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Abstract: Everett explained A“ collapse of the wavepacketA” by noting that observer will perceive the state of the measured quantum system relative
to the state of his own records. Two elements (missing in this ssmple and compelling explanation of effective collapse) are required to complete
relative state interpretation: (i) A preferred basis for states of at least some systems in the wholly quantum Universe must be identified, so that
apparatus pointers and other recording devices can persist over time. Thisimplies breaking of the unitary symmetry in the original (more egalitarian)
relative state interpretation, so that it can successfully account for classicality of macroscopic objects in accord with BohrA’s view of the role of
measuring apparatus, and with our everyday experience. It is now widely accepted that decoherence (caused by the monitoring of systems by their
environments) leads to einselection of pointer states, accounting for the emergence of preferred states. However, tools used by decoherence rely on
the second missing link between quantum substrate and reality; (ii) A prescription that connects probabilities of outcomes with amplitudes of
quantum states A— such as BornA’s rule is still needed. BornA’s rule could be in principle postulated, but as Everett noted fifty years ago this should
not be necessary. | show that both (i) einselection and (ii) BornA’s rule follow from symmetries of entangled quantum states. Entanglement
represents information transfer between the to-be-classical quantum systems and their environments. Information transfer in course of decoherence
produces multiple copies of the state of the system: its redundant imprints in the environment. This multiplicity of records can account for the
objective existence of preferred pointer states: (iii) Quantum Darwinism singles out the A“fittest observableA” of the system (the observable that
produces the most information-theoretic A“offspringA” of its state, i.e. the most copies in the environment). These fittest observables exist
objectively: information about them can be found out indirectly, from the environment, without perturbing the underlying state of the system. The
objective existence of pointer states is the foundation of the existential interpretation. The existential interpretation recognizes with Everett the
relative nature of quantum states, but accounts for the effectively classical states (which unlike quantum states of isolated systems A— can be found
out without getting disrupted in the process) through quantum Darwinism
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State of a composite system is a vector in the tensor product
of the constituent Hilbert spaces. (“Complexity”)

Quantum states of a system are represented by vectors in it:
Hilbert space. (“Quantum Superposition Principle”)

Evolutions are unitary (e.g. generated by Schroedinger
equation). (“Unitarity”)

Immediate repetition of a measurement yields the same
outcome. (“Predictability™)

Outcomes restricted to orthonormal states {|s, >} (eigenstates
of the measured observable). Just one outcome is seen eacr
time. (“Collapse Postulate”)

Probability of finding an outcome |s, > given a state |f> is
p.=I<s. | f>]%. (“Born’s Rule”)
Bohr, Dirac, “Copenhagen” -- 4&5 require “classical apparatus”, etc.
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Plan of the Lecture

Decoherence 101; the basic idea, and why it is not basic
enough

Preferred basis without decoherence and the origin of
quantum jumps (orthogonality & collapse)

Probability is objective in quantum theory - “envariant”
(entanglement - based) derivation of Born's rule (p.ﬁ = fp. |

Role of decoherence & einselection: when pointer states
define “events”

Redundancy and quantum Darwinism (“environment as a
witness” & origins of objective existence in a quantum worid)

Decoherence, environment - induced superselection, and
predictability

Existential Interpretation (Relative states + operational
definition of “existence”)
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EINSELECTION", POINTER BASIS,
AND DECOHERENCE
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DECOHERENCE AND EINSELECTION

[hesis: Quantum theory can explain emergence of the classic:
Principle of superposition loses its validity in “open” systems, that is,
systems interacting with their environments.

Jecoherence restricts stable states (states that can persist, and, therefore
“exist”) to the exceptional...

’ointer states that exist or evolve predictably in spite of the immersion
of the system in the environment.

’redictability sieve can be used to ‘sift’ through the Hilbert space
of any open quantum system in search of these pointer states.

INSELECTION (or Environment INduced superSELECTION) is

the process of selection of these preferred pointer states.

‘or macroscopic systems, decoherence and einselection can be very effective,
enforcing ban on Schroedinger cats.

sinselection enforces an effective border that divides quantum from classical, making

a point of view similar to Bohr’s Copenhagen Interpretation possible, although starti

fremsarrather different standpoint (i. e., no ab initio classical domain of the-umdverse

A 5 L AlOCITd .
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Goal

Justify axioms 4&5 using the noncontroversial 0-3

PLAN:
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Goal

Justify axioms 4&5 using the noncontroversial 0-3

Understand emergence of “objective classical reality” - how real
states that can be found out by us arise from quantum substrate.

PLAN:

+ Why does “Born’s rule” yield probabilities?

+ How can “objective classical reality” -- states
we can find out -- arise from the fragile
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measurements? (“Quantum Darwinism?™)
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States that can survive “being found

out” intact must be orthogonal.
Consider two states that can be “found out”:
u)|Ay) = u)|A,)
v)|Ag) =>[v)|A,)
Consider an initial superposition of these two states:
(alu) + B|v)) Ay) = alu)|A,) + Blv) A,)
Jorm must be preserved. Hence: Re(a B(u v))=Re(a Blu|v)(A, A,
’hases of the coefficients can be adjusted at will. So:
(ulv) = (u|v)(A,|A,)
So either (A, A, ) = 1(measurement was not successful)

or (u|v)=0 QED!!
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States that can survive “being found

out” intact must be orthogonal.
Consider two states that can be “found out™:
u)|Ay) = |u)|A,)
v)|Ay) =[v)|A,)
Consider an initial superposition of these two states:
(alu) + B|v)) Ag) = a|u)| A,) + Blv) A, )
Jorm must be preserved. Hence: Re(a B(u v)) =Re(a Blu
’hases of the coefficients can be adjusted at will. So:
(ulv) = (u|v)(A4,|A,)

So either (A, A, ) = 1(measurement was not successful)

or (ulv)=0 QEDM!  “egllapse”
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Consequences and extensions
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Consequences and extensions

Derivation of the key to Collapse Postulate from Axioms 1-3:
explains why in general one cannot “find out” preexisting states
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Consequences and extensions

Derivation of the key to Collapse Postulate from Axioms 1-3:
explains why in general one cannot “find out” preexisting states

Implies that observables are Hermitean (given an extra
assumption that eigenvalues are real).

Page 49/109

WHYT arYivrmiiant.mnh/OD7N216

Pirsa: 07090070



Consequences and extensions

Derivation of the key to Collapse Postulate from Axioms 1-3:
explains why in general one cannot “find out” preexisting states

Implies that observables are Hermitean (given an extra
assumption that eigenvalues are real).

Proof similar to “no cloning theorem” -- information about
preexisting states cannot be found out -- passed on. (Cloning
means making a “perfect copy”. Here the copy need not be
perfect; “information - disturbance”)
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Consequences and extensions

Derivation of the key to Collapse Postulate from Axioms 1-3:
explains why in general one cannot “find out” preexisting states

Implies that observables are Hermitean (given an extra
assumption that eigenvalues are real).

Proof similar to “no cloning theorem” -- information about
preexisting states cannot be found out -- passed on. (Cloning
means making a “perfect copy”. Here the copy need not be
perfect; “information - disturbance”)

Proof can be extended to the case when apparatus (or
environment) is initially in a mixed state.
&
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Consequences and extensions

Derivation of the key to Collapse Postulate from Axioms 1-3:
explains why in general one cannot “find out” preexisting states

Implies that observables are Hermitean (given an extra
assumption that eigenvalues are real).

Proof similar to “no cloning theorem” -- information about
preexisting states cannot be found out -- passed on. (Cloning
means making a “perfect copy”. Here the copy need not be
perfect; “information - disturbance”)

Proof can be extended to the case when apparatus (or
environment) is initially in a mixed state.

Axiom 3 -- predictability -- is the key to the proof!

Information transfer need not be due to a deliberate
measurement: any information transfer that does not

perturb outcome states will have to abide by this rule:
Pointer states, predictability sieve, and DECOHERENCE.

PPPPP : 07090070 age 5
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Summary: Observables are Hermitean

Theorem: Outcomes of a measurement that satisfy postulates
1-3 must be orthogonal.

Proof (another version). measurement is an information transfer
from a quantumsystem S to a quantum apparatus A. So, for any
two possible repeatable (predictable) (Axiom 3) outcome states
of the same measurement it must be true that:

) Ay) = |u)A,)
v)|Ag) = v) A, )

By unitarit;f (Axiom 2) scalar product of the total (S+A) state
before and after must be the same. So:

[V )(Ao|Ag) = (u|v)(A,[A,)

But (A, A,) =1. So either (A,|A,) =1 (measurement was not
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Summary: Observables are Hermitean

Theorem: Outcomes of a measurement that satisfy postulates
1-3 must be orthogonal.
Proof (another version). measurement is an information transfer
from a quantumsystem S to a quantum apparatus A. So, for any
two possible repeatable (predictable) (Axiom 3) outcome states
of the same measurement it must be true that:

u)|Ay) =>|u) A,)

v)|4,) =|v)|A,)

By unitarity (Axiom 2) scalar product of the total (S+A) state

before and after must be the same. So: “iniormation gain

(u|v){(Ag| Ag) = (u|v)(AL|A, ) e e
But (A, A,) =1. So either (A,|A, ) =1 (measurement was not
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Summary: Observables are Hermitean

Theorem: Outcomes of a measurement that satisfy postulates
1-3 must be orthogonal.
Proof (another version). measurement is an information transfer
from a quantumsystem S to a quantum apparatus A. So, for any
two possible repeatable (predictable) (Axiom 3) outcome states
of the same measurement it must be true that:

ISTINGUISHABLE  [1,) A,) = u) A,) NOTE: IN CONTRAST WITH
“EVENTS” |v)a,)=|v)A) INVOKE BORN'S RULE™

By unitarity (Axiom 2) scalar product of the total (S+A) state
before and after must be the same. So:

“Information gain
(u|v){(Ag|Ag) = (u|v)(AL|A, ) e e
But (A A, =1. So either (A, A,) =1 (measurement was not
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Plan

Derive controversial axioms 4&5 from the noncontroversial 0-3.
Understand emergence of “objective classical reality” -- how rez
states that can be found out by us arise from quantum substrate
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ENVARIANCE

(Entanglement-Assisted Invariance)

DEFINITION:

Consider a composite quantum object consisting of system S and
environment £. When the combined state w <5 is transformed by:

Us = u, ®1;
but can be ‘“‘untransformed” by acting solely on £, that is, if
there exists:

Ug=1; ®u,

then lpss iIs ENVARIANT with respect to .

U (U, lwss )) =U, “pss > - |wss )

Envariance is a property of {J gand the joint state 1) g of two |
systems, S & £ .



ENTANGLED STATE AS AN EXAMPLE
OF ENVARIANCE:

Schmidt decomposition:

‘wsg> E a, IS ‘8

Above Schmidt states |s, ), ¢, ) are orthonormal and ¢, complex.
.emma 1: Unitary transformations with Schmidt eigenstates:

u(s)= Y exp(ip,)|s, Xs.|
leave ws—s envariant.

roof: 4(sMse) = Do expligls e} w6 = Dexplicd + 2rlleXe
(&, ){us(si){lpsﬁ Za exp{i(¢, 9, +21L)s, |e, .-—Za exp(ig, )mk sx.- e
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ENTANGLED STATE AS AN EXAMPLE
OF ENVARIANCE:

Schmidt decomposition:

‘wszs) 2 a, ‘S ‘8

Above Schmidt states |s, ), ¢, ) are orthonormal and ¢, complex.
.emma 1: Unitary transformations with Schmidt eigenstates:

us(s)= Y exp(ip,)|s, {s.|

leave Y. envariant.
roof:  U(5 W< ) za exp(ig,)|s e} u.(€,) = 2exp{i(—¢k+2:rl)}|£ Xe. |

k=1

(€ (a5 ) Za exp{i(9, —, +271,)|s, e, -—Ea XD, ) =
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ENTANGLED STATE AS AN EXAMPLE
OF ENVARIANCE:

Schmidt decomposition:

‘wss) E a, IS ‘8

Above Schmidt states |s, ), ¢, ) are orthonormal and ¢, complex.
.emma 1: Unitary transformations with Schmidt eigenstates:

uc(s)= Y explig,)|s, )s|

leave wsg envariant.
roof: 4s(sMse) = Dot expligls o) e = Dexplicd + 2xlleXe

[E(E ){uS(SL)WSE 2(1 EKp{I((ﬁ —¢k +2ml )51. ‘8 | —2(1 exp(:cp )|Sk lé‘x ps 1’-’51

0000000000000
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ENVARIANCE -- SOME PROPERTIES
U (Ug I‘/’sz )) =Ug ‘pss) = exp( i‘pﬁwss)

. Envariant'lj} IS an eigenstate of two unitary transformations
with a unit (or memdmar]) eigenvalue.

 Envariance can be defined for density matrices of £, but this
will not be necessary, as one can instead punfy the state of s£
in the usual way, by introducin ", so the density matrix of S
saventy: p =T [Wo XWerp|

* A product of envariant transformations of Y . is an envariant
transformation of Y e

* All envariant transformations have Schmidt eigenstates.

» There may be many environments that undo an effect of the
same unitary transformation on the system

For additional discussion, see WHZ, quant-ph/0211037, PRL, 90, 120404 (2003)

alSQarecokenence, cinselection, and the guantum onigin of the classical RMEB,, .,
78 T1S (270003 and eenectally Zealalilitios I/nne sulsmwclomeeer mant-nh/0405816



PHASE ENVARIANCE THEOREM

Fact 1: Unitary transformations must act on the system to alter its state (if
they act only somewhere else, system is not effected).

Fact 2: The state of the system is all that is necessary/available to predict
measurement outcomes (including their probabilities).

Fact 3: A state of the composite system is all that is needed/available to
determine the state of the system.

Moreover, “entanglement happens”'

‘wss) 2 .| s, N&)

[HEOREM 1: State (and probabﬂmes) of S alone can depend only on
he absolute values of Schmidt coefficients ;a ls and not on their phases

Proof: Phases of (¢, can be changed by acting on S alone. But the
state of the whole can be restored by acting only on £. So change
of phases of Schmidt coefficients could not have affected S! QED.
.". By phase envanance, {j |, |s, )} must provide a complete local

~=odd@SCription of the system alone.
Same infn ae rednced dencity matmaiw'!!



Envariance of entangled states:
the case of equal coefficients

|1'ps£> o Eexp( i¢k)lsk)|£k)

In this case ANY orthonormal basis 1s Schmidt. In particular, in the
Hilbert subspace spanned by any two {lSk ), IS!>} one can define a

Hadamard basis; ‘i) _ (‘ Sk>i ‘S! >)/‘/2_

This can be used to generate ‘new kind’of envariant transformations:

ASWAP: wu_(k <= D) =exp(ipy)|s, Xs, |+ Ac.
Can be ‘undone’ by the COUNTERSWAP:
us(k <= 1) =expli(—@, —@, + (Pz)}|st ng |+ hc.

;Em-IA*S: Swaps of states are envariant when Schmidt

wnefficiente have came ahenlnte valnie
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Fact 1: Unitary transformations must act on the system to alter its state (if
they act only somewhere else, system is not effected).

Fact 2: The state of the system is all that is necessary/available to predict
measurement outcomes (including their probabilities).

Fact 3: A state of the composite system is all that is needed/available to
determine the state of the system.

Moreover, “entanglement happens”'

‘wss) Eakl NED

[HEOREM 1: State (and probamees) of S alone can depend only on
he absolute values of Schmidt coefficients a, | and not on their phases

Proof: Phases of (¢, can be changed by acting on S alone. But the
state of the whole can be restored by acting only on £. So change
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Envariance of entangled states:
the case of equal coefficients

e ) < Dexpliols,e.)
k=1

In this case ANY orthonormal basis 1s Schmidt. In particular, in the
Hilbert subspace spanned by any two {lSk >, |S;)} one can define a

Hadamard basis; ‘i) - (‘ Sk>i ‘s! >)/\/2_

This can be used to generate ‘new kind’of envariant transformations:

ASWAP: u_(k <= ) =exp(i@,)|s. Xs, |+ hc.
Can be ‘undone’ by the COUNTERSWAP:
u_(k <= 1) =exp{i(—@, —@, + p)}e Xe, |+ hc.

wnefficiente have came ahenlnte valnie



“Probability from certainty”

Probabilities of Schmidt partners are the same
(detecting 0 in .S implies 0 in £ etc.).

|0>|0> + |1>|1> (initial state - equal abs. values of coeff's)
SWAPon S

11>|0> + |0>|1> (prob’s in .S must have swapped, so that
after swap they are equal to the prob’s
of state in £ that were not affected)

COUNTERSWAP on £

11>|1> + |0>]|0> (p’s in S must be the same as they

were to begin with -- global state is
back to the “original”)

Probabilities can “stay the same” and also “get exchanged” .70
onlv when thev are eaual!!! (n(0)=p(1)) (Schlosshauer & Fine, Bamum, WHZ)



Probability of envariantly swappable states

IWss ) % 2 exp(i‘pk)lsk )lgk )

By the Phase Envariance Theorem the set of pairs k:tk |, Sk>
provides a complete description of S. But all |, | are equal.

Vith additional assumption about probabilities, can prove

'HEOREM 2: Probabilities of envariantly swappable states are eque
a) “Pedantic assumption”; when states get swapped, so do probabilitite
b) When the state of the system does not change under any unitary in

| part of its Hilbert space, probabilities of any set of basis states are equz
¢) Because there is one-to-one correlation between | s, ) E,)
Therefore, by normalization: 1

pk=ﬁ \
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Probabilities from envariance

(Environment-assisted iINVARIANCI
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Symmetries
can reflect
ignorance

Probabilities from envariance

(Environment-assisted iINVARIANCI

0) 0) + |L5) [Lg, =) 0;) +[05) 1, = 1) +0;) |
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Symmetries
can reflect
ignorance

o

Probabilities from envariance

(Environment-assisted iINVARIANCI

/_\ |
-
)+

0,10, L) | =251 (0) +[0g) 1

swap in E i1\ \
o) |1g) +(0g) |
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Symmetries
can reflect
ignorance

“

Probabilities from envariance

(Environment-assisted iINVARIANCI

\ v swap in § ‘ - l \ T\«-;swa in E \ '
Q? 0:) i) |— ‘*15:- .QL_+ 0, itz ————,) 1) +[05) |
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Symmetries
can reflect
ignorance

Probabilities from envariance

(Environment-assisted iINVARIANCI

al P Y
D10 L) ;) 0,) # |0, Fitz) i) 1) +(0g) |
\_,// ..\'“\__M___.__d_/”;

P = WJ\Z follows!
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Symmetries
can reflect
ignorance

Probabilities from envariance

(Environment-assisted iINVARIANCI

/_,f"_—'—‘\-\
"/—\ \
e \ ,,.__% L
D \ 0 hM\I'/lv swap in § ""l - 0 0 “-H/r swap in £ 1 l 0 \ '
0 00 ) kT 1e) | =) e Ot T lz) +10s
\v// N

7 W}\Z follows!

0000000000000

FPRY. o MAN e s ey aas: AR bl



Symmetries
can reflect
ignorance

Probabilities from envariance

(Environment-assisted iINVARIANCI

- ;,f”‘f——‘\\\
d_-r—“-;\ ) _,? A
\ \ \I’// swap 1n § ‘ - RHX swap i E i I' '
. 3 f,,f’““xx \
., i —
b y = y
\_\_’/ .

2
= W}‘ follows!
iote: Swaps do change unentangled States ! Phases matter!
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Special case with unequal coefficients

“onsider system S with two states {|0),]2)}
The environment £ has three states {o), |1),[2\|| and [+)=(/0) + [1))/+2

.S'S IO+ -

An auxilliary environment £ interacts with £ so that:

psg)|5b>=(gl0)l+) + ngz)iz)]m):aJ§|o)(|o)|o)+|1)|1));,[2‘ " J%IZ)I?)IZ)
- (10)/00) + (oY)t + [2)[2)2)) 13

States [0)0), [O)1), |2)2) have equal coefficients. Therefore,
Each of them has probability of 1/3. Consequently:
p(0) = p(0.0)+p(0,1) =2/3, and p(2)=1/3.

PSR DLl (1 X1] BORN s RULE- o8




Probabilities from Envariance
The case of commensurate probabilities: ‘ws - E ,m / ‘ kx k)

Attach the auxﬂ1a}'y ‘counter” en{ylronment @

- N _ |l
‘wSE /%0/ g‘\' /M &/ 2 | Ej;( o) =

= J c J
\ ; \ £ /)
I <
= — e .
*s.M 7

THEOREM 3: The case with commensurate probabilitjes can be
educed to the case with equal probabi]jties BORN’s RULE follows

1 |
Pj=ﬁa lpk zpjk__- hkr
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Probabilities from Envariance
The case of commensurate probabilities: ‘ws - 2 ,m / ‘ kx k)

Attach the auxﬂla}'y ‘counter” en?flronmeut é"

| | N y Al
Jel )= M/ L1 M)
YsE €, ;\ /M |k/ % “i/||10/ =

a. J & P
\ " \ £ /)
l M \ |
= —— ) .
A/ M T

THEOREM 3: The case with commensurate probabilitjes can be
educed to the case with equal probabi]jties BORN’s RULE follows

: Pr = ZPJE__' hkr

,,.’ L= 1 Page 98/109
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Pirsa:

Why the proof works

Need to know how to relate quantum states and
“‘events”. ("Symmetry breaking” induced by
information transfer.)

Need to prove that phases of the coefficients do not
matter (otherwise swapping alters state even when
absolute values of coeff's are equal). ("Decoherence
without decoherence”)

How it fits within the usual decoherence framework:
Schmidt states end up coinciding with pointer states
(selected for their resilience)

Cannot really start by assuming decoherence --
decoherence tools presume Born's rule

000000000000000000



ENVARIANCE* -- SUMMARY

1. New symmetry - ENVARIANCE - of joint states of quantum
systems. It is related to causality.

2. In quantum physics perfect knowledge of the whole may imply
complete 1ignorance of a part.

3. BORN’s RULE follows as a consequence of envariance.

4. Relative frequency interpretation of probabilities naturally
follows.

5. Envariance supplies a new foundation for environment - induced
superselection, decoherence, quantum statistical physics, etc., by
justifying the form and interpretation of reduced density matrices.

*"WHZ, PRL 90, 120404; RMP 75,715 (2003); PRA 71, 0521932005
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Derive controversial axioms 4&5 from the noncontroversial 0-3.
Understand emergence of “objective classical reality” -- how rez
states that can be found out by us arise from quantum substrate

» Why the measurement outcomes are limited
to an orthogonal subset of all the possible
states in the Hilbert states?

« Why does “Born’s rule” yield probabilities?

* How can “objective classical reality” - states
we can find out -- arise from the fragile
quantum states that are perturbed by

~-mmeasurements? ("“Quantum Darwinism.).



Von Neumann

Decoherence & Einselection
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Decoherence & Einselection
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Envariance of entangled states:
the case of equal coefficients

|1/’ss> - Eexp( itf)k)lsk)‘sk)

In this case ANY orthonormal basis 1s Schmidt. In particular, in the
Hilbert subspace spanned by any two {lSk >, IS;)} one can define a

Hadamard basis; ‘i) _ (‘ Sk>i ‘S[ >)/J2_

This can be used to generate ‘new kind’of envariant transformations:

ASWAP: wu_(k <= D) =exp(ipy)|s, Xs,|+ hc.
Can be ‘undone’ by the COUNTERSWAP:
us(k <= 1) =expli(—@, —@, + ‘P:)}lgt XS,C |+ hc.

wnefficiente have came ahenlnte valnie



