Title: Primordial black holes in the dark ages

Date: Sep 13, 2007 12:00 PM

URL: http://pirsa.org/07090049

Abstract: We investigate the effect of evaporating primordial black holes on the ionization history of the universe, with emphasis on limits derivable from the CMB and future 21-cm observations of high-redshift neutral hydrogen.

Pirsa: 07090049 Page 1/60

Primordial black holes

- Pre-stellar black holes many proposed formation mechanisms
- Two regimes of interest:
 - evaporating: inject energy into IGM through Hawking radiation
 - accreting: X-ray radiation from accretion disks

Accreting PBHs

(Ricotti, Ostriker & Mack 2007)

- X-rays ionize IGM at high redshift
- Ionization increases T see with CMB polarization
- Polarization signal distinct from that of early reionization; may lead to parameter misestimation

FMC, Perimeter Institute

Evaporating PBHs

- Hawking radiation heats and ionizes IGM
- May produce strong signal at moment of evaporation
- Best constraints currently from gamma-ray background
- At M = 10^{15} g, limit is $Ω_{PBH} \sim 10^{-10}$

Pirsa: 07090049 Page 5/60

This talk: the overall gist

- Primordial black holes (PBHs) may have formed in the early universe
- Evaporation (or accretion) of PBHs injects energy into the intergalactic medium
- Energy injection affects ionization and temperature of IGM
- The redshifted 21cm line of neutral hydrogen is sensitive to changes in both – very good probe of exotic physics

Pirsa: 07090049 Page 6/60

FMC. Perimeter Institute

What is the Reionization Era?

A Schematic Outline of the Cosmic History

Pirsa: 07090049

13 September 20

- 13 billion

Today: Astronomers figure it all out!

What is the Reionization Era?

A Schematic Outline of the Cosmic History

Page 8/60

Today: Astronomers figure it all out!

21cm signal

- During Dark Ages, universe mostly cold neutral hydrogen, and visible/UV light immediately absorbed
- Use the hyperfine splitting line of hydrogen:
 - in radio wavelengths, unabsorbed
 - requires little energy to excite

21cm tomography

Zahn et al 2006

Page 11/60 Pirsa: 07090049 FMC. Perimeter Institute

Observing with 21cm

13 September 2007

FMC, Perimeter Institute

21cm vs. CMB

13

- More information in 21cm tomography
 - temperature + ionization of gas
 - many redshifts (not an integrated signal)
- Example: constraining dark matter annihilation (measuring energy injection)
 - CMBPol: (dE/dt)/vol < 10⁻¹⁶ eV/s/m³ (Padmanabhan & Finkbeiner 2005)
 - Future 21cm obs: (dE/dt)/vol < 10⁻¹⁸ eV/s/m³ (Furlanetto, Oh & Pierpaoli 2006)

Pirsa: 07090049 Page 13/60

The spin temperature determines the relative occupancy of the hyperfine levels

$$\frac{n_1}{n_0} = 3 \exp\left\{-\frac{T_*}{T_S}\right\}$$

$$T_S = \frac{T_{\text{CMB}}T_k(1 + x_{\text{tot}})}{T_k + T_{\text{CMB}}x_{\text{tot}}}$$

The brightness temperature measured by observations is determined by the spin temperature's coupling to the CMB

$$T_b = (1+z)^{-1}(T_S - T_{\text{CMB}})(1-e^{-\tau})$$

The spin temperature determines the relative occupancy of the hyperfine levels

$$\frac{n_1}{n_0} = 3 \exp\left\{-\frac{T_*}{T_S}\right\}$$

$$T_S = \frac{T_{\text{CMB}}T_k(1 + x_{\text{tot}})}{T_k + T_{\text{CMB}}x_{\text{tot}}}$$

The brightness temperature measured by observations is determined by the spin temperature's coupling to the CMB

$$T_b = (1+z)^{-1}(T_S - T_{\text{CMB}})(1-e^{-\tau})$$

Hawking radiation

- PBHs emit particles in a roughly blackbody spectral distribution
- Temperature ~ M⁻¹
- Power ~ M⁻²
- Lifetime ~ M³
- PBH evaporation injects energy into the IGM

Pirsa: 07090049 Page 18/60

Hawking radiation

- PBHs emit particles in a roughly blackbody spectral distribution
- Temperature ~ M⁻¹
- Power ~ M⁻²
- Lifetime ~ M³
- PBH evaporation injects energy into the IGM

Pirsa: 07090049 Page 19/60

Hawking radiation

- PBHs emit particles in a roughly blackbody spectral distribution
- Temperature ~ M⁻¹
- Power ~ M⁻²
- Lifetime ~ M³
- PBH evaporation injects energy into the IGM

Pirsa: 07090049 Page 20/60

Analogy with decaying dark matter

- Furlanetto, Oh & Pierpaoli (hereafter FOP)
 - Energy injection from decaying DM in the dark ages
 - Implications for 21cm observations
- Claim: 21cm can detect 10⁻²⁴ eV/cm³/s
- Hypothesis: PBH evaporation should look similar to decaying DM

Page 21/60

Simple order-of-magnitude estimate

- Assume:
 - Constant comoving number density n_{PBH}
 - Uniformly distributed PBHs
 - Constant energy injection rate
- Find (dE/dt)/volume for M=10¹¹ kg PBHs:
- $P \approx 2e-4 * hbar * c^6 / (G * M)^2 = 3.4e11 W$
- Limit: 10^{-24} eV/cm³/s = 1.6e-37 J/m³/s
- $=> n_{PBH} < 4.7e-49 \text{ m}^{-3} => \Omega_{PBH} < 4.7e-12$

Pirsa: 07090049

18

Analogy with decaying dark matter

- Furlanetto, Oh & Pierpaoli (hereafter FOP)
 - Energy injection from decaying DM in the dark ages
 - Implications for 21cm observations
- Claim: 21cm can detect 10-24 eV/cm³/s
- Hypothesis: PBH evaporation should look similar to decaying DM

Page 23/60

Simple order-of-magnitude estimate

- Assume:
 - Constant comoving number density n_{PBH}
 - Uniformly distributed PBHs
 - Constant energy injection rate
- Find (dE/dt)/volume for M=10¹¹ kg PBHs:
- $P \approx 2e-4 * hbar * c^6 / (G * M)^2 = 3.4e11 W$
- Limit: 10^{-24} eV/cm³/s = 1.6e-37 J/m³/s
- $=> n_{PBH} < 4.7e-49 \text{ m}^{-3} => \Omega_{PBH} < 4.7e-12$

- 1. Simulate Hawking radiation
 - Produce spectrum (with graybody factors)
 - Track photon energies with redshift
- Allow for absorption by IGM
 - photoionization, Compton scattering, pair production (off atoms, free ions and the CMB), scattering off CMB photons
- Find total energy injection into IGM over course of PBH evolution
- Track temperature and ionization of IGM (preand post-recombination)
- 5. Track 21cm brightness temperature

201 07000040

- Simulate Hawking radiation
 - Produce spectrum (with graybody factors)
 - Track photon energies with redshift
- Allow for absorption by IGM
 - photoionization, Compton scattering, pair production (off atoms, free ions and the CMB), scattering off CMB photons
- Find total energy injection into IGM over course of PBH evolution
- Track temperature and ionization of IGM (preand post-recombination)
- 5. Track 21cm brightness temperature

6. Compute 21cm power spectrum

- Simulate Hawking radiation
 - Produce spectrum (with graybody factors)
 - Track photon energies with redshift
- Allow for absorption by IGM
 - photoionization, Compton scattering, pair production (off atoms, free ions and the CMB), scattering off CMB photons
- Find total energy injection into IGM over course of PBH evolution
- Track temperature and ionization of IGM (preand post-recombination)
- Track 21cm brightness temperature

sa: 07090049

- Simulate Hawking radiation
 - Produce spectrum (with graybody factors)
 - Track photon energies with redshift
- Allow for absorption by IGM
 - photoionization, Compton scattering, pair production (off atoms, free ions and the CMB), scattering off CMB photons
- Find total energy injection into IGM over course of PBH evolution
- Track temperature and ionization of IGM (preand post-recombination)
- Track 21cm brightness temperature

Page 29/60

- Simulate Hawking radiation
 - Produce spectrum (with graybody factors)
 - Track photon energies with redshift
- Allow for absorption by IGM
 - photoionization, Compton scattering, pair production (off atoms, free ions and the CMB), scattering off CMB photons
- Find total energy injection into IGM over course of PBH evolution
- Track temperature and ionization of IGM (preand post-recombination)
- 5. Track 21cm brightness temperature

Pirsa: 07090049

24

- 1. Simulate Hawking radiation
 - Produce spectrum (with graybody factors)
 - Track photon energies with redshift
- Allow for absorption by IGM
 - photoionization, Compton scattering, pair production (off atoms, free ions and the CMB), scattering off CMB photons
- Find total energy injection into IGM over course of PBH evolution
- Track temperature and ionization of IGM (preand post-recombination)
- 5. Track 21cm brightness temperature
- 6 Compute 21cm power spectrum

Pirsa: 07090049 Page 32/60

Transparency window

PBHs and decaying DM

late-evaporating PBHs

early-evaporating PBHs

early-evaporating PBHs

Results – brightness temperature

early-evaporating PBHs

Results – brightness temperature

Foregrounds

- Main problem is foregrounds (galactic, extragalactic, terrestrial)
- Frequency information may help

Oh & Mack 2003

21cm power spectrum

- Foregrounds make 21cm fluctuation maps difficult to obtain
- Statistical detection (through the power spectrum) is more attainable

$$P_{21}(k,\mu) = \delta \bar{T}_b^2 (\beta' + \mu^2) P_{\delta\delta}(k),$$

$$\sqrt{\frac{k^3 \delta P_{21}}{2\pi^2}} \sim \frac{0.1 \text{ mK}}{\epsilon^{1/4} f_{\text{cov}}} \left(\frac{k}{0.04 \text{ Mpc}^{-1}}\right)^{3/4} \left(\frac{T_{\text{sky}}}{10^4 \text{ K}} \frac{2 \text{ km}}{R_{\text{max}}}\right) \\
\times \left(\frac{10 \text{ MHz}}{B}\right)^{1/4} \left(\frac{1000 \text{ hr}}{t_{\text{int}}}\right)^{1/2} \left(\frac{1+z}{50}\right),$$

Pirsa: 07090049 Page 46/60

21cm power spectrum

21cm power spectrum

Pirsa: 07090049 Page 48/60

Constraints (preliminary)

Pirsa: 07090049

Page 49/60

Conclusions & future work

- 21cm observations can detect exotic sources of energy injection in the dark ages
- Limits on PBH evaporation from 21cm can improve upon existing limits
- Future work:
 - Use 21cm for other exotic physics

Pirsa: 07090049 Page 50/60

35 h⁻¹ Mpc (Iliev, Mellema, Shapiro & Pen 2007)

Page 51/60

35 h⁻¹ Mpc (Iliev, Mellema, Shapiro & Pen 2007)

35 h⁻¹ Mpc (Iliev, Mellema, Shapiro & Pen 2007)

rsa: 07090049 Page 53/60

35 h-1 Mpc (Iliev, Mellema, Shapiro & Pen 2007)

35 h-1 Mpc (Iliev, Mellema, Shapiro & Pen 2007)

35 h-1 Mpc (Iliev, Mellema, Shapiro & Pen 2007)

35 h-1 Mpc (Iliev, Mellema, Shapiro & Pen 2007)

rsa: 07090049 Page 57/60

35 h⁻¹ Mpc (Iliev, Mellema, Shapiro & Pen 2007)

35 h-1 Mpc (Iliev, Mellema, Shapiro & Pen 2007)

35 h-1 Mpc (lliev, Mellema, Shapiro & Pen 2007)