
F >1
7>

-

: the maximum number of Bell pairs that can be extracted

locally from the state Q.
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» For a bipartite pure state ¥ ez) it is known that
E, (‘LPAB )) =S(p.)=S(p.)=E_ (‘qj{g))

» Here p, and p; : reduced density matrices of the
subsystems A and B resply., and S(p,) denotes the von
Neumann entropy of p,
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» For a bipartite pure state ¥ s it is known that
E, (‘LP&B )) =3(p,)=5(p,)=E, (‘IPA_&"))

» Here p, and p; : reduced density matrices of the
subsystems A and B resply., and S(p,) denotes the von
Neumann entropy of p,

» Hence, locally transforming ‘LIJAB >®" <> 5P

is an asymptotically reversible process.
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» For a bipartite pure state ¥ 2z) it is known that

E (‘LP@ )) = S(P_-_:) = S(pg )=E_ (llPﬁLB>)

» Here p, and p; : reduced density matrices of the
subsystems A and B resply., and S(p,) denotes the von

Neumann entropy of g,

» Hence, locally transforming ‘lPAB >®" <> &SP

is an asymptotically reversible process.

» Moreover S(p2,) is the unique asymptotic entanglement
measure for |¥_ ) since any other entanglement measure

E for|¥.,) satisfies:

E_<E<E,
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form to another is useful for many applications in Quantum
Information Theory.

However, it is not always justified to assume that the
entanglement resource available consists of states which are
multiple copies (tensor products) of a given entangled state.

In other words, the entanglement resource need not be
“memoryless” .
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The practical ability of transforming entanglement from one

form to another is useful for many applications in Quantum
Information Theory.

However, it is not always justified to assume that the
entanglement resource available consists of states which are

multiple copies (tensor products) of a given entangled state.

In other words, the entanglement resource need not be
“memoryless”™ .

More generally, an entanglement resource is characterized
by an arbitrary sequence of bipartite states, which are not
necessarily of the tensor product form.
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in Hilbert spaces (;fzf4 . )gn for m= {1,2,3,....}
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s [hese sequences of bipartite states are considered to exist
in Hilbert spaces (72{1 S )®" for m= {132,3,....}

» |Our Aim: to establish asymptotic entanglement measures

for arbitrary sequences of bipartite states : }5 — {pn}

ac
n—1
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» In order to establish EC and ED for such arbitrary
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Information Spectrum Approach.
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» [ his approach was developed in Classical Information
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Quantum Information Theory by Hayashi, Nagacka & Ogawa.
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» In order to establish EC and ED for such arbitrary
sequences of bipartite states, we make use of the so-called

Information Spectrum Approach.

= [ his approach was developed in Classical Information
Theory by Verdu and Han and was first extended into
Quantum Information Theory by Hayashi, Nagacka & Ogawa.

s It is a powerful method for obtaining the optimal rates of
various protocols.

» The power of the method lies in the fact that it does not
rely on any specific nature of the sources, channels or
~eftanglement resources involved in the protocol.
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Spectral Projections

» The Quantum Information Spectrum approach requires the
extensive use of spectral projections.
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» In order to establish EC and ED for such arbitrary
sequences of bipartite states, we make use of the so-called

Information Spectrum Approach.

» [ his approach was developed in Classical Information
Theory by Verdu and Han and was first extended into
Quantum Information Theory by Hayashi, Nagacka & Ogawa.

s |t is a powerful method for obtaining the optimal rates of
various protocols.

» The power of the method lies in the fact that it does not
rely on any specific nature of the sources, channels or
~eftanglement resources involved in the protocol.
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extensive use of spectral projections.

s For a self-adjoint operator A with spectral decomposition

A:Zi:;g.\i)(f\
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Spectral Projections

» The Quantum Information Spectrum approach requires the
extensive use of spectral projections.

s For a self-adjoint operator A with spectral decomposition

A:Z}L}.\f)(i\

we define the spectral projection on A as

\ 7. :the projector onto the eigenspace
>0l =
{A _0} ;ll) (f‘ {of non-negative eigenvalues of A
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Spectral Projections

The Quantum Information Spectrum approach requires the
extensive use of spectral projections.

For a self-adjoint operator A with spectral decomposition

A:Z;Li\i)(ﬂ

we define the spectral projection on A as

{ A 20} o Z|’> ("‘ :the pr0]ectqr ont.o the eigenspace
e of non-negative eigenvalues of A

For 2 operators A and B we can then define

{A>B}={A-B >0}
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» For any given constant 7 , one can associate with any
sequence of states ;j = { s, }'” , a sequence of
nin-1

orthogonal projectors { P’ “with pP7 — { p = 2 17}

n—1
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» For any given constant 7 , one can associate with any

ag

sequence of states )5 = { s, } , @ sequence of
i

n—1

orthogonal projectors {P? “with P7 — {P > 7 17}

=]

e, P: projects onto | the eigenspace of #x
corresponding to the eigenvalues
which are > 2~
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For any given constant 7 , one can associate with any
sequence of states A5 — *© , a sequence of
9 o WL

orthogonal projectors { P" ~ with PT — { p > - 17}
n—l n n

e, Pnr projects onto | the eigenspace of A=
corresponding to the eigenvalues

which are > 2;”7’
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can define 2 real-valued quantities : -
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» Using these projections, for any sequence p = { pﬂ}m one
can define 2 real-valued quantities : -

S(p) =inf {y -liminf Tr [ P’ Pn] . 1} -inf-spectral entropy rate

—C
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For any given constant 7 , one can associate with any

o

sequence of states f) = { Ps, } , @ sequence of
1

n—1

orthogonal projectors { P’ “with P7 — { o> > 7 17}

n—1

e, P: projects onto | the eigenspace of A=
corresponding to the eigenvalues
which are > 2~

n
€ ><3, : spectral decomposition

Pr= Y |e)e
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UNIVERSITY OF
CAMBRIDGE

» Using these projections, for any sequence p = { pﬂ}“’ one
can define 2 real-valued quantities : -

S(p) =inf {:y -liminf Tr [ P’ Pn] L 1} -inf-spectral entropy rate

R—x

S(p)=sup {y ‘limsupTr [ P’ p ] = 0}: sup-spectral entropy rate

RESULTS: E.=S(p)and E,=S(p) | for
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» Using these projections, for any sequence p = { pn}m Thd
can define 2 real-valued quantities : -

S(p) =inf {;y -liminf Tr [ P’ Pn] L 1} :inf-spectral entropy rate

S(p) =sup {y ‘limsupTr [P: o, ] L 0}: sup-spectral entropy rate

o| RESULTS: E.=S(p)and E,=S(p) | for
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» Using these projections, for any sequence p = { pﬂ}m one
can define 2 real-valued quantities : -

S(p) =inf {y -liminf Tr [ P’ Pn] - 1} :inf-spectral entropy rate

—C

S(p) =sup {y ‘limsupTr [p: o. ] = o}: sup-spectral entropy rate

RESULTS: E_. = E(ﬁ) and £, = §(ﬁ’) for {‘ (Dn>}:
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» Using these projections, for any sequence p = { pﬂ}m one
can define 2 real-valued quantities : -

S(p) =inf {:y -liminf Tr [ P’ Pn] = 1} :inf-spectral entropy rate

g(ﬁ) ‘= sup {7' limsupTr I:P;pn :I - 0}: sup-spectral entropy rate

RESULTS: E. = E(ﬁ) and £, = §(f’) for {‘ (Dn>}:
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» Using these projections, for any sequence p = { p"}m e
can define 2 real-valued quantities : -

S(p) =inf {:y -liminf Tr [ P’ Pn] = 1} :inf-spectral entropy rate

S(p) =sup {y ‘limsupTr [p: o, ] = 0}: sup-spectral entropy rate

RESULTS: E. = E(ﬁ) and £, = Q(f’) for {‘ (Dn>}:
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» Using these projections, for any sequence p = { pﬂ}m one
can define 2 real-valued quantities : s

S(p) =inf {:y -liminf Tr [ P’ Pn] » 1} :inf-spectral entropy rate

S(p) =sup {y ‘limsupTr [p: o, ] = 0}: sup-spectral entropy rate

RESULTS: E_. = E(ﬁ) and E, = §(£’) for {l q)r-)}:

1

I—>e0 Fi

S(p) <liminf lS(J,e:)ﬂ) < lim sup

R—>al n

S(p,)<S(P)
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» Using these projections, for any sequence p = { pﬂ}m one
can define 2 real-valued quantities : e

S(p) =inf {;y -liminf Tr [ P’ Pn] L 1} :inf-spectral entropy rate

S(p)=sup {y ‘limsupTr [p: o. ] = 0}: sup-spectral entropy rate

| RESULTS: E_ = §( p)and E, = §(f7) for {| d),,)}:

S(p) <lminf l.S’(,fc:vﬂ) < lim sup

e N f7—>a0

1

F1

S(p,)<S(P)

F

. PirsE(QOE)CD p

ag

{p ®lPI}M:l we have S(p)=S(p)= S (p)
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Asymptotic Entanglement Dilution of Pure States

o g

—

et

Alice e {‘ (Dn>}:;1,-' i Bob
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Asymptotic Entanglement Dilution of Pure States

i)},
o e

—

et

Alice H‘"H-..__,{‘ (I)r:)}:;l”# ) Bob

(ﬂ)) (ﬂ))

)= S
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Asymptotic Entanglement Dilution of Pure States

@/W \@

Alice {‘(D >} &
‘LP;> = %jl if’) ié"’) : MES of rank M,
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Asymptotic Entanglement Dilution of Pure States
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Asymptotic Entanglement Dilution of Pure States

Alice {‘ D >}n—1

(")) : MES of rank M,

)®” : partially entangled target state

B ) e s (T
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Definition: Entanglement Cost
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Definition: Entanglement Cost

If the fidelity of the LOCC transformation
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|LP;LE > Locc >|(DH>
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-
—

Definition: Entanglement Cost

If the fidelity of the LOCC transformation

satisfies

irsa: 07100000

.

ILIJ;&) LOCC )|(Dﬂ>

>1 %

F1—»<C
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Definition: Entanglement Cost
If the fidelity of the LOCC transformation

‘LP;!H > Locc >I(I;n>

satisfies [ »>]1 , thenany R for which

F1—<C

1 : .
—10g4M,, <R is an achievable rate
n
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Definition: Entanglement Cost
If the fidelity of the LOCC transformation

‘IP;& ) LOCC >|(Dn>

satisfies [ »]1 , thenany R for which

F1—»<C

1 ] .
—logﬂz.{ﬂ <R is an achievable rate
n

A

= Entanglement cost:
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Definition: Entanglement Cost
If the fidelity of the LOCC transformation

|IP;IH > LOCC )I(Dn>

satisfies [ »]1 , thenany R for which

F1—»<C

1 : .
—logJMn <R is an achievable rate
n

= Entanglement cost: E.=mfR
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Theorem 1: The entanglement cost of a sequence of pure
bipartite target states {‘q) )}‘“ is given by
Tiln=
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Theorem 1: The entanglement cost of a sequence of pure
bipartite target states {‘q) )}‘“ is given by
Tiln=a

v | Ee= E(ﬁ)
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Theorem 1: The entanglement cost of a sequence of pure
bipartite target states {‘q} )}‘“ is given by
Tf¥n—3

Ee =S(5)| where A={p2}._ with pf=Tr,|0,)(®,

is the sequence of subsystem states.
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Theorem 1: The entanglement cost of a sequence of pure
bipartite target states {‘q; )}"“ is given by
Ti¥n

Eo = S(ﬁ) where p = {p:l }:;1 with g =Tr; |®,)(D,|

is the sequence of subsystem states.

» Here E(ﬁ) :=inf{y:1iminfTr[P:pn]=1} ¥

n—>C
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Theorem 1: The entanglement cost of a sequence of pure
bipartite target states {‘q) )}"“ is given by
Tiln=a

Eo = S(ﬁ) where p = {p: }::1 with g =Tr; |®,)(D,|

is the sequence of subsystem states.

» Here S(p) mf{y hmmer[P’p ]—1}

—C

» Hence Vy::-S(p TT[P?P] = }3:!7:{;)"22_“’11}

Pirsa: 07100000 Page 125/248



| & —
BRYEY e
—= H?h |




S(§)-wp gy i, Vg )
2S8) W@ e —4)
DE)zwpg - - o =l




UNIVERSITY OF
CAMBRIDGE

Theorem 1: The entanglement cost of a sequence of pure
bipartite target states {‘q) )}‘“ is given by
Ti¥n

Eo = S(ﬁ) where p = {p,f }::1 with g =Tr; |®D,)(D,|

is the sequence of subsystem states.

« Here S(p)=inf {y hmmer[P’p ]—1}

n—>C

» Hence Vy;;.S(p Tr[P’p] = R,?={P.,22_WI:]
2

| N—

» i.e., the eigenspace corrs.to eigenvalues of p? which are
e =AY ioa high probability subspace
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« PROOF: [ R>S(p) is achievable]:
» Let the target state ‘(D )have N_  non-zero Schmidt

coefficients.
ZF &)
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« PROOF: [ R>S(p) isachievable]:

» Let the target state ‘CD ) have N_ non-zero Schmidt
coefficients.
(n))‘ k(n))

where the Schmidt coefficients ﬁ,,j are arranged in
decreasing order: ; - 3
HZ =

= N,
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« PROOF: [ R>S(p) isachievable]:
» Let the target state ‘(D ) have N_  non-zero Schmidt

coefficients.
ZF &)

where the Schmidt coefficients 4,; are arranged in
decreasing order: ; - 3
HZ =

Al = N
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« PROOF: [ R>S(p) is achievable]:
» Let the target state ‘(D ) have N_  non-zero Schmidt

coefficients.
ZF &)

where the Schmidt coefficients /1,,,;, are arranged in
decreasing order: ; - ; 3
nZ =

mE — n N,

» Protocol: Alice has a bipartite system AA’ and locally

prepares the state
N,
= ;,/,1,,,,‘ |
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« PROOF: [ R>S(p) isachievable]:

» Let the target state ‘CD ) have N_  non-zero Schmidt
coefficients.

= Z\/ W |
k=1
where the Schmidt coefficients /1,,,;, are arranged in
decreasing order: > -3
n:l = HZ == N

F 4

» Protocol: Alice has a bipartite system AA’ and locally

prepares the state
N,
= ;Ji,,,k =

» Then she teleports the state of the subsystem A4’ to Bob,
using her part of the MES ETL)
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Shared MES stat®

JUFEETmE

3

@

Alice
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Shared MES stat®
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CAMBRIDGE
il
Alice

h

Bob

= Alice locally prepares 44" in a state

irsa: 07100000
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AR S

@ h

Alice Bob

= Alice locally prepares 44" in a state

A

N,

ES*)

k(?)>
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CAMBRIDGE
il
Alice

h

Bob

= Alice locally prepares 44" in a state
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Shared MES stat®

QU

g

@

Alice

\

h

Bob

= Alice locally prepares 44" in a state

N,
)1 =3

g

BE*)

et
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Shared MES stat®

i, el

k3

\

@

Alice

h

Bob

= Alice locally prepares 44" in a state

ot Z\fﬂ
X k

A
P& i

A

ESY)

k(?)>

=1

= Alice teleports 4" to Bob using her part of “P;)

Pirsa: 07100000

Page 142/248



B UNIVERSITY OF
» CAMBRIDGE

Shared MES stat®

higis . st

g

\

@

Alice

h

Bob

= Alice locally prepares 44" in a state

o F i

N,

A

gl

k(f))

= Alice teleports A' to Bob using her part‘__g_f_ “P;,)

f e e o ———— = .
Pirsa: 07100000 . : = ~ Page 143/248
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R

@ h

Alice Bob

s If M 2N the teleportation can be done perfectly
and the final shared state is the desired target state:
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¢ final shared state

i L

)

\

@

Alice

h

Bob

s If M >N the teleportation can be done perfectly
and the final shared state is the desired target state:

N,
Pur, ) =190 =2 As

k) |
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¢ final shared state

%)

\

@

Alice

h

Bob

s If M >N the teleportation can be done perfectly
and the final shared state is the desired target state:

‘(ﬁMJ - ‘(DH>A.B 5

)i

s The subsystem A4'is now referred to as B since it is

now in Bob’s possession.

Pirsa: 07100000
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e

@ h

Alice Bob

s If M 2N the teleportation can be done perfectly
and the final shared state is the desired target state:

B1.,) =101} = 3t |2 57)

s The subsystem A4'is now referred to as B since it is
now in Bob’s possession.

I
-ﬁa - - -

~=_|n this case the fidelity : 1
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s However, if M, <N, then Alice can perfectly teleport only
the (unnormalized) truncated state

CMES WOREOY

irsa: 07100000 Page 149/248



UNIVERSITY OF
CAMBRIDGE

» However, if M, <N, then Alice can perfectly teleport only
the (unnormalized) truncated state

A
5, )= 3. )

» Note : only the M, largest Schmidt coefficients of the
target state |‘1D,,) are retained in the teleported state

irsa: 07100000 Page 150/248



UNIVERSITY OF
CAMBRIDGE

» However, if M, <N, then Alice can perfectly teleport only
the (unnormalized) truncated state

81 )= oA ) 5°)

= Note : only the M, largest Schmidt coefficients of the
target state “D,,) are retained in the teleported state

= This is the “quantum scissors effect”: if the quantum state
to be teleported lives in a space of a dimension higher than
the rank of the MES shared between the 2 parties, then the

higher dimensional terms in the expansion of the state are
“cut-off™.
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s Hence, for M, < N_ the final shared state between Alice
and Bob after the teleportation can be expressed as

B, ) (P

1

S
n

AB
Jn

where Is an unnormalized error state.
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s Hence, for M, < N_ the final shared state between Alice
and Bob after the teleportation can be expressed as

[P, ) (P

rn

+o” N

AB
O, is an unnormalized error state.

| Fidelity for M, <N,

s Using Uhlmann’s Theorem we prove that

®,)(®,|)

where

—

F,=F(|®, )(®,, |+o2,

MH
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s Hence, for M, <N _ the final shared state between Alice
and Bob after the teleportation can be expressed as

B, ) (P

¢

S
n

AB
0. is an unnormalized error state.

‘ Fidelity fior M_< N _

s Using Uhlmann’s Theorem we prove that

o2 0,)(®, )

where

(0., )(8

MH

(final state)
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s Hence, for M, < N_ the final shared state between Alice
and Bob after the teleportation can be expressed as

B, ) (P

4

o
n

AB
0. is an unnormalized error state.

‘ Fidelity for M_ <N _

s Using Uhlmann’s Theorem we prove that

®,)(®,)

(final state) (target state)

where

—

Fo=F ([, ) (e [ +o2"

MH
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s Hence, for M, < N_ the final shared state between Alice
and Bob after the teleportation can be expressed as

B, ) (P

f 4

e
n

AB
O, is an unnormalized error state.
| Fidelity for M, <N,

s Using Uhlmann’s Theorem we prove that
L O-:B S (Dr:> <(Dn |)

(final state) (target state)
F o A
%2 ‘(q)n: (I)MH> N TI(QJ;:{HPH )

where

=F(8,,)(8

MH
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s Hence, for M, < N_ the final shared state between Alice
and Bob after the teleportation can be expressed as

B, ) (P

n

-
n

AB
O, is an unnormalized error state.

| Fidelity for M, <N,

s Using Uhlmann’s Theorem we prove that
L O-:B 2 (I)n> <(Du })
(final state) (target state)

+[(@,(6,,)|-1e(0%.02)

O := orthogonal projection onto the M, largest

irsa: 07100000 M Page 157/248
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F =F(|€I3M¥><fl3
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Fidelity (for M_ <N, ) ‘

F > Tr(Q_;L P )

Ou = orthogonal projection onto the M, largest
elgenvalues of the reduced state p”
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Fidelity (for M, < N, ) ‘
F, >Tr(O; p;')
014; = orthogonal projection onto the M, largest

elgenvalues of the reduced state p”

= CLAIM: By choosing A, appropriately we can ensure:

~ >1

n—>c
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Fidelity (for M, <N, ) ‘

¥ |
3, := orthogonal projection onto the M, largest
elgenvalues of the reduced state p”

= CLAIM: By choosing M, appropriately we can ensure:

” >1

n—>oc

i.e., in spite of truncation of the state under
teleportation, unit fidelity achieved asymptotically!!
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Fidelity (for M_ <N, ) ‘

o |
7, := orthogonal projection onto the M, largest
elgenvalues of the reduced state p”

= CLAIM: By choosing A, appropriately we can ensure:

»~ >1

n—>C

i.e., in spite of truncation of the state under
teleportation, unit fidelity achieved asymptotically!!
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» PROOF: Consider the projection operator [P/ = { g >F*F
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+ PROOF: Consider the projection operator

. Rank of P77 satisfies:
D:i‘ "
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il {

k> <2 %
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. PROOF: Consider the projection operator

 Rank of PHJ’ satisfies:

irsa: 07100000

ool {pf > 2 Rl

el <Z*
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. PROOF: Consider the projection operator |P7 = {pf >Z*F 3

. Rank of Pé; satisfies: |TrP” <27

r Why? Tt [ng (Pj s )] >0

= TrP* <27
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. PROOF: Consider the projection operator |P7 = { pf >271 f}

. Rank of P7 satisfies: [TrP? <27

[ WhY? ] |:PH}' (p; _2—?2?'}';4 )J >0

= TrP* <27

. Note that P is the projection used in defining the

- A
S(p) :=inf{y:1imsup Tr[ffpﬂ] :1} where p, = p,
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. PROOF: Consider the projection operator |P7 := { 7, A Bl }‘

. Rank of P7 satisfies: [TrP? <27

+ Why? Ty |:P; (P; _Z—H?'Ij )] >0

= TrP* <27

. Note that P s the projection used in defining the

S(p) = inf{y -limsup Tr [prn:l = 1} where p,

:p:

. Hence Vy>§(ﬁ) we have Tr[ﬁ,’pn] e

Pirsa: 07100000
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. Wesaw that |, 21T (fo pf)

&
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. We saw that

Q1) How can we prove that FH

irsa: 07100000

%

F,>Tr(Qp 72)

>17?

n—><C
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. We saw that

Q1) How can we prove that FH

irsa: 07100000

F,>Tr(Qp £2)

>17?

m—><C
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. Wesawthat |, 21T (Qﬁpﬁ)

Q1) How can we prove that F, >17

n—><C

A1) By proving that:
Tr(Qg £2)2 TP o) with ¥ >S(D) ....(a)

s
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. Wesaw that |, 21T (Q;Hp:)

Q1) How can we prove that F, >17

n—><

A1) By proving that:
Tr(Qg £2)2TrPI oY) with 7 >S(D) ....(a)
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. Wesawthat |, 21T (Qﬁﬁpf)

Q1) How can we prove that / 3172

A1) By proving that:

Tr(Qf p2)2 T o) with 7 >S(P) ...(a)
L

+ {(AZ2) Because Tr(ﬂ’pj) 1

R—x
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. Wesaw that [, 21T (Qipﬁ)

Q1) How can we prove that F, >17

n—><C

A1) By proving that:
Tr(Qg £2)2 TP o) with 7 >S(D) ....(a)

+ (AZ) Because Tr(P:p:) 31

R—x

» (Q3) How can we choose M _ such that (a) holds ?
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Pirsa: 07100000

Eigenvalues of P:

in decreasing order
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: F I :
Eigenvalues of P, Indecreasing order
 labels 12. ... M, .
|/ / ¥Mm_ projects onto first

M, eigenvalues
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: 4 . .
Eigenvalues of P, Indecreasing order

ceibcis 2. . . n A
| / / M, projects onto first
T === ======- M, eigenvalues

. values 2z P7 projects onto all

eigenvalues > )~
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: a2 :
Eigenvalues of P, Indecreasing order

labels 12.... M, 4
| / / M, projects onto first
T === ======- M, eigenvalues

. values 2= P7 projects onto all

/ eigenvalues > )™
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: a .
Eigenvalues of P, Indecreasing order

labels 12.... M, 4
| / ﬁ M, projects onto first
T - TT=======- M, eigenvalues

. values 2 n P7 projects onto all

eigenvalues > )

(there are <27 such values TrP/ <27

. If we choose M _>2" then TIr (Qipf) >Tr(P] p;,)
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. vl o .
Eigenvalues of P, Indecreasing order

. labels 12. ... M, "
| / / “a, projects onto first
I L I P -*M,, eigenvalues

. values B P7? projects onto all
NEnR O _/_ ___________ eigenvalues > )~
| i

(there are <2 such values TrP/ <2%)

. If we choose M _>2" then Tl‘(Qin) >Tr(P] p;,)

F >Tr(Qy 2 )2 T (P pf)—1 for 7 >S(P)
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. Iftherank M _ of the initial shared MES l‘PZ{,{J is:

M,,:P”ﬂ with 7>S(P) ,then F.—=>1
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. Iftherank M _ of the initial shared MES ILP;1H> is:

M, =27 | i

¥ >§([3) , then

F >1

n j—>ol

. Hence, a rate

R=—

n

logM >y > S(p)

Is achievable!

. [Weak converse: Arate R <8 (ﬁ) is not achievable

 Hence, entanglement cost:

Pirsa: 07100000

E.=inf R=S(p)
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. Iftherank M _ of the initial shared MES “Pf{,in > is:

M, =27 | i

4 >§(f3) , then

F >1

n F—>»aot

+ Hence, a rate

R=—

[

logM >y > S(p)

Is achievable!

. [Weak converse: Arate R <8 (,E?) is not achievable

 Hence, entanglement cost:

07100000

E.=inf R=S(p)
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Schematic summary of protocol for entanglement dilution

\im: L e .
{ ]{I;[ﬂ >}n:l — ){‘(D”>}n:l

N,
nee 19)=3 Rl )E)

"_,,..--—_—--.,_‘\

J I : ! (1) Locally prepares AA" in state Iq:'n)

(2) She teleports A" toBob

JIf M,>N_ then F,=1
) If M, <N, then F, >1 if we choose M,

n—xC 1 [

—logM, > S(p),

71
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Asymptotic Entanglement Concentration of Pure States

@)

AM: | {j@,)) —= >{\‘I’Lﬂ>}

irsa: 07100000 Page 194/248
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 If the fidelity of this LOCC transformation:

then, any R< llogMn

I

Is an achievable rate:

>1

Distillable entanglement:

E, =supR

irsa: 07100000
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« If the fidelity of this LOCC transformation: F,———1
then, any R< llog M, I1s an achievable rate:
n

Distillable entanglement: | £, =sup R

 [THEOREM (Hayashi): For the entanglement concentration
o Locc = XN
protocol {‘ O >} : > {‘ s ol >}n:1

=

Ep, = E(ﬁ’)

1
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. If the fidelity of this LOCC transformation: F,———1
then, any R< llog M, i1s an achievable rate:
n

Distillable entanglement: | £, =sup R

 [THEOREM (Hayashi): For the entanglement concentration

protocol {‘ q)n>}:1 e {‘ LP;LL >}::1
E,=35 (/5 )

where A={PR) . with pf =Tr|®,)(®,].....
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CAMBRIDGE O ) = 7
. Proof: Let initial shared state: I ") Zk:\f mk

)

+ Consider projection operators| p7 -_ { p:l >7 7 If}
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- @\ | .
[Ci?;%z?ﬁi initial shared state: ‘(1)"> _Zk:\f/alk‘* >‘k3 )

+ Consider projection operators| p7 -_ { P: > If}
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. Proof: Let initial shared state:

. Consider projection operators I::!r — { p;:l >F 7 If}

and

Pirsa: 07100000

Zoa [ 7)

}3?

=1 -l <]
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CAMBRIDGE O ) = 7
. Proof: Let initial shared state: ! "> Zk:\‘ =k

)

 Consider projection operators I::!T - { Pj > 7 7 If}

and | P7 =T~ Bl ={pi! <2 I}

. Note : P/ s the operator used in defining S(2) :
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fcgr%E?ﬁEt initial shared state: I(D") = zk: VAo |k‘gn}>‘k§n}>

. Consider projection operators I::IT — { p:;l > P T If}

and

 Note :

F=E-rr=ta <2

P’ is the operator used in defining S(9) :

. S(p) =sup {y : limsupTr[P:pf] = 0} for P= {P:};

Pirsa: 07100000
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. Proof: Let initial shared state:

Consider projection operators

and

Note :

Ay | RSN ES7)

P’ ={pt>2"1]

oo mi ol e B

P’ is the operator used in defining S(2) :

S(p) =sup {y ‘limsupTr [P:pf] = 0} for

Pirsa: 07100000

p=1p;
Hence for 7 <S(p) Tr (P7 p2) ——
R Ir (ﬁipf 2 .
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o

initial shared state

PROTOCOL:

@ (1) Does a von Neumann measurement corrs. to
: P’ .P” on her part of shared state |®,)

Fl

] \

f outcome corrs. to £, If outcome corrs. to 2,
Failure! Success!
Protocol aborted! Probability= Tr (Pap’)
Srobability= Tr (P7 p) '
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If the outcome corrs. to £, : post-measurement state:

‘(1)">AE £ (E’y ®15H®">AB

Pirsa: 07100000 Page 208/248
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If the outcome corrs. to £, : post-measurement state:

@,) < (B RIH|®@,) x X JAJE)E)

EL <cx™

irsa: 07100000 Page 209/248
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If the outcome corrs. to £, : post-measurement state:

@,) < (B7RI)|®,), * D \Au|E")E)

' o T Sad
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We need: M _<2"Tr(P p’) ;let |M, = LZWTY(F;Pf )J

if 7 <S(P) where P= {Pf },,:1 then

Probahility of failure: Tr (P! o) —>0

D A
Probability of success: ¢ L)y —_ 1

Pirsa: 07100000 Page 213/248
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We need: M _<2"Tr(P’p’) ;let |M, = Lzﬂ?Tr(Efo )J

I F < S(P) where P= {Pf },,:1 then

Probability of failure: 1T (P p2) —>0

D A
Probability of success: It L) —_ 1
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We need: M _<2"Tr(P7p2) ; Let

A ag

if ¥ <S(P) where P= {P,, },,:1 then

M, =| 27 TP p})|

Probability of failure: It (E:Pf )

Probability of success:

Tr (B o)

>0
l—>aC
>1
;1>
%

1 !
Achievable rate: R <—logM <S8(p)

14

Pirsa: 07100000
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We need: M _<2"TrP p’) ;let |M, = LTYTY(}?Pf )J

if ¥ <S(P) where P= {Pf },,:1 then

Probability of failure: 1T (Fa) ——>4

Tr (P7 p) ——>1

R

Probability of success:

1 T
Achievable rate: X< ;1083’4" <3(p)

Weak Converse: Arate R>S(p) is not achievable
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We need: M, <27Tr(P!pt) ;let |M,=|2"TrP’p})|

if ¥<S(P) where P= {Pj },,,:1 then

Probability of failure: 1T (PIp2) ——

Tr (B o) >1

Probability of success:

1 a
Achievable rate: 1= glﬁg*Mn <3(p) == -

Weak Converse: Arate R>S(p) isnol - able
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We need: M <27Tr(P’p’) ;let |M, = LZWTI'(E?Pf )J

if ¥<S(P) where P= {Pf },,:1 then

Probability of failure: 1T (P p2) ——3dl

D A
Probability of success: It o)y —_

1 -
Achievable rate: X< ;logiun < Q(P)%

Weak Converse: Arate R>S(p) is not achievable
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We need: M _<2"TrP p’) ;let |M, = LZWTY(}?’P? )J

if ¥ <S(P) where P= {Pf },,:1 then

Probability of failure: 1T (PIp2) —>0

D A
Probability of success: I )y —-

1 "
Achievable rate: X< ;log“Mn <3(p)

Weak Converse: Arate R>S(p) is not achievable

Distillable Entanglement: E,=S( f))

Pirsa: 07100000

I



UNIVERSITY OF N

CAMBRIDGE |
-hematic summary: protocol for entanglement concentration
. . [ . 10CC i ) }-:e?.
Aim : |(I) ) }r—l ){ IJM:1 a8y,
PROTOCOL:
(1) Does a von Neumann measurement corrs. to
@ P”.P” on her part of shared state |D,)
If outcome corrs. to P, If outcome corrs. to P,
Failure! Success!
o) —— T ]
=

« If y<S(p) : Lo%,

- ‘ OiOOPrOb Of success )1 & “LP;!’E > Page 220/248
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Summary
Entanglement Dilution s e S
| PM& AB }R:L 2 1‘ (DH )AB }Hzl
Entanglement cost e §( 5)
; o0 1 . S
Where /D = {p(‘; } e WIth ﬁij)H - TIB ‘ (I)H><(I)H ‘

Entanglement Concentration {‘(D ) } Locc {‘IP&) }
"1AB ) p=i 4B ),

Distillable entanglement E, = S ( ;})
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ad

. Any sequence of bipartite pure states {l(I)n )AB }n:1 for which

= . 1 .
S(p)=Im—S(p, )=S(p) :information stable on
= its subsystems
asymptotic entanglement measure:
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ad

. Any sequence of bipartite pure states {|(I)n )AB }n:1 for which

- i gl
S(p)=Im—S(p, )=S8(p) :information stable on
—n its subsystems
asymptotic entanglement measure:

B —F limlS(pﬂ) here £, = Pf:TrB ‘(DHMCDH‘

i'!—}cu"
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ad

. Any sequence of bipartite pure states {l(I)n )AB }n:1 for which

S(p) = limlS(pn) —=S(p) : information stable on
——n its subsystems
asymptotic entanglement measure:
_ o
E.=E,=Im—S(p,) here Pn= Fn _TIB‘CDHM(DH‘

i!—}-ou"

m 2}
es il {‘ (Dn>,w },,:1 il {‘@)Aﬂ L:1 Seitl:tr;es e i

then ﬁ={P®"}; with P=Trs[‘i")<‘?’|
N $(5)=5(p)=S(p)

Ec = ED = S( P) ‘ :unigue entanglement measuse

 |[Hernce,
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. However, Jdsequences {I(DH>AB },Flof bipartite pure states for

which the corrs. sequence Efs/ubgys\u—:-m states are

~——_

not information stable: S(p)=S(p)
“\\_\____//
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. However, Jdsequences {‘(Dn>,w}

a

., 0f bipartite pure states for

which the corrs. sequence of subsystem states are

not information stable: S (P) 8 (P)

- ___.a--'
e e —

. e.g. sequences of states for Wthh the subsystem states

are:

o i

& S(o)<S(o).

Pirsa: 07100000
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a2

. However, Jdsequences {‘(Dnlw }n:lof bipartite pure states for

which the corrs. sequence of subsystem states are

g ——

not information stable: §()E’) # S(p)

i

. e.g. sequences of states for which the subsystem states

are: ot e

& S(o)<S(o).

.1€(0,1)

. For such sequences

E,=S(o)<S(@)=E,_

&

irsa: 07100000
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. However, Jdsequences {‘(DHLB },,:lof bipartite pure states for

which the corrs. sequence of subsystem states are

m—
e
—

not information stable: S (P) £S (P)

. e.g. sequences of states for whlch the subsystem states

are: = o+l £€(0.,1)

& S(o)<S(o).

E,=S(o)<S(o)=E,

. For such sequences

 Hence, the asymptotic entanglement mgasure is unique
enby-for information stable sequences !
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SUMMARY

: : , f
 For an arbitrary sequence of pure bipartite states 1‘(1)” ).13 },,:1

entanglement cost |E,. =S(p) | ; p :{TIB‘(DH>((DH‘};

distillable entanglement Ep = Q(P )

. | E. = E,, | only for sequences of states which are

information stable, i.e., for which S(p)= S L)

 only such sequences have a unique asymptotic entanglement

measure.
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+ NOTE: The quantities Q(ﬁ) . E(ﬁ)

are obtainable from 2 fundamental quantities: the spectral
divergence rates:

i 3

D(p| &) :=inf{y:limsup Tr[{I1_(»)> 0} IT_(»)]=0}

w
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+ NOTE: The quantities Q(ﬁ’) . E(ﬁ)

are obtainable from 2 fundamental quantities: the spectral
divergence rates:

'

D(p|| @)= supq 7 : liminf Tr[{I1 ()2 0}I1_(»)]=1}

s Y

D(p| &)= inf{y:limsup Tr[{I1_(7)> 0} IT_(»)]=0}

3
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NOTE: The quantities g(ﬁ’) . E(ﬁ)

are obtainable from 2 fundamental quantities: the spectral

divergence rates:

'8

'

S

D(p|| @)= supq 7 : liminf Tr[{I1 ()2 0}I1_(»)]=1}

D(p| &):=inf{y:limsup Tr[{I1_(»)>0}IT_(»)]=0}

~J

b &

Hereﬁ':{PH} @ =

n={

Pirsa: 07100000
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n—1

and
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NOTE: The quantities g(ﬁ) . E(f’)

are obtainable from 2 fundamental quantities: the spectral

divergence rates:

D(p|| @)=sup

D(p|| &)= inf{

'8

i

3

Fi—>cQ

7 :liminf Tr[{IT_(») 2 0}I1 ()] =1}

y :limsup Tr[{I1_(7) 2 0}I1_(»)]=0¢

-1

~

og

HereﬁZ{PH} @ =

n={

By substituting @=1= .}

Pirsa: 07100000

Y

CH

o3
=1

and

IL(O)=p.—20
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. NOTE: The quantities Q(P) - S(p)
are obtainable from 2 fundamental quantities: the spectral
divergence rates:

r 3

D(p|| @)= supq 7 : liminf Tr[{I1_() 2 0}I1_(»)]|=1}

FI—>oQ

"o

D(p| &):=inf{ y:limsup Tr[{I1_(»)> 0} IT_(»)]=0¢

n—m

=

ered={p), 6={0,)" ma [Lgr=p.-27m,

n=1 =1

. By substituting @=1= {!,,,}ﬂ:F1 we get

305 -D(p | 1) and S(p)=-D(p||1)..

=

248
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. From  D(p||o) and D(pll®) we obtain
- = ~u o Rl e —
S(p)=—D(p|I) S(p)=-D(p|lI)

-~

by substituting @=1=1{/,}
R

+ The spectral divergences rates can be viewed as
generalizations of the quantum relative entropy:

151 ( )(_j

|@)=Tr plog p -Tr p log ®

since

S(p)==S(pl|lI)
S(A|B)=-S(p™ || I"® p*)
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+ The Quantum Information Spectrum Method provides a
unifying mathematical framework for evaluating the optimal
rates of various information theoretic tasks e.g.

entanglement manipulation, data compression, data
transmission, dense coding etc.
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+ The Quantum Information Spectrum Method provides a
unifying mathematical framework for evaluating the optimal
rates of various information theoretic tasks e.g.

entanglement manipulation, data compression, data
transmission, dense coding etc.

OPEN PROBLEMS
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+ The Quantum Information Spectrum Method provides a
unifying mathematical framework for evaluating the optimal
rates of various information theoretic tasks e.g.

entanglement manipulation, data compression, data
transmission, dense coding etc.

OPEN PROBLEMS
Use the Quantugl Information Spectrum Method to find:
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The Quantum Information Spectrum Method provides a

unifying mathematical framework for evaluating the optimal
rates of various information theoretic tasks e.g.

entanglement manipulation, data compression, data
transmission, dense coding etc.

OPEN PROBLEMS
Use the Quantum Information Spectrum Method to find:

=« the quantum capacity of an arbitrary quantum channel.
R
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 The Quantum Information Spectrum Method provides a

unifying mathematical framework for evaluating the optimal
rates of various information theoretic tasks e.g.

entanglement manipulation, data compression, data
transmission, dense coding etc.

OPEN PROBLEMS
Use the Quantum Information Spectrum Method to find:

=« the quantum capacity of an arbitrary quantum channel.
5
= the optimal rates for various other informations theoretic
protocols, such as, distributed quantum compression,
quantum capacity in the presence of feedback, etc.,

using arbitrary sources, channels and entanglement
OFD@SOU rces - Page 240/248
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