Title: Heterotic Twistor-String Theory

Date: Sep 25, 2007 11:00 AM

URL: http://pirsa.org/07090052

Abstract: I'll discuss a reformulation of twistor-string theory as a heterotic string. This clarifies why conformal supergravity arises and provides a link between the Berkovits and Witten pictures. The talk is based on

arXiv:0708:2276 with Lionel Mason.

Pirsa: 07090052 Page 1/79

Outline

Twistor background Brief review of twistor correspondence Successes & failures

(0,2) Basics

Fields & action Vertex operators Anomalies

Heterotic String Theory

Coupling to YM Amplitudes

Beyond perturbation theory

Generalized geometry

Relation to other twistor-string models

Berkovits Witten

Outline

Twistor background Brief review of twistor correspondence Successes & failures (0,2) Basics Fields & action Vertex operators Anomalies Heterotic String Theory Coupling to YM Amplitudes Beyond perturbation theory Generalized geometry Relation to other twistor-string models Berkovits

Witten

The twistor programme

The twistor correspondence relates points of complexified spacetime M to holomorphic lines in twistor space \mathbb{PT} . In flat space

- ► $M = \mathbb{C}^4$ with coordinates $x^{\mu} = x^{a\dot{a}}$
- $ightharpoonup \mathbb{T} = \mathbb{C}^4$ with coordinates $Z^{\alpha} = (\omega^a, \pi_{\dot{a}})$
- ▶ Incidence relation $\omega^a = ix^{a\dot{a}}\pi_{\dot{a}}$

 $(\omega^a, \pi_{\dot{a}})$ only defined upto overall scaling, so

$$x \in M$$
 \iff $L_x \simeq \mathbb{P}^1 \subset \mathbb{PT} \simeq \mathbb{P}^3$ $x - y$ null \iff L_x , L_y intersect $[\omega^a, \pi_{\dot{a}}] \in \mathbb{PT}$ \iff $\{x^{a\dot{a}} + \lambda^a \pi^{\dot{a}}\} \subset M$

The twistor programme

The twistor correspondence relates points of complexified spacetime M to holomorphic lines in twistor space \mathbb{PT} . In flat space

- ► $M = \mathbb{C}^4$ with coordinates $x^{\mu} = x^{a\dot{a}}$
- $ightharpoonup \mathbb{T} = \mathbb{C}^4$ with coordinates $Z^{\alpha} = (\omega^a, \pi_{\dot{a}})$
- ▶ Incidence relation $\omega^a = ix^{a\dot{a}}\pi_{\dot{a}}$

 $(\omega^a, \pi_{\dot{a}})$ only defined upto overall scaling, so

$$x \in M$$
 \iff $L_x \simeq \mathbb{P}^1 \subset \mathbb{PT} \simeq \mathbb{P}^3$ $x - y$ null \iff L_x , L_y intersect $[\omega^a, \pi_{\dot{a}}] \in \mathbb{PT}$ \iff $\{x^{a\dot{a}} + \lambda^a \pi^{\dot{a}}\} \subset M$

Page 5/79

Penrose's twistor programme seeks to reformulate fundamental physics in twistor space.

Early successes

Penrose transform provides beautiful description of classical fields in terms of free data on twistor space

$$H^1(\mathbb{PT}', \mathcal{O}(-2h-2)) \simeq \begin{cases} \text{soln of wave eqn of massless} \\ \text{free field, helicity } h \end{cases}$$

Pirsa: 07090052 Page 6/79

Early successes

Penrose transform provides beautiful description of classical fields in terms of free data on twistor space

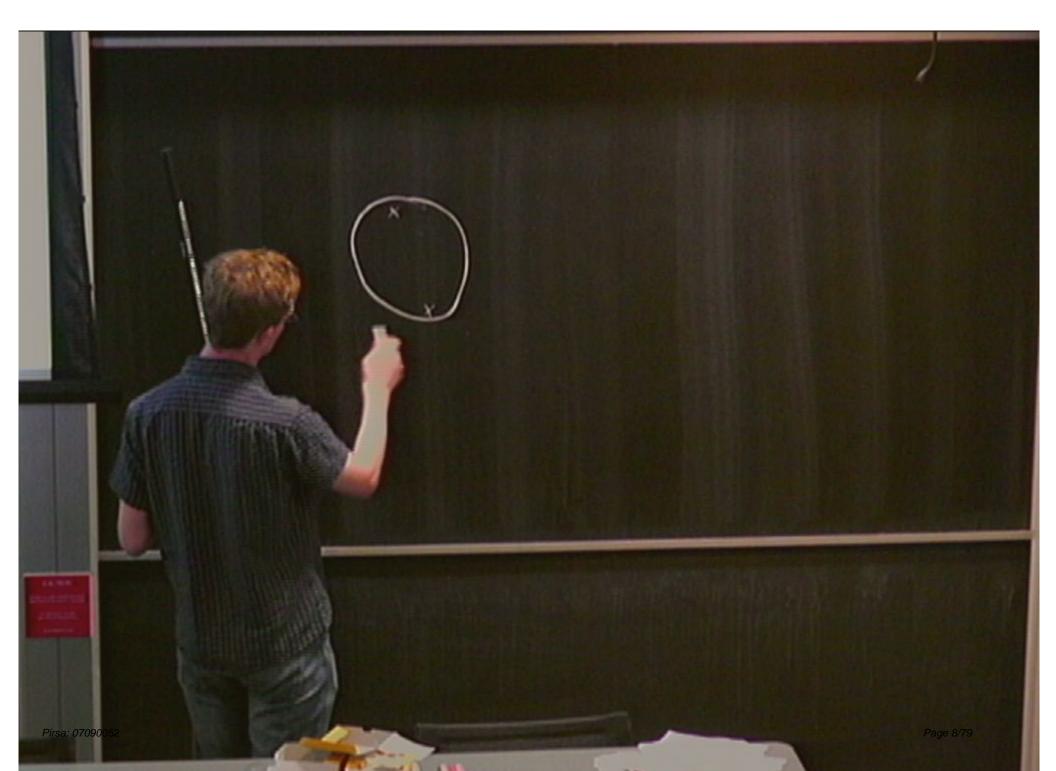
$$H^1(\mathbb{PT}', \mathcal{O}(-2h-2)) \simeq \begin{cases} \text{soln of wave eqn of massless} \\ \text{free field, helicity } h \end{cases}$$

The Penrose transform is essentially a contour integral. eg

$$\phi(x) = \oint_{\Gamma \subset L_x} f_{-2}(Z)|_{L_x} \pi \cdot d\pi$$

where the contour separates the two singularity regions of f(Z) on L_x . Since $\partial/\partial x^{a\dot{a}}$ acts on $f(Z)|_{L_x}$ as $\mathrm{i}\pi_{\dot{a}}\partial/\partial\omega^a$, we find

$$\Box \phi(x) = -\oint \pi^{\dot{a}} \pi_{\dot{a}} \frac{\partial^2 f_{-2}}{\partial \omega^a \partial \omega_a} \pi \cdot d\pi = 0$$



Beyond free theories

The nonlinear graviton & Ward transform extend this to asd solns of Einstein and YM equations. Leads to

- Atiyah-Ward and ADHM construction of YM instantons
- Twistor spaces for conformally flat spaces (e.g. Minkowski, AdS, FRW,...), ALE gravitational instantons, pp-waves, etc.
- ▶ In higher dimensions, $HK \rightarrow Z \rightarrow QK$ (relevant e.g. for moduli spaces of 4d extremal black holes in Type II sugras)
- Deep relation to integrable systems

Beyond free theories

The nonlinear graviton & Ward transform extend this to asd solns of Einstein and YM equations. Leads to

- Atiyah-Ward and ADHM construction of YM instantons
- Twistor spaces for conformally flat spaces (e.g. Minkowski, AdS, FRW,...), ALE gravitational instantons, pp-waves, etc.
- ▶ In higher dimensions, $HK \rightarrow Z \rightarrow QK$ (relevant e.g. for moduli spaces of 4d extremal black holes in Type II sugras)
- Deep relation to integrable systems

Beyond free theories

The nonlinear graviton & Ward transform extend this to asd solns of Einstein and YM equations. Leads to

- Atiyah-Ward and ADHM construction of YM instantons
- Twistor spaces for conformally flat spaces (e.g. Minkowski, AdS, FRW,...), ALE gravitational instantons, pp-waves, etc.
- ▶ In higher dimensions, $HK \rightarrow Z \rightarrow QK$ (relevant e.g. for moduli spaces of 4d extremal black holes in Type II sugras)
- Deep relation to integrable systems

However, there has never been a systematic way to encode non-asd interactions in twistor space, even perturbatively.

Pirsa: 07090052 Page 12/79

The twistor-string hope

Witten: cohomology classes in Penrose transform \Leftrightarrow states in topological string theories. Once external states are known, worldsheet topology takes care of interactions.

- ► For twistor theorists: twistor-string theory offers a new approach to the main problem of twistor theory
- For string theorists: Penrose transform gives new way to connect essentially stringy behaviour with 4d physics, with no α' corrections or KK modes
- For field theorists: insight from twistor-string offers new picture of spacetime field theories

Pirsa: 07090052 Page 13/79

The twistor-string hope

Witten: cohomology classes in Penrose transform ⇔ states in topological string theories. Once external states are known, worldsheet topology takes care of interactions.

- For twistor theorists: twistor-string theory offers a new approach to the main problem of twistor theory
- For string theorists: Penrose transform gives new way to connect essentially stringy behaviour with 4d physics, with no α' corrections or KK modes
- For field theorists: insight from twistor-string offers new picture of spacetime field theories

Two original models of twistor-strings: open B-model + D-instantons (Witten) and open string $\beta\gamma$ -system (Berkovits). Genus zero, leading-trace amplitudes of either equivalent to spacetime $\mathcal{N}=4$ SYM at tree level. However...

Page 14/79

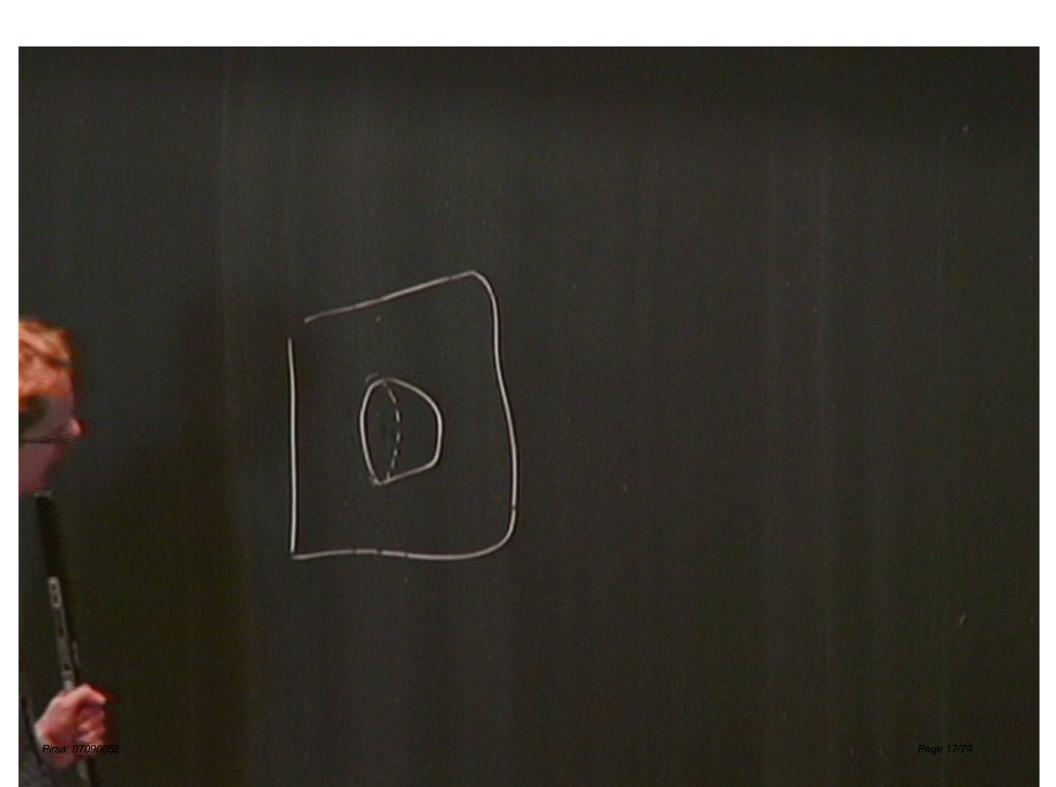
There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

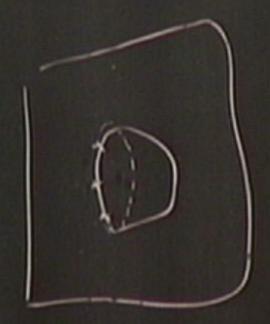
Pirsa: 07090052 Page 15/79

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

- Conformal supergravity
 - Witten: arises from coupling to D-instantons
 - Berkovits: vertex operators on worldsheet boundary

Pirsa: 07090052 Page 16/79





There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

- Conformal supergravity
 - Witten: arises from coupling to D-instantons
 - Berkovits: vertex operators on worldsheet boundary
- Topological strings on target supermanifold
 - ▶ P^{3|4} is Calabi-Yau supermanifold, with threefold body

Pirsa: 07090052 Page 19/79

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

- Conformal supergravity
 - Witten: arises from coupling to D-instantons
 - Berkovits: vertex operators on worldsheet boundary
- Topological strings on target supermanifold
 - ▶ P^{3|4} is Calabi-Yau supermanifold, with threefold body

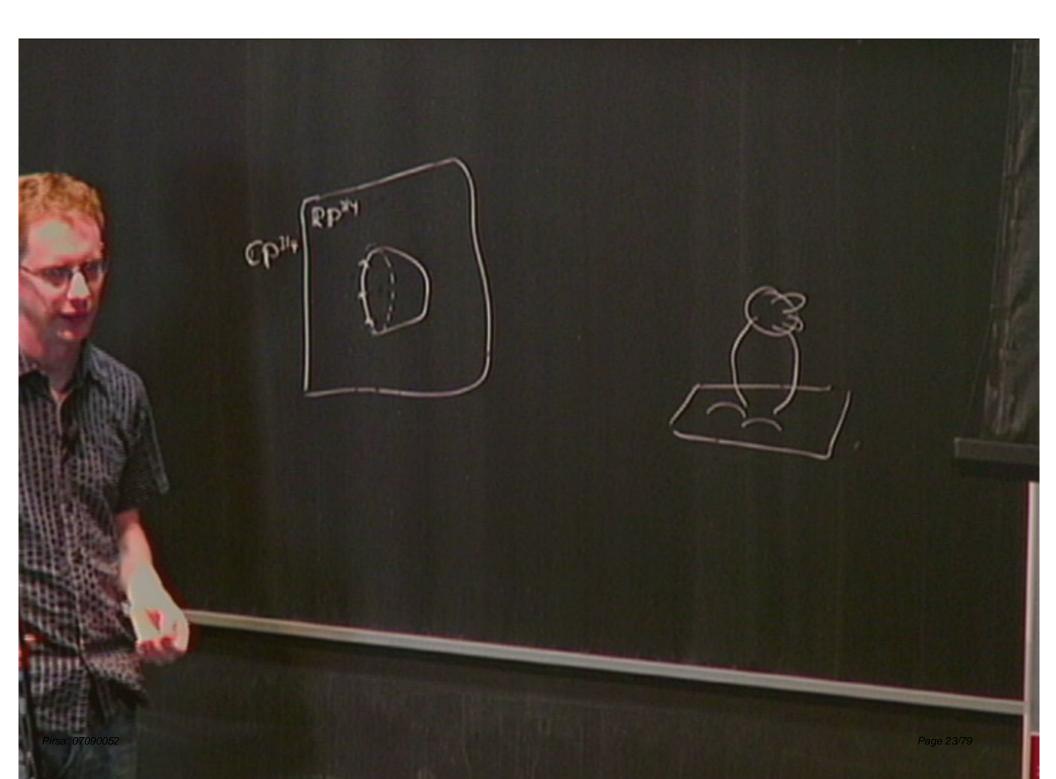
Pirsa: 07090052 Page 20/79

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

- Conformal supergravity
 - Witten: arises from coupling to D-instantons
 - Berkovits: vertex operators on worldsheet boundary
- Topological strings on target supermanifold
 - ▶ P^{3|4} is Calabi-Yau supermanifold, with threefold body
- B-model D-instantons not completely well-defined
 - Role of D1-D1 strings?
 - Effective action for D-instantons themselves?

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

- Conformal supergravity
 - Witten: arises from coupling to D-instantons
 - Berkovits: vertex operators on worldsheet boundary
- Topological strings on target supermanifold
 - ▶ P^{3|4} is Calabi-Yau supermanifold, with threefold body
- B-model D-instantons not completely well-defined
 - Role of D1-D1 strings?
 - Effective action for D-instantons themselves?
- Choice of spacetime signature
 - ▶ Worldsheet boundary on $\mathbb{RP}^{3|4} \subset \mathbb{CP}^{3|4}$ in Berkovits' model



There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

- Conformal supergravity
 - Witten: arises from coupling to D-instantons
 - Berkovits: vertex operators on worldsheet boundary
- Topological strings on target supermanifold
 - ▶ P^{3|4} is Calabi-Yau supermanifold, with threefold body
- B-model D-instantons not completely well-defined
 - Role of D1-D1 strings?
 - Effective action for D-instantons themselves?
- Choice of spacetime signature
 - ▶ Worldsheet boundary on $\mathbb{RP}^{3|4} \subset \mathbb{CP}^{3|4}$ in Berkovits' model

We'd like to understand these issues better, and also see how the Witten and Berkovits pictures are related.

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

- Conformal supergravity
 - Witten: arises from coupling to D-instantons
 - Berkovits: vertex operators on worldsheet boundary
- Topological strings on target supermanifold
 - ▶ P^{3|4} is Calabi-Yau supermanifold, with threefold body
- B-model D-instantons not completely well-defined
 - Role of D1-D1 strings?
 - Effective action for D-instantons themselves?
- Choice of spacetime signature
 - ▶ Worldsheet boundary on $\mathbb{RP}^{3|4} \subset \mathbb{CP}^{3|4}$ in Berkovits' model

We'd like to understand these issues better, and also see how the Witten and Berkovits pictures are related.

Twisted (0,2) models

A theory of smooth maps $\Phi : \Sigma \to X$ from a closed, compact Riemann surface Σ to a complex manifold X.

Fields are worldsheet scalars $(\phi^i,\phi^{\bar{\jmath}})$ and

$$\bar{\rho}^{\bar{j}} \in \Gamma(\Sigma, \phi^* \overline{T}_X)$$
 $\rho^i \in \Gamma(\Sigma, \overline{K}_\Sigma \otimes \phi^* T_X)$

Pirsa: 07090052 Page 26/79

Twisted (0,2) models

A theory of smooth maps $\Phi : \Sigma \to X$ from a closed, compact Riemann surface Σ to a complex manifold X.

Fields are worldsheet scalars $(\phi^i, \phi^{\bar{\jmath}})$ and

$$\bar{\rho}^{\bar{\jmath}} \in \Gamma(\Sigma, \phi^* \overline{T}_X)$$
 $\rho^i \in \Gamma(\Sigma, \overline{K}_\Sigma \otimes \phi^* T_X)$

Susy transformations are

$$\{\overline{Q}, \phi^{i}\} = 0 \qquad \{\overline{Q}, \phi^{\bar{j}}\} = \overline{\rho}^{\bar{j}}$$
$$\{\overline{Q}, \rho^{i}\} = \overline{\partial}\phi^{i} \qquad \{\overline{Q}, \overline{\rho}^{\bar{j}}\} = 0$$

and

$$\{\overline{Q}^{\dagger}, \phi^{i}\} = \rho^{i} \qquad \{\overline{Q}^{\dagger}, \phi^{\bar{j}}\} = 0$$
$$\{\overline{Q}^{\dagger}, \rho^{i}\} = 0 \qquad \{\overline{Q}^{\dagger}, \bar{\rho}^{\bar{j}}\} = \overline{\partial}\phi^{\bar{j}}$$

Twisted (0,2) models

A theory of smooth maps $\Phi : \Sigma \to X$ from a closed, compact Riemann surface Σ to a complex manifold X.

Fields are worldsheet scalars $(\phi^i, \phi^{\bar{\jmath}})$ and

$$\bar{\rho}^{\bar{\jmath}} \in \Gamma(\Sigma, \phi^* \overline{T}_X)$$
 $\rho^i \in \Gamma(\Sigma, \overline{K}_\Sigma \otimes \phi^* T_X)$

Susy transformations are

$$\{\overline{Q}, \phi^{i}\} = 0 \qquad \{\overline{Q}, \phi^{\bar{j}}\} = \overline{\rho}^{\bar{j}}$$
$$\{\overline{Q}, \rho^{i}\} = \overline{\partial}\phi^{i} \qquad \{\overline{Q}, \overline{\rho}^{\bar{j}}\} = 0$$

and

$$\{\overline{Q}^{\dagger}, \phi^{i}\} = \rho^{i} \qquad \{\overline{Q}^{\dagger}, \phi^{\bar{j}}\} = 0$$
$$\{\overline{Q}^{\dagger}, \rho^{i}\} = 0 \qquad \{\overline{Q}^{\dagger}, \bar{\rho}^{\bar{j}}\} = \overline{\partial}\phi^{\bar{j}}$$

Action

The basic action is

$$S_{0} = t \int_{\Sigma} g(\overline{\partial}\phi, \partial\overline{\phi}) - g(\rho, \nabla\overline{\rho}) + \int_{\Sigma} \phi^{*}\omega$$
$$= t \left\{ \overline{Q}, \int_{\Sigma} g(\rho, \partial\overline{\phi}) \right\} + \int_{\Sigma} \phi^{*}\omega$$

for $t \in \mathbb{R}^+$ and g a Hermitian (not pseudo-Hermitian) metric on X with $\omega(X,Y) = g(X,JY)$

Action

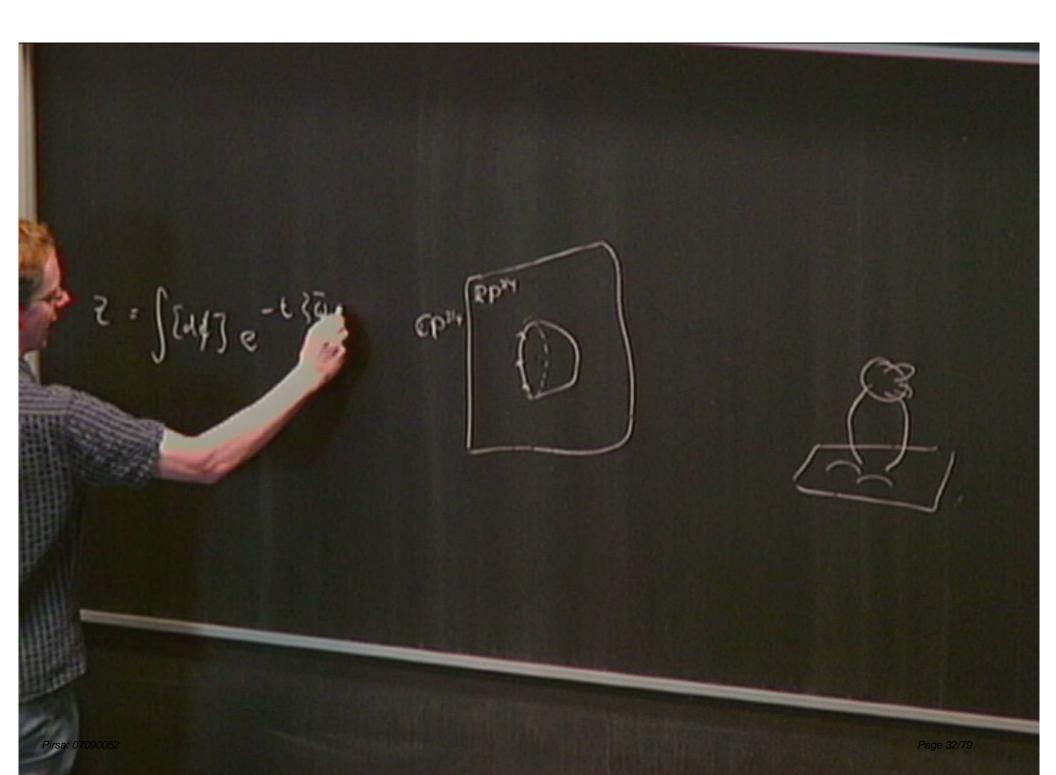
The basic action is

$$S_{0} = t \int_{\Sigma} g(\overline{\partial}\phi, \partial\overline{\phi}) - g(\rho, \nabla\overline{\rho}) + \int_{\Sigma} \phi^{*}\omega$$
$$= t \left\{ \overline{Q}, \int_{\Sigma} g(\rho, \partial\overline{\phi}) \right\} + \int_{\Sigma} \phi^{*}\omega$$

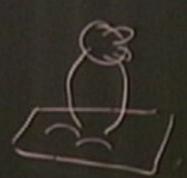
for $t \in \mathbb{R}^+$ and g a Hermitian (not pseudo-Hermitian) metric on X with $\omega(X,Y)=g(X,JY)$

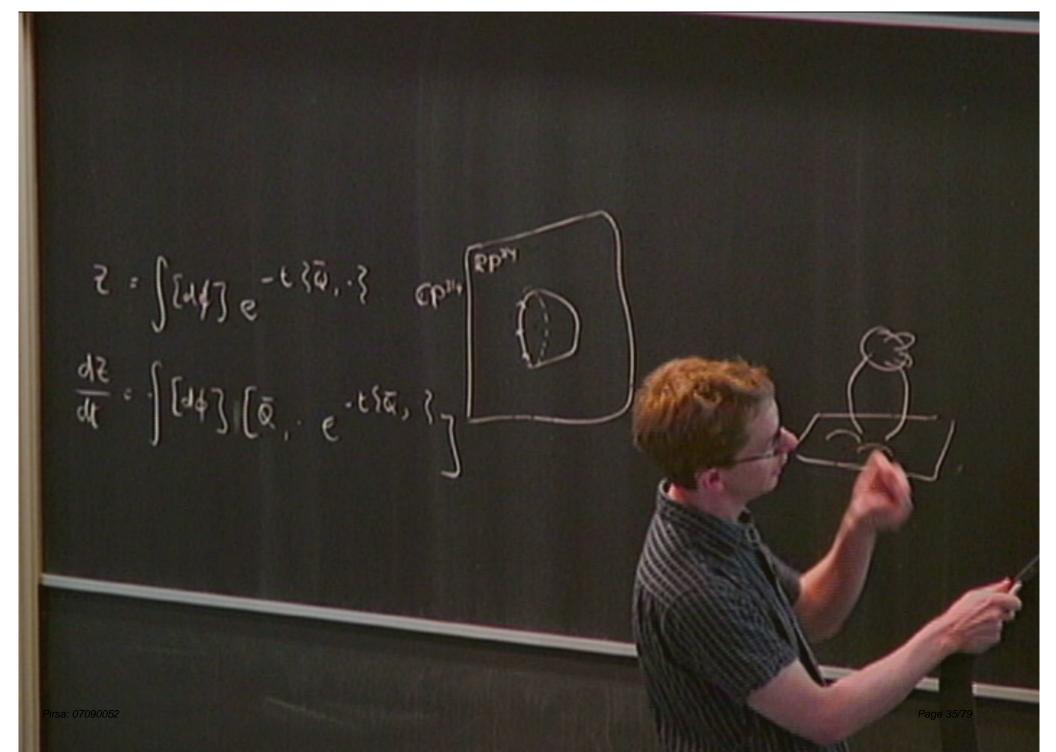
- ▶ Action is \overline{Q} -exact \Rightarrow partition function independent of t, g
- ► $S_0 = -t|\overline{\partial}\phi|^2 + \text{fermions} \Rightarrow \text{localize on holomorphic maps}$
- ▶ Manifestly invariant under \overline{Q} ; also invariant under \overline{Q}^{\dagger} if X is Kähler
- ► Can generalize by coupling to *B*-field: $\partial \overline{\partial} \omega = 0$ and ∇ has torsion determined by *B*

Pirsa: 07090052 Page 31/79



2 : [[4] e-t30,.] CP" [PP"





Action

The basic action is

$$S_{0} = t \int_{\Sigma} g(\overline{\partial}\phi, \partial\overline{\phi}) - g(\rho, \nabla\overline{\rho}) + \int_{\Sigma} \phi^{*}\omega$$
$$= t \left\{ \overline{Q}, \int_{\Sigma} g(\rho, \partial\overline{\phi}) \right\} + \int_{\Sigma} \phi^{*}\omega$$

for $t \in \mathbb{R}^+$ and g a Hermitian (not pseudo-Hermitian) metric on X with $\omega(X,Y)=g(X,JY)$

- ▶ Action is \overline{Q} -exact \Rightarrow partition function independent of t, g
- $S_0 = -t|\overline{\partial}\phi|^2 + \text{fermions} \Rightarrow \text{localize on holomorphic maps}$
- ▶ Manifestly invariant under \overline{Q} ; also invariant under \overline{Q}^{\dagger} if X is Kähler
- ► Can generalize by coupling to *B*-field: $\partial \overline{\partial} \omega = 0$ and ∇ has torsion determined by *B*

Coupling to a bundle

We can also couple in a holomorphic bundle $\mathcal{V} \to X$ by introducing

$$\psi^{a} \in \Gamma(\Sigma, \phi^{*}\mathcal{V})$$
 $\bar{\psi}_{a} \in \Gamma(\Sigma, K_{\Sigma} \otimes \phi^{*}\mathcal{V}^{\vee})$
 $r^{a} \in \Gamma(\Sigma, \overline{K}_{\Sigma} \otimes \phi^{*}\mathcal{V})$ $\bar{r}_{a} \in \Gamma(\Sigma, K_{\Sigma} \otimes \phi^{*}\mathcal{V}^{\vee})$

with susy transformations

$$\begin{aligned} \{ \overline{Q}, \psi^{a} \} &= 0 \\ \{ \overline{Q}, r^{a} \} &= \overline{D} \psi^{a} + F_{i\bar{\jmath}}{}^{a}{}_{b} \psi^{b} \rho^{i} \bar{\rho}^{\bar{\jmath}} \\ \end{aligned} \qquad \{ \overline{Q}, \bar{r}_{a} \} &= \overline{\partial} \bar{\psi}_{a}$$

and action

$$S_{1} = \left\{ \overline{Q}, \int_{\Sigma} \overline{\psi}_{a} r^{a} \right\}$$

$$= \int_{\Sigma} \overline{\psi}_{a} \overline{D} \psi^{a} + F_{i\bar{j}}{}^{a}{}_{b} \overline{\psi}_{a} \psi^{b} \rho^{i} \bar{\rho}^{\bar{j}} + \bar{r}_{a} r^{a}$$

 $F_{\text{Pirsa: 070000}}$ tal action $S_0 + S_1$ is twisted version of heterotic string on general background

Coupling to a bundle

We can also couple in a holomorphic bundle $\mathcal{V} \to X$ by introducing

$$\psi^{a} \in \Gamma(\Sigma, \phi^{*} \mathcal{V}) \qquad \qquad \bar{\psi}_{a} \in \Gamma(\Sigma, K_{\Sigma} \otimes \phi^{*} \mathcal{V}^{\vee})$$

$$r^{a} \in \Gamma(\Sigma, \overline{K}_{\Sigma} \otimes \phi^{*} \mathcal{V}) \qquad \qquad \bar{r}_{a} \in \Gamma(\Sigma, K_{\Sigma} \otimes \phi^{*} \mathcal{V}^{\vee})$$

with susy transformations

$$\begin{aligned} \{ \overline{Q}, \psi^{a} \} &= 0 \\ \{ \overline{Q}, r^{a} \} &= \overline{D} \psi^{a} + F_{i\bar{\jmath}}{}^{a}{}_{b} \psi^{b} \rho^{i} \bar{\rho}^{\bar{\jmath}} \\ \end{aligned} \qquad \{ \overline{Q}, \bar{r}_{a} \} &= \overline{\partial} \bar{\psi}_{a}$$

and action

$$S_{1} = \left\{ \overline{Q}, \int_{\Sigma} \overline{\psi}_{a} r^{a} \right\}$$

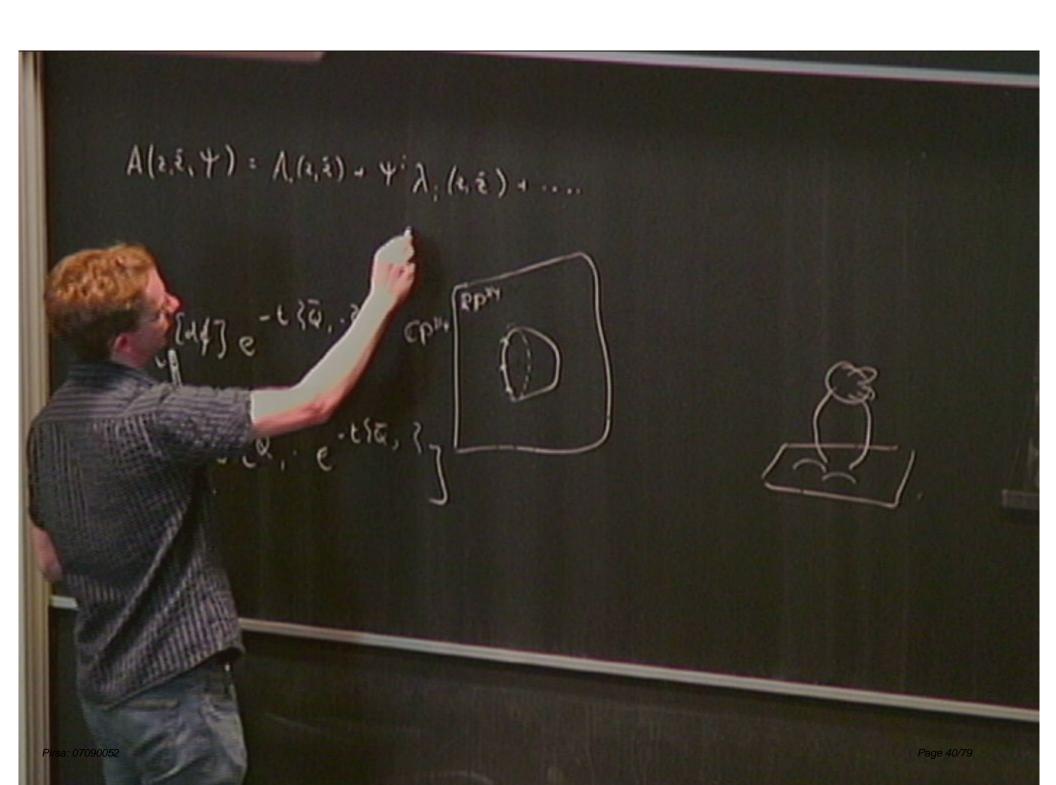
$$= \int_{\Sigma} \overline{\psi}_{a} \overline{D} \psi^{a} + F_{i\bar{j}}{}^{a}{}_{b} \overline{\psi}_{a} \psi^{b} \rho^{i} \bar{\rho}^{\bar{j}} + \bar{r}_{a} r^{a}$$

 $F_{\text{Pirsa: 070000}}$ tal action $S_0 + S_1$ is twisted version of heterotic string on general background

We could choose $X = \mathbb{P}^{3|4}$, but

- lacksquare Can't use D-brane to set $\overline{\psi}=0$
- Not clear how to promote to string theory

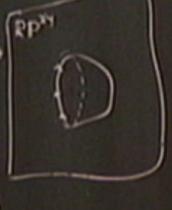
Pirsa: 07090052 Page 39/79

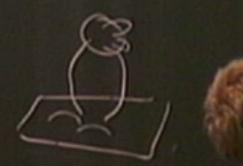




Pirsa: 07090052 Page 42/79

A(2, 2, 4, 4)= 1, (2, 2) - 4: 2; (2, 2) - ...





We could choose $X = \mathbb{P}^{3|4}$, but

- ightharpoonup Can't use D-brane to set $\overline{\psi}=0$
- Not clear how to promote to string theory

Pirsa: 07090052 Page 44/79

We could choose $X = \mathbb{P}^{3|4}$, but

- lacksquare Can't use D-brane to set $\overline{\psi}=0$
- Not clear how to promote to string theory

Pirsa: 07090052 Page 45/79

We could choose $X = \mathbb{P}^{3|4}$, but

- lacksquare Can't use D-brane to set $\overline{\psi}=0$
- Not clear how to promote to string theory

Instead, we'll choose $X=\mathbb{P}^3$ and include the bundle $\mathcal{V}=\mathcal{O}(1)^{\oplus 4}$. The advantages are

 ψ is a worldsheet scalar, as it would be with $\mathbb{P}^{3|4}$ target, but $\overline{\psi}$ is a 1-form – naturally on different footing

Page 46/79

- First-order action for worldsheet fermions
- Worldsheet superpartners are auxiliary

Coupling to a bundle

We can also couple in a holomorphic bundle $\mathcal{V} \to X$ by introducing

$$\psi^{a} \in \Gamma(\Sigma, \phi^{*} \mathcal{V}) \qquad \qquad \bar{\psi}_{a} \in \Gamma(\Sigma, K_{\Sigma} \otimes \phi^{*} \mathcal{V}^{\vee})$$

$$r^{a} \in \Gamma(\Sigma, \overline{K}_{\Sigma} \otimes \phi^{*} \mathcal{V}) \qquad \qquad \bar{r}_{a} \in \Gamma(\Sigma, K_{\Sigma} \otimes \phi^{*} \mathcal{V}^{\vee})$$

with susy transformations

$$\begin{aligned} \{ \overline{Q}, \psi^{a} \} &= 0 \\ \{ \overline{Q}, r^{a} \} &= \overline{D} \psi^{a} + F_{i\bar{j}}{}^{a}{}_{b} \psi^{b} \rho^{i} \bar{\rho}^{\bar{j}} \\ \end{aligned} \qquad \{ \overline{Q}, \bar{r}_{a} \} &= \overline{\partial} \bar{\psi}_{a}$$

and action

$$S_{1} = \left\{ \overline{Q}, \int_{\Sigma} \overline{\psi}_{a} r^{a} \right\}$$

$$= \int_{\Sigma} \overline{\psi}_{a} \overline{D} \psi^{a} + F_{i\bar{j}}{}^{a}{}_{b} \overline{\psi}_{a} \psi^{b} \rho^{i} \bar{\rho}^{\bar{j}} + \bar{r}_{a} r^{a}$$

 $S_0 + S_1$ is twisted version of heterotic string on general background

We could choose $X = \mathbb{P}^{3|4}$, but

- lacksquare Can't use D-brane to set $\overline{\psi}=0$
- Not clear how to promote to string theory

Instead, we'll choose $X=\mathbb{P}^3$ and include the bundle $\mathcal{V}=\mathcal{O}(1)^{\oplus 4}$. The advantages are

- ψ is a worldsheet scalar, as it would be with $\mathbb{P}^{3|4}$ target, but $\overline{\psi}$ is a 1-form naturally on different footing
- First-order action for worldsheet fermions
- Worldsheet superpartners are auxiliary

We could choose $X = \mathbb{P}^{3|4}$, but

- lacksquare Can't use D-brane to set $\overline{\psi}=0$
- Not clear how to promote to string theory

Instead, we'll choose $X=\mathbb{P}^3$ and include the bundle $\mathcal{V}=\mathcal{O}(1)^{\oplus 4}$. The advantages are

- $m \psi$ is a worldsheet scalar, as it would be with $\mathbb{P}^{3|4}$ target, but $\overline{\psi}$ is a 1-form naturally on different footing
- First-order action for worldsheet fermions
- Worldsheet superpartners are auxiliary

Non-zero modes equivalent in either picture. Zero-modes more difficult to handle on $\mathbb{P}^{3|4}$, but equivalent after appropriate choice of contour.

Sheaves of chiral algebras

The antiholomorphic stress tensor $T_{\bar{z}\bar{z}}=\{\overline{Q},\overline{G}_{\bar{z}\bar{z}}\}$, so all the antiholomorphic Virasoro generators \overline{L}_n are \overline{Q} -exact.

$$[\overline{L}_0,\mathcal{O}]=\overline{h}\mathcal{O}$$
, but since $\overline{L}_0=\{\overline{Q},\overline{G}_0\}$ we find
$$\overline{h}\mathcal{O}=\big[\{\overline{Q},\overline{G}_0\},\mathcal{O}\big]\ =\ \underbrace{\{\overline{Q},[\overline{G}_0,\mathcal{O}]\}}_{\overline{Q}\text{-exact}}\ +\ \underbrace{\{[\overline{Q},\mathcal{O}],\overline{G}_0\}}_{=0}$$

so \overline{Q} -cohomology is trivial except at $\overline{h}=0$.

Sheaves of chiral algebras

The antiholomorphic stress tensor $T_{\bar{z}\bar{z}}=\{\overline{Q},\overline{G}_{\bar{z}\bar{z}}\}$, so all the antiholomorphic Virasoro generators \overline{L}_n are \overline{Q} -exact.

$$[\overline{L}_0,\mathcal{O}] = \overline{h}\mathcal{O}$$
, but since $\overline{L}_0 = \{\overline{Q},\overline{G}_0\}$ we find
$$\overline{h}\mathcal{O} = \left[\{\overline{Q},\overline{G}_0\},\mathcal{O}\right] \ = \ \underbrace{\{\overline{Q},[\overline{G}_0,\mathcal{O}]\}}_{\overline{Q} ext{-exact}} \ + \ \underbrace{\{[\overline{Q},\mathcal{O}],\overline{G}_0\}}_{=0}$$

so \overline{Q} -cohomology is trivial except at $\overline{h}=0$.

In the A- or B-model, we'd similarly find h = 0, but in a (0,2) model there is no holomorphic susy and all $h \ge 0$ are allowed. Vertex operators form "sheaf of chiral algebras" over target.

Page 51/79

Pirsa: 07090052 Page 52/79

A(2,2,4)= 1.(2,2) - 4 7; (2,2) - ... <12,4 <12><23>....<0-10><01> 7 = Stuffe-630,.3

(0,2) moduli

Focus on operators with $(h, \bar{h}) = (1, 0)$ and ghost number +1 (related to deformations of the (0,2) action via descent).

$$\mathcal{O}_{M} := g_{i\bar{k}} M^{i}_{\ \bar{\jmath}} \bar{\rho}^{\bar{\jmath}} \partial \phi^{\bar{k}} \qquad \qquad \mathcal{O}_{\mu} := \mu^{a}_{\ \bar{\jmath}} \bar{\rho}^{\bar{\jmath}} \bar{\psi}_{a}$$

$$\mathcal{O}_{b} := b_{i\bar{\jmath}} \bar{\rho}^{\bar{\jmath}} \partial \phi^{i} \qquad \qquad \mathcal{O}_{\beta} := \beta_{a\bar{\jmath}} \bar{\rho}^{\bar{\jmath}} \partial \psi^{a}$$

- ▶ M, μ , b & β may depend on ψ as this has h = 0. They must be independent of $\bar{\psi}$, which has h = 1.
- Non-trivial in \overline{Q} -cohomology if $[M] \in H^{0,1}(\mathbb{PT}', T_{\mathbb{PT}'})$, plus supersymmetric extensions.
- ▶ $b \to b + \partial \chi$ changes vertex operator by total derivative (*upto* ρ *eom*) $\Rightarrow \mathcal{H} = \partial b$ nontrivial in $H^{0,1}(\mathbb{PT}', \Omega^2_{\mathrm{cl}})$, plus super extension

(0.2) moduli correspond to states of $\mathcal{N}=4$ conformal supergravity under the Penrose transform

(0,2) moduli

Focus on operators with $(h, \bar{h}) = (1, 0)$ and ghost number +1 (related to deformations of the (0,2) action via descent).

$$\mathcal{O}_{M} := g_{i\bar{k}} M^{i}{}_{\bar{\jmath}} \bar{\rho}^{\bar{\jmath}} \partial \phi^{\bar{k}} \qquad \qquad \mathcal{O}_{\mu} := \mu^{a}{}_{\bar{\jmath}} \bar{\rho}^{\bar{\jmath}} \bar{\psi}_{a}$$

$$\mathcal{O}_{b} := b_{i\bar{\jmath}} \bar{\rho}^{\bar{\jmath}} \partial \phi^{i} \qquad \qquad \mathcal{O}_{\beta} := \beta_{a\bar{\jmath}} \bar{\rho}^{\bar{\jmath}} \partial \psi^{a}$$

- ▶ M, μ , b & β may depend on ψ as this has h=0. They must be independent of $\bar{\psi}$, which has h=1.
- Non-trivial in \overline{Q} -cohomology if $[M] \in H^{0,1}(\mathbb{PT}', T_{\mathbb{PT}'})$, plus supersymmetric extensions.
- ▶ $b \to b + \partial \chi$ changes vertex operator by total derivative (*upto* ρ *eom*) $\Rightarrow \mathcal{H} = \partial b$ nontrivial in $H^{0,1}(\mathbb{PT}', \Omega^2_{\mathrm{cl}})$, plus super extension

(0.2) moduli correspond to states of $\mathcal{N}=4$ conformal supergravity under the Penrose transform

Anomalies

Sigma model anomaly unless

$$ch_2(T_X) - ch_2(V) = 0$$
 $c_1(T_\Sigma)(c_1(T_X) - c_1(V)) = 0$

Twistor-strings: $c(T_{\mathbb{P}^3}) = c(\mathcal{O}(1)^{\oplus 4}) \Rightarrow$ no sigma model anomaly

Anomalies in global symmetries

$$\operatorname{ind}(\overline{\partial}_{\phi^*\mathcal{T}_{\mathbb{P}^3}}) = 4d + 3(1 - g)$$
$$\operatorname{ind}(\overline{\partial}_{\phi^*\mathcal{O}(1)^{\oplus 4}}) = 4(d + 1 - g)$$

for a map of degree d, genus g.

Amplitudes with n_h external SYM states of helicity h supported on maps of degree

$$d = g - 1 + \sum_{h=-1}^{+1} \frac{h+1}{2} n_h$$

Pirsa: 07@00efficient of $(\psi)^{\text{top}}$ is a section of canonical bundle of instant@105679

Perturbative corrections

There are also perturbative corrections to the theory. (0,2) susy ensures that $\Delta \overline{T}_{\bar{z}\bar{z}}$ and $\Delta T_{z\bar{z}}$ are \overline{Q} -exact, but there is no such statement for T_{zz} .

At one loop, correction to worldsheet action is

$$\Delta S^{1-\text{loop}} = \left\{ \overline{Q}, \int_{\Sigma} R_{i\bar{\jmath}} \rho^i \partial \phi^{\bar{\jmath}} + g^{i\bar{\jmath}} F_{i\bar{\jmath}}{}^a{}_b \bar{\psi}_a r^b \right\}$$

- ▶ On $\mathbb{P}^{3|4}$ we have R=0 and no bundle
- ▶ For \mathbb{P}^3 and bundle $\mathcal{O}(1)^{\oplus 4}$ we have $R_{i\bar{\jmath}} = 4g_{i\bar{\jmath}}$ and $F_{i\bar{\jmath}}{}^a{}_b = \delta^a{}_b g_{i\bar{\jmath}}$ so the 1-loop correction is \propto classical action.

The twistor model is a holomorphic CFT provided we study correlators of \overline{Q} -closed operators.

Supercurrent $\overline{G}_{\overline{z}\overline{z}}$ plays role of \overline{b} -antighost

No left-moving susy, so need to include holomorphic *bc*-ghost system

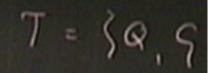
$$S = \int_{\Sigma} b \overline{\partial} c$$
 $b \in \Gamma(\Sigma, K_{\Sigma} \otimes K_{\Sigma}) \; ; \; c \in \Gamma(\Sigma, T_{\Sigma})$

- Provides holomorphic BRST operator Q
- $\triangleright Q + \overline{Q}$ has complete descent chain

A(2,2,4,7)= A(1,2) - 4: 2; (2,2) - ...

2 = [[4]] e-+30,.3 cpm

de . [[44] [ā, e. e. 6]



<12><12>4

Supercurrent $\overline{G}_{\overline{z}\overline{z}}$ plays role of \overline{b} -antighost

No left-moving susy, so need to include holomorphic *bc*-ghost system

$$S = \int_{\Sigma} b \overline{\partial} c$$
 $b \in \Gamma(\Sigma, K_{\Sigma} \otimes K_{\Sigma}) \; ; \; c \in \Gamma(\Sigma, T_{\Sigma})$

- Provides holomorphic BRST operator Q
- $Q + \overline{Q}$ has complete descent chain

Supercurrent $\overline{G}_{\overline{z}\overline{z}}$ plays role of \overline{b} -antighost

No left-moving susy, so need to include holomorphic *bc*-ghost system

$$S = \int_{\Sigma} b \overline{\partial} c$$
 $b \in \Gamma(\Sigma, K_{\Sigma} \otimes K_{\Sigma}) \; ; \; c \in \Gamma(\Sigma, T_{\Sigma})$

- Provides holomorphic BRST operator Q
- $ightharpoonup Q + \overline{Q}$ has complete descent chain
- ► Fixed vertex operators \Rightarrow sigma-model vertex operators of $(h, \bar{h}) = (1, 0)$, contracted with c

Physical string states \Leftrightarrow (0,2) moduli \Leftrightarrow $\mathcal{N}=4$ conformal supergravity

Supercurrent $\overline{G}_{\overline{z}\overline{z}}$ plays role of \overline{b} -antighost

No left-moving susy, so need to include holomorphic *bc*-ghost system

$$S = \int_{\Sigma} b \overline{\partial} c$$
 $b \in \Gamma(\Sigma, K_{\Sigma} \otimes K_{\Sigma}) \; ; \; c \in \Gamma(\Sigma, T_{\Sigma})$

- Provides holomorphic BRST operator Q
- $ightharpoonup Q + \overline{Q}$ has complete descent chain
- Fixed vertex operators \Rightarrow sigma-model vertex operators of $(h, \bar{h}) = (1, 0)$, contracted with c

Physical string states \Leftrightarrow (0,2) moduli \Leftrightarrow $\mathcal{N}=4$ conformal supergravity

Yang-Mills current algebra

In order for $Q^2=0$ we need to include a holomorphic current algebra contributing central charge $c=28 \ (=26+2\times (4-3))$, as in both Berkovits' and Witten's models (see later . . .)

Pirsa: 07090052 Page 63/79

Yang-Mills current algebra

In order for $Q^2=0$ we need to include a holomorphic current algebra contributing central charge $c=28 \ (=26+2\times (4-3))$, as in both Berkovits' and Witten's models (see later . . .)

e.g. Could include further fermions

$$\lambda^{\alpha} \in \Gamma(\Sigma, \sqrt{K_{\Sigma}} \otimes \phi^* E)$$
 $\bar{\lambda}_{\alpha} \in \Gamma(\Sigma, \sqrt{K_{\Sigma}} \otimes \phi^* E^{\vee})$

for some holomorphic bundle $E \to X$ (together with auxiliary superpartners).

- ▶ Conformal invariance requires $c_1(E) = 0$
- Freedom from sigma model anomalies requires $ch_2(E) = 0$
- \Rightarrow *E* corresponds to a zero-instanton spacetime bundle Vertex operators $c\mathcal{A}_{\bar{\jmath}\ \beta}^{\ \alpha}\bar{\lambda}_{\alpha}\lambda^{\beta}\Leftrightarrow$ External states in $\mathcal{N}=4$ SYM

Yang-Mills instantons

Heterotic strings contain NS branes which couple magnetically to the NS B-field.

- ▶ Physical heterotic strings (10-manifold) → 5-branes
- ► Twisted heterotic strings (complex 3-fold) → 1-branes

Pirsa: 07090052 Page 65/79

Yang-Mills instantons

Heterotic strings contain NS branes which couple magnetically to the NS B-field.

- ▶ Physical heterotic strings (10-manifold) → 5-branes
- ► Twisted heterotic strings (complex 3-fold) → 1-branes

Modified Green-Schwarz condition

$$\operatorname{ch}_2(T_X) - \operatorname{ch}_2(V) - \operatorname{ch}_2(E) + \sum_i [NS]_i = 0$$

⇒ instanton backgrounds allowed

e.g. 't Hooft SU(2) k-instanton

$$A(x) = i dx^{\mu} \sigma_{\mu\nu} \partial^{\nu} \log \Phi$$
, $\Phi(x) = \sum_{i=0}^{k} \frac{\lambda_i}{(x - x_i)^2}$

Pirsa: 07090052p NS branes on the k+1 lines in twistor space corresponding 66/79

A puzzle

	Physical heterotic	Twistor-string
С	16	28
Field theory	$SO(32)$, $E_8 \times E_8$, $E_8 \times U(1)^{248}$, $U(1)^{496}$	$SU(2) \times U(1), \ U(1)^4$
Modular invariance	$SO(32), E_8 \times E_8$??

A puzzle

	Physical heterotic	Twistor-string
С	16	28
Field theory	$SO(32)$, $E_8 \times E_8$, $E_8 \times U(1)^{248}$, $U(1)^{496}$	$SU(2) \times U(1), \ U(1)^4$
Modular invariance	$SO(32), E_8 \times E_8$??

- ► Change level of current algebra? $c_{Sug} = k \dim(G)/(k + h(G))$ and no solns for $G = SU(2) \times U(1)$ or $U(1)^4$ with $k \in \mathbb{N}$
- ▶ Include additional fields contributing to c? Monster CFT?
- Promote to string theory by some other means than bc-system?

Amplitudes and contours

Choose basis of Beltrami differentials μ and compute

$$\left\langle \prod_{i=1}^{3g-3+n} (\mu^{(i)}, b)(\overline{\mu}^{(i)}, \overline{G}) \prod_{j=1}^{n} \mathcal{O}_{j} \right\rangle$$

where \mathcal{O}_j are fixed vertex operators.

- **b**c-ghost number anomaly absorbed by (μ, b) and vertex operators
- ▶ $U(1)_R$ anomaly is 3(1-g)+4d. Remaining anomaly of $4d = \operatorname{vdim}_{\mathbb{C}} \overline{\mathcal{M}}_{g,0}(\mathbb{P}^3, d)$

Amplitudes and contours

Choose basis of Beltrami differentials μ and compute

$$\left\langle \prod_{i=1}^{3g-3+n} (\mu^{(i)}, b)(\overline{\mu}^{(i)}, \overline{G}) \prod_{j=1}^{n} \mathcal{O}_{j} \right\rangle$$

where \mathcal{O}_j are fixed vertex operators.

- bc-ghost number anomaly absorbed by (μ, b) and vertex operators
- ▶ $U(1)_R$ anomaly is 3(1-g)+4d. Remaining anomaly of $4d=\operatorname{vdim}_{\mathbb{C}}\overline{\mathcal{M}}_{g,0}(\mathbb{P}^3,d)$

Integrand is effectively a (4d, 0) form on moduli space of stable maps \Rightarrow contour integral (in Dolbeault picture)

- Absorb anomaly by inserting Poincaré dual into path integral, soaking up remaining \(\bar{\rho}\) zero-modes
- ▶ Choice of contour ⇔ choice of spacetime signature
- Leading-trace SYM amplitudes agree with Witten's & Page 70/79

 Berkovits' models. Sub-leading trace = cSUGRA (unitarity)

Instanton corrections and twistor actions

At degree d, the heterotic generating function for amplitudes in $\mathcal{N}=4$ csugra + SYM is

$$\int_{\mathcal{M}_{g,d}} d\mu \exp\left(\frac{-A(C)}{2\pi} + i \int_C B\right) \frac{\det \overline{\partial}_{E \otimes S_-}}{\det' \overline{\partial}_{N_{C|\mathbb{P}T_s}}} \tag{*}$$

- ▶ $\mathcal{M}_{g,d}$ is contour in space of genus g, degree d curves, measure $d\mu$ (= $d^{4|8}x$ at g=0, d=1)
- A(C) = area of curve C (from the restriction of the Kähler form)

Page 71/79

 \triangleright $N_{C|\mathbb{PT}_s}$ is normal bundle to C in supertwistor space

Instanton corrections and twistor actions

At degree d, the heterotic generating function for amplitudes in $\mathcal{N}=4$ csugra + SYM is

$$\int_{\mathcal{M}_{g,d}} \mathrm{d}\mu \; \exp\left(\frac{-A(C)}{2\pi} + \mathrm{i} \int_C B\right) \frac{\det \overline{\partial}_{E\otimes S_-}}{\det' \overline{\partial}_{N_C|\mathbb{PT}_s}} \tag{*}$$

- ▶ $\mathcal{M}_{g,d}$ is contour in space of genus g, degree d curves, measure $d\mu$ (= $d^{4|8}x$ at g = 0, d = 1)
- ► A(C) = area of curve C (from the restriction of the Kähler form)
- \triangleright $N_{C|\mathbb{PT}_s}$ is normal bundle to C in supertwistor space

In compactifications on $CY \times \mathbb{R}^4$, (\star) describes instanton corrections to 4d superpotential.

Here, the d=1 contribution can be used together with the Pirsa: of Geolegern-Simons (d=0 term) as a twistor action.

Finite deformations

Vertex operator $\mathcal{O}_M = g_{i\bar{k}} M^i{}_{\bar{\jmath}} \bar{\rho}^{\bar{\jmath}} \partial \phi^{\bar{k}}$ contains graviton of h=-2 and generates infinitesimal deformation of complex structure. Finite deformation \Leftrightarrow nonlinear graviton construction.

Pirsa: 07090052 Page 73/79

Finite deformations

Vertex operator $\mathcal{O}_M = g_{i\bar{k}} M^i{}_{\bar{\jmath}} \bar{\rho}^{\bar{\jmath}} \partial \phi^{\bar{k}}$ contains graviton of h=-2 and generates infinitesimal deformation of complex structure. Finite deformation \Leftrightarrow nonlinear graviton construction.

Vertex operator $\mathcal{O}_b = b_{i\bar{\jmath}}\bar{\rho}^{\bar{\jmath}}\partial\phi^i$ contains h = +2 graviton and describes infinitesimal deformation of flux of B-field.

- ▶ What do we get from *finite* deformations of the *B*-field?
- ▶ What is the target space of a general $\mathcal{N} = 2$ sigma model?

Pirsa: 07090052 Page 74/79

Finite deformations

Vertex operator $\mathcal{O}_M = g_{i\bar{k}} M^i{}_{\bar{\jmath}} \bar{\rho}^{\bar{\jmath}} \partial \phi^{\bar{k}}$ contains graviton of h=-2 and generates infinitesimal deformation of complex structure. Finite deformation \Leftrightarrow nonlinear graviton construction.

Vertex operator $\mathcal{O}_b = b_{i\bar{\jmath}}\bar{\rho}^{\bar{\jmath}}\partial\phi^i$ contains h = +2 graviton and describes infinitesimal deformation of flux of B-field.

- ▶ What do we get from *finite* deformations of the *B*-field?
- ▶ What is the target space of a general $\mathcal{N} = 2$ sigma model?

Answer: a *generalized* complex manifold (*ie* a smooth manifold with a map

$$\mathcal{J}: \mathcal{T} \oplus \mathcal{T}^{\vee} \to \mathcal{T} \oplus \mathcal{T}^{\vee}, \qquad \mathcal{J}^2 = -1$$

where holomorphic objects are in $L \subset T \oplus T^{\vee}$, and L is preserved by the twisted Courant bracket)

We've given a construction of twistor-string theory as a heterotic string.

- Entire D1/D5 system in B-model equivalent to heterotic string
 - Should generalize to non-pert. top. str. on standard CY

Pirsa: 07090052 Page 76/79

We've given a construction of twistor-string theory as a heterotic string.

- Entire D1/D5 system in B-model equivalent to heterotic string
 - Should generalize to non-pert. top. str. on standard CY
- ▶ Heterotic ⇔ Berkovits ~ Dolbeault ⇔ Čech
 - Closed-string $\beta \gamma$ system in right category from outset
 - Calculations more standard in heterotic

Pirsa: 07090052 Page 77/79

We've given a construction of twistor-string theory as a heterotic string.

- Entire D1/D5 system in B-model equivalent to heterotic string
 - Should generalize to non-pert. top. str. on standard CY
- ▶ Heterotic ⇔ Berkovits ~ Dolbeault ⇔ Čech
 - Closed-string $\beta \gamma$ system in right category from outset
 - Calculations more standard in heterotic

Oustanding problems:

- ▶ Modular invariance & c = 28
- Amplitudes as contour integrals. Derivation of RSV?
- Understand finite deformations. Generalized geometry?

We've given a construction of twistor-string theory as a heterotic string.

- Entire D1/D5 system in B-model equivalent to heterotic string
 - Should generalize to non-pert. top. str. on standard CY
- ▶ Heterotic ⇔ Berkovits ~ Dolbeault ⇔ Čech
 - Closed-string $\beta \gamma$ system in right category from outset
 - Calculations more standard in heterotic

Oustanding problems:

- ▶ Modular invariance & c = 28
- Amplitudes as contour integrals. Derivation of RSV?
- Understand finite deformations. Generalized geometry?
- ► Poincaré supergravity? Complex Poisson structure on PT'