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Gravitational Lensing J
Fi
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For 2-D distribution of mass, deflection / B
of ray from object at (2-D vector) positionn /' Source plane /
should be at g, instead seen at 6: :
|
|
= a(6) +p
: Dds
where deflection angle a is given :
by: — , :
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with convergence: Dd
Y (D,;0) = D,
K(O) = ":_1 with 1= i=C: DiDo
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Cosmic Shear, etc.
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Cosmic Shear, etc.

Mass overdensity produces tangential distortion of
light rays from background objects; underdensity
produces radial distortion.
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Cosmic Shear, etc.

Mass overdensity produces tangential distortion of
light rays from background objects; underdensity
produces radial distortion.
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Cosmic Shear, etc. e ndeenes

Mass overdensity produces tangential distortion of .
light rays from background objects; underdensity D
produces radial distortion.

Effect always small, so need to average over 100s of objects (i.e. galaxies)
= |imit to scales probed, intrinsic shape noise.

Pirsa: 07090041

B-mode
(systematic)

LS
L Y L
o _§

9

Page 12/121




Cosmic Shear, etc. e waderenee 5 mose

(systematic)
Mass overdensity produces tangential distortion of s al, \
| jects; i . %
light rays from background objects; underdensity "- " " .‘- -, N

produces radial distortion.

Effect always small, so need to average over 100s of objects (i.e. galaxies)
= |imit to scales probed, intrinsic shape noise.

* Can look at resulting signal statistically: shear correlation measuring correlation of
overdense/underdense regions as a function of angular scale.
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Cosmic Shear, etc. e ndeenes

B-mode
(systematic)
Mass overdensity produces tangential distortion of [ al, \ 7
" " - ‘ E- ] E-—Y ‘ ‘
light rays from background objects; underdensity "-" P o -"

produces radial distortion.

Effect always small, so need to average over 100s of objects (i.e. galaxies)
= |imit to scales probed, intrinsic shape noise.

* Can look at resulting signal statistically: shear correlation measuring correlation of
overdensefunderdense regions as a function of angular scale.

* Can also make smoothed maps of resulting shear or convergence.
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Cosmic Shear, etc. e nderenes

B-mode
(systematic)
Mass overdensity produces tangential distortion of s ad, \
' jects; i " N
light rays from background objects; underdensity "' " " "- -, N

produces radial distortion.

Effect always small, so need to average over 100s of objects (i.e. galaxies)
= |imit to scales probed, intrinsic shape noise.

* Can look at resulting signal statistically: shear correlation measuring correlation of
overdensefunderdense regions as a function of angular scale.

* Can also make smoothed maps of resulting shear or convergence.

Redshift dependence of effect is very slow, producing a very broad kernel in redshift

space:
GG [ D1 D <
1)

i—-
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Simple-minded Example of an Application:

Projected (Convergence/Surface Densi Power S m

In principle, calculate kappa at each point, take Fourier transform and there you are:
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More Sophisticated Examples:

In practice, several other more practical measurements, e.g.
- 2-point shear correlation function
- mean shear dispersion
- aperture mass dispersion
which can be easier to measure and provide better sampling of the power spectrum
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Measuring Growth: 3D Lensing Tomography

iz (s Dy Dys
/ I.-rh‘l
' i'.\
‘ 4

sensitivity /
112!: / T

e o:::o E o

Single source plane produces one weighted 2. =0.8
measurement of mass along the l.o.s. '

In principle, differences between planes can produce
a 3D mass map or more indirect 3D shear statistics,
e.g. shear-shear correlation between slices

Problems include extent of redshift kernel,
ssipr@oguracies in photo-zs Page 181121
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The COSMOS Survey Pr.. Nick Scoville

Relative Sizes of HST ACS Surveys
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Digituzed Sky Survey: ground-based image for comparison
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The COSMOS Survey

= 2 square degree ACS mosaic

= current lensing results from
1.64 square degrees

= 2-3 million galaxies down to
F814W, . = 26.6

= 15-band photomeiry,
photo-zs with dz ~ 0.03(1+z)
toz=14and |, =24

= follow-up in X-ray, radio, IR, UV




Getting the 3rd dimension

Spectra ~1000x more expensive than images
Get approximate spectrum with

multi-band photometry

(COSMOS now up to 18 bands)

Can get redshift errors down to
dz/(1+z) ~ 0.02

Lasting concemn:
catastrophic errors
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WL Convergence Maps

Massey, Rhodes, Leauthaud
Capak, Koekemoer, Scoville, Refregier

1= -

= cut catalogue down to e s =~ e

40 galaxies/arcmin? to remove bad zs *::— N
= correct for PSF variations, CTE )
= Get lensing maps, low-resolution _ ‘

3D maps, various measures of power R _ B

in 2D and restricted 3D A

- — e —

= results compare well with baryonic | | - S
distributions (e.g. galaxy distribution) '- =




Systematics

instrumental systematics a major and unanticipated headache

(PSF vanations, CTE)
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The Final Result

E-modes (left) versus B-modes (right)

irsa: 07090041 Page 24/121




The Final Result: Nice 2D signal

Shear variance in cells as a function of angular size.
rea; 07090041 Curves indicate prediction for o, =0.7,0.8,0.9,1.0,1.1,1.2 P>




3D Mass Distribution

Final resuit: first 3D map of the mass (or potential) distribution in a large
volume. Note this is only 1.6 square degrees on the sky.
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3D Mass Distribution

Final result: first 3D map of the mass (or potential) distribution in a large
volume. Note this is only 1.6 square degrees on the sky.




Seeing the Growth of Structure Directly

actually quite complicated to show the
growth of structure going forward in time
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3D Mass Distribution

Final resuit: first 3D map of the mass (or potential) distribution in a large
volume. Note this is only 1.6 square degrees on the sky.
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3D Mass Distribution

Final resuit: first 3D map of the mass (or potential) distribution in a large
volume. Note this is only 1.6 square degrees on the sky.




Seeing the Growth of Structure Directly
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growth of structure going forward in time
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3D Mass Distribution

Final result: first 3D map of the mass (or potential) distribution in a large
volume. Note this is only 1.6 square degrees on the sky.




Seeing the Growth of Structure Directly

actually quite complicated to show the
growth of structure going forward in time




Measuring the Growth of Structure

Calculate the shear correlation function divided by the integrated lensing
sensitivity to a given slice, and rescale to a fixed physical scale,
assuming the signal is coming from the redshift of peak sensitivity.

Get (rather noisy) measure of the growth of structure:

Massey et al. 2007b
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The value of redshift information

Even limited 3D information breaks some
degeneracy, gives much tighter constraints
(error bars 3x smaller)




Combined constraints on power spectrum and cosmology

AV T

(4]

09-
08"
0.7}
06-
05"

Pirsa: 07090041

) |

LyaVis | . LyaVHs |
—_—

= ULJ" Lmnss_d _;

08F e |

G_'.. -

: 06F _

WL - 05F WL

04

02 04 06 038 1 06 08 1 12 14

Lesgourgues et al. 2007: Lensing+ Lyman alpha results pull o5 higher (0.87
+/- 0.08); combining with CMB get very tight constraint: o5 = 0.8 +/- 0.02
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Measuring Geometry: The Shear Ratio Test
(Jain & Taylor 2003, Bernstein & Jain 2004, Taylor et al. 2007)

© Take ratio of shear of objects behind a particular mass, as a function of redshift
© Details of mass distribution, overall calibration cancel => clean geometric test

© Can extend this to continuous result by fitting to all redshifis Z(z) x D ¢/Dg
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Combined constraints on power spectrum and cosmology
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Lesgourgues et al. 2007: Lensing+ Lyman alpha results pull o5 higher (0.87
+/- 0.05), combining with CMB get very tight constraint: o = 0.8 +/- 0.02
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Measuring Geometry: The Shear Ratio Test
(Jain & Taylor 2003, Bernstein & Jain 2004, Taylor et al. 2007)

© Take ratio of shear of objects behind a particular mass, as a function of redshift
© Details of mass distribution, overall calibration cancel => clean geometric test

© Can extend this to continuous result by fitting to all redshifts Z(z) x D ¢/Dg
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Lensing Behind Clusters

Use strength of signal behind cluster as a function of redshift to measure
D,(2):

Base:
h=0.73, Q_=0.27

) ] (Aorx=1-9)
Variants:

il = i 9,=0250.30,0.32

z)) (%)

- . w,=-1-0.95,-0.9,-0.85,-0.8

d(D,(
|

— w(z) =w, +w_(1-a)

-
"

10!
0
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Lensing Behind Clusters

Use strength of signal behind cluster as a function of redshift to measure

D.(2):

lensatz=0.2

Pirsa: 07090041

Base:
h=0.73, Q_ =0.27
(AorX=1-Q )

Variants:
Q_ =0.25,0.30,0.32

w, =-1,-0.95,-0.9,-0.85,-0.8
w(z) =w, +w_(1-a)

— | -
e

o
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Lensing Behind Clusters

Use strength of signal behind cluster as a function of redshift to measure

D,(2):

lensatz=0.3

Pirsa: 07090041

Base:
h=0.73, Q_ =0.27
(AorX=1-Q )

Variants:
Q_ =0.25,0.30,0.32

w, =-1,-0.95,-0.9,-0.85,-0.8

w(z) =w, +w_(1-3a)

=
'

-
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Lensing Behind Clusters

Use strength of signal behind cluster as a function of redshift to measure
D,(2):

Llensatz=0.5 Base:
| h=0.73, Q_ =0.27
| (AorX=1-Q )
Variants:

| Q. =0.25,0.30,0.32
SN sl | w, =-1,-0.95,-0.9,-0.85,-0.8

w(z) =w, +w_(1-a)

-
e

Y
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Lensing Behind Clusters

Use strength of signal behind cluster as a function of redshift to measure

D,(2):

Llensatz=0.7

A (%)

Pirsa: 07090041

Base:
h=0.73, Q_ =0.27
(AorX=1-Q )

Variants:
Q_ =0.25,0.30,0.32

w, =-1,-0.95,-0.9,-0.85,-0.8
w(z) =w, +w_(1-a)

=
e

Page 46/121




Lensing Behind Clusters

Use strength of signal behind cluster as a function of redshift to measure

D,(2):

An

Pirsa: 07090041

Base:
h=0.73, Q_ =0.27
(AorX=1-Q )

Variants:
Q =0.25,0.30,0.32

w, =-1,-0.95,-0.9,-0.85,-0.8
w(z) =w, +w_(1-3a)

Signal weak but distinctive
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Shear vs. photo-z around peaks, along promising lines of sight
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Shear vs. photo-z around peaks, along promising lines of sight
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Preliminary Results

Signal detected in positive mean tangential shear within a given aperture
behind cluster center -
. Z 1ans = 0.73

o
(=]
w
u
(Y]
t.
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Preliminary Results

Yl Signal detected behind 6-7 clusters

I Still studying noise versus cylinder radius, catalogue cuts, path weighting

1 Results consistent with w, ~ -1.0 +/- 1.0, but based on only a few objects

Y Future predictions for large surveys + CMB + BAO (Taylor et al. 2007):

Aw, = 0.047, Aw_ = 0.111 and 2%

measurement of dark energy at
z~06

error forecasts from 20,000 deg?
survey (Taylor et al. 2007)
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COSMOS Peaks: Xray-lensing comparison

(Finoguenov et al. 2006, Taylor et al in prep.)
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Caveat: Peak Height Systematics (e.g. Hamana et al. 2004)

With respect to shape noise, moderately massive clusters can be detected
in ground based data at 4-0 significance at a rate of ~ 5/degree? or more

(e.g. GaBoDs survey, Suprime survey)

Problem: many 0.3-| o systematics, including:

@ halo elongation
@ halo concentration
@ halo substructure

@ chance projection
@ correlated mass (i.e. non-chance projection)

@ background source density fluctuations
® background mean-z_ fluctuations

@ seeing
@ other observational problems (field edges, stars, etc.)
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Recent Subaru Suprime22 Survey Results
(Miyazaki et al. 2007, Green et al. 2007) 80
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Other Lensing Results

Galaxy-galaxy lensing:
Stack lensing signal around groups and galaxies to get significant detection

(have to decide how to bin galaxies)

Result: lensing detected at high significance over a range of radii

Future possibilities in this field
include |-halo/2-halo/baryonic
decompostion of profile,
concentration :5..
measurements, €
evolution etc. 3 0,

T vy
Voo & 1

Lesuthaud et al 2007
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Other Lensing Results

Galaxy-galaxy lensing:
Stack lensing signal around groups and galaxies to get significant detection

(have to decide how to bin galaxies)

Result: lensing detected at high significance over a range of radii

10000 T IIII T | |12v T
baryons l s —4— - Tn—
Future possibilities in this field — Total (with rms) =

include |-halo/2-halo/baryonic ‘o

decompostion of profile, t s " Thp'
concentration =
measurements, =,
evolution etc. < 100
=

10

0.001 0.010 0.100 1.000
Radius [Mpc/h]
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Other Lensing Results

Galaxy-galaxy lensing:
Stack lensing signal around groups and galaxies to get significant detection

(have to decide how to bin galaxies)

Result: lensing detected at high significance over a range of radii

Future possibilities in this field
include |-halo/2-halo/baryonic
decompostion of profile,
concentration

measurements, €
evolution etc. 3 ol

Lemithaid et al 2007
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Other Lensing Results

Galaxy-galaxy lensing:
Stack lensing signal around groups and galaxies to get significant detection

(have to decide how to bin galaxies)

Result: lensing detected at high significance over a range of radii

10000
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Future possibilities in this field —

include |-halo/2-halo/baryonic ‘o
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Other Lensing Results

Galaxy-galaxy lensing:
Stack lensing signal around groups and galaxies to get significant detection

(have to decide how to bin galaxies)

Result: lensing detected at high significance over a range of radii

Future possibilities in this field
include |-halo/2-halo/baryonic
decompostion of profile,

concentration :;
measurements,
evolution etc. q 0

Lesuthaud et al 2007
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Other Lensing Results

Galaxy-galaxy lensing:
Stack lensing signal around groups and galaxies to get significant detection

(have to decide how to bin galaxies)

Result: lensing detected at high significance over a range of radii
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Lensing Summary:
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Lensing Summary:

Lensing provides a large range of different measures of the mass distnbution, less sensitive
than clustering of luminous matter but unbigsed.
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Lensing Summary:

Lensing provides a large range of different measures of the mass distnbution, less sensitive
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* Lensing constraints from 2D, 3D on o, Q_
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Lensing Summary:

Lensing provides a large range of different measures of the mass distnbution, less sensitive
than clustering of luminous matter but unbigsed.

* Lensing constraints from 2D, 3D on o, Q_
* In the future, D,(2) or other geometric tests?
* Peaks useful for number counts, understanding the M-T,, relation

* Galaxy-galaxy lensing extremely promising for understanding halo profiles and halo

“occupation”

Fronctiers of Modern Cosmology Perimeter Insttute, Warterloo September |2 2007



Il: Detecting Structure on Small Scales
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Lensing Summary:

Lensing provides a large range of different measures of the mass distnbution, less sensitive
than clustering of luminous matter but unbiased.

* Lensing constraints from 2D, 3D on o, Q_
* In the future, D,(2) or other geometric tests?
* Peaks useful for number counts, understanding the M-T,, relation

* Galaxy-galaxy lensing extremely promising for understanding halo profiles and halo

“occupation”

Frontiers of Modern Cosmology Perimeter Insttute, Waterloo September |2 2007



Il Detecting Structure on Small Scales

Frontiers of Modern Cosmology Perimeter insttute, YWaterloo September |2 2007



What are the initial conditions for structure formation?
Consider specific example: supersymmetric WIMP

free sreaming damps out knetic decoupling: chemicai decoupling:
WIMP fluctuations DM fluctuatiors sop WIMPS freeze cutto a
oscillating and xam o grow relic abundance
I
I w
I Q
I
m l -g
I
= wiMP | WIMP-epton/ >
g free-streaming quark/ boson —
= 1 collisional 4y}
QO ! equilibrium w
)
3 I E'
! )
I
I >
I
I
Energy scale: ~10 Mev my/20 ~ 5-50 Gev

Basic answer: free streaming suppresses fluctuations below some scale,
but acoustic oscillations also contribute = minimum halo mass M.
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k (pe )

e.g. Loeb & Zaldarnaga (2005):
approximate caiculabon of transfer functon '
due o collisicnal damping b
dcminates over free streaming in case |
considered (100Gev WMPw T, = 10Mev)
gives cutoff mass M. = 10 - 10-M 4
*D : q10
o Y _ Green, Hofmann & Schwarz 2005
- = EDvy lu — — —
0.l _ — LUEDB [(AR=XN Tiﬂ : i :
Profumo, Sigurdson & Kamionkowski (2006):
Full calculation for a wide range of SUSY and
e extra-dimensional (Kaluza-Klein) WIMP candidates
] Gives M, = 10+ - 102 M,
10
& ———— 3§ encapsulates DM particle properties (via M.)
P and possibly also inflaton properties (via p or z)
Pirsa: 07090041 T.I” :t;_ - 1 500 2000 (e'g' & m' } P
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e.g. Loeb & Zaldarnaga (2005):

appreximate calculation of ransfer function
due o colisicnal damping

dominates aver free streamng in case
considered (100Gev WMPw . T, = 10Mev)

gives cutoff ma+ M. =10*-10°%Mg4

Green, Hofmann & Schwarz 2005

I Profumo, Sigurdson & Kamionkowski (2006):
g Full calculation for a wide range of SUSY and
. extra-dimensional (Kaluza-Klein) WIMP candidates

MM

Gives M_= 10+ - 10-2 M
o Sommmmm

) =
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e.g. Loeb & Zaldarnaga (2005):

appreximate calculation of transfer function
due o colisicnal damping

deminates aver free streamng in case
considered (100Gev WMPw . T, = 10Mev)

gives cutoff ma+ M. =10*-10°%Mg4

Green, Hofmann & Schwarz 2005

Profumo, Sigurdson & Kamionkowski (2006):
Full calculation for a wide range of SUSY and
. extra-dimensional (Kaluza-Klein) WIMP candidates

MM

Gives I+= =10+ -10"2 M,
So smallest scale dark matter structure

(e.g. Zentner & Bullock 2002, 2003)
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The Resulting Non-linear Power: Theoretical Expectations
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The Resufting Non-linear Power: Theoretical Expectations

early structure formation

Z=50

O [ Mpe~3

Vanance A? (k)
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The Resulting Non-linear Power: Theoretical Expectations

early structure formation

Z=50

i

. Vanance A% (k)

o PIK)Y | My

From near power spectrum anc subsequent growth history, expect sczle invarance over
~20 orders of magritude n mass

But effect of flattening of vanarce vs. mass?
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Diemand et al. (2000): first numerical attempt w. small box, stopping at high z
Consider linear power - - . AR b O &
spectrum with : T o \ R 2

M. = 106 M, o g ‘ /-\

Start at z=350

L 5
W
\
.
4
i
-
1
L |

oom In: :_""' 2 |
Sin'lJlatEB kPCP box, | . . k
[60 pc]® sub-boxand | ° T §* . - -~
[0024 pc® subsub-box | 4 S

ith 6x107 particles o =

L
of mass 10'0M, each | . & /’*”

L - e 5
Find 106 M_ “first’ halo F: e, . -1 ' :
ithM ~M,

Profile, density as expected from theory




(Diemand et al. 2005)

Halo profile ~ universal;
Vinal density ~ 200 mean,
even concentration ~ ok

Also abundance matches
lower redshift resuits

following scaling
for more massive substructure,

present-day MW halo should
contain 10'> marohalos, or
500/pc” locally, the nearest being
within ~0.15pc away

Further implications for direct and
indirect detection :

These objects move through solar
system in ~ |00 years,
once every 10,000 years

Motion on sky ~ | aremin/yr

=

an() f diog M [(1




Given an initial spectrum, how does small-scale structure
evolve subsequently?

o O
E——
®
®
‘first haloes’
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(Diemand et al. 2005)

Halo profile ~ universal;
Vinal density ~ 200 mean,
even concentration ~ ok

Also abundance matches
lower redshift results

following scaling
for more massive substructure,

present-day MW halo shouid
contain 10'> marohalos, or
500/pc” locally, the nearest being
within ~0.15pc away

Further implications for direct and
indirect detection :

These objects move through solar
system in ~ 100 years,
once every 10,000 years

Motion on sky ~ | areminfyr

=

an(M) { diog M (1




Diemand et al. (2005): first numerical attempt w. small box, stopping at high z

Consider linear power | - - P _;; - ._.'-'- :
spectrum with _ e RE ot WA
M. = 10¢M, e %R

. > " k. . [l . N L I"‘ :.- \
[N 2 . / _ LR\ Sl St
’ _—— " -4; p . . E N \&_‘ ’ ' "
Start at z=350 ol Tl ] : : e

o . ‘ . ' - -

oom In: . e
Simulate [3 kpc]® box, N W - ¥
[60 pc]® sub-box and LN 4 - =
[0024 pc]® sub-sub-box | -
with 6x107 particles - A
of mass 10-'° M, each '

T . - / |
& .': !. : RHE . '
Find 106 M, first halo 5% = . : ' " |

ithM ~ M,

Profile, density as expected from theory




(Diemand et al. 2005)

Halo profile ~ universal;
Virial density ~ 200 mean,
even concentration ~ ok

Also abundance matches
lower redshift resuits

following scaling
for more massive substructure,

present-day MW halo should
contain 10'> marohalos, or
500/pc” locally, the nearest being
within ~0.1 5pc away

Further implications for direct and
indirect detection :

These objects move through solar
system in ~ |00 years,
once every 10,000 years

Motion on sky ~ | arcminfyr

=

dn(M) f diog M [(1




Given an initial spectrum, how does small-scale structure
evolve subsequently?

o O
E——
®
®
‘first haloes’
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How to model small scales

z=6.2 z=3.T
'..1-'1‘

80 kpc 80 kpc

z=2.0 _- z=0.8
Fundamental oty "
resolution - _ "? | ' .
limit " . R
<= mixing

80 kpe

z=0.3

=

Via Lactea — Diemand, Kuhlen, Madau 2007




A statistical approach to the non-linear regime

Can't calaulate full evolution of non-linear regime without N-body simulations,
but can make statistical estimate of its extent Press-Schechter theory

=> retain some of the power of linear theory to constrain parameters




lterated Press-Schechter calculations give
Mass Accretion Histories and merger statistics




Altemate Merger Tree Approach (w. Abel &Turk):

Basic resolution problem with trees:
Number of branches grows as ~Nlog(N), where N = M/M_,

Number of distinct redshift steps grows as N< or faster

So rather than following every branch, choose some preferentially,
e.g. with declining probability at low mass

e.g. branching probability = | forM > M|

=M/M| forM2>M> M|

=0forM<M2

Get fast trees for MfiM| ~ 10?3, M|/M2 ~ |0

Use this as input to semi-analytic model of halo mergers and substructure evolution
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Some Results from Small Scales (~ R < R¢ )

e s — — e e ey
.y .':1-!""‘,’_: .:I o ey
- e o e ol bl ot
—- —— - — ———
:;.-— ~ ~rrare AT macnmt — *
- - - el fee ]l od N iy el e e
rdnge in mdss 1055
3
-
-
n
-
-
=
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Some Results from Small Scales (~ R < R¢ )

- i 2 — -y e il al
- MAass ar< 1 -
- aAaa vl Wl W= o T |
—_ el i ——— el e
—_— ™ MrIarT AT rmacnom al= B
::_ - - W | W e W e =l Nl s

log| M./ M, |
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Some Results from Smaller Scales (~ R < R¢_.)

= S m.sﬁm-r X3yl
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s a3y L3S Vo, | cll alS - - 3 3
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Some Results from Smaller Scales (~ R < R¢.)

— .
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Some Results from Smaller Scales (~ R < R )
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Some Results from Smaller Scales (~ R < R¢ )
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Some Results from Smaller Scales (~ R < R¢_.)
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Some Results from Smaller Scales (~ R < R¢)
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Small-scale Structure Summary

Frontiers of Modern Cosmology Perimeter Insttute, Waterloo September |2 2007



Small-scale Structure Summary

= |n hard-core CDM, expect structure well below galaxy scale

= Ultimate scale depends on/encodes particle model; could be
~planetary mass or smaller

= The first dark matter halos survive as debris in the local solar
neighbourhood, but most of mass probably in streams

= Detection still problematic... (e.g. Pien et al 2007 - background

Frontiers of Modern Cosmology Perimeter Instdwute, Warterloo September |2 2007



Small-scale Structure Summary

® |n hard-core CDM, expect structure well below galaxy scale

= Ultimate scale depends on/encodes particle model; could be
~planetary mass or smaller

= The first dark matter halos survive as debris in the local solar
neighbourhood, but most of mass probably in streams

= Detection still problematic... (e.g. Pien et al 2007 - background
wipes out signal from individual objects)

Fronciers of Modern Cosmology Perimeter Insttute, Warterloo September |2 2007



Fronctiers of Modern Cosmology Perimeter Instwute, Waterloo September |2 2007



Observational Paths to New Physics

* line-of-sight distances, e.g. 0, (a) from SNe

* physical scales, e.g. the sound horizon from
Baryon Acoustic Oscillations

* volumes, e.g. from cluster number counts?

» the growth of potential fluctuations (ISW)

» the growth of linear fluctuations (cosmic shear)

» the abundance of non-linear fluctuations
(cluster number counts)

 the differential growth of non-linear structure
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Observational Paths to New Physics

* line-of-sight distances, e.g. 0, (a) from SNe

* physical scales, e.qg. the sound horizon from
Baryon Acoustic Oscillations

 volumes, e.g. from cluster number counts?

geometry

» the growth of potential fluctuations (ISW)

» the growth of linear fluctuations (cosmic shear)

» the abundance of non-linear fluctuations
(cluster number counts)

» the differential growth of non-linear structure
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Observational Paths to New Physics

* line-of-sight distances, e.g. D, (a) from SNe

* physical scales, e.g. the sound horizon from
Baryon Acoustic Oscillations

 volumes, e.g. from cluster number counts?

geometry

» the growth of potential fluctuations (ISW)
» the growth of linear fluctuations (cosmic shear)
» the abundance of non-linear fluctuations
(cluster number counts) grOWth of
- the differential growth of non-linear structure structure
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Observational Paths to New Physics

* line-of-sight distances, e.g. 0, (a) from SNe

* physical scales, e.g. the sound horizon from
Baryon Acoustic Oscillations

* volumes, e.g. from cluster number counts?

geometry

» the growth of potential fluctuations (ISW)
» the growth of linear fluctuations (cosmic shear)
» the abundance of non-linear fluctuations
(cluster number counts) growth Of
- the differential growth of non-linear structure structure

Both ultimately measure H(a) or 2Q (a),

but with very different redshift weighting,

+ different relation to standard GR gravity. age 109121




The value of multiple constraints (cf. Linder 2005)

Can modify the Friedman equation H(a) either by changing the equation of state of
dark energy or by modifying gravity: either could produce exactly the same
expansion history.

Pirsa: 07090041

Bartelmann & Scrnmger 19549

Linear growth factor describing the growth of

perturbations can distinguish between the two
(local vs. global effect)

e.g. DGP braneworld gravity

-"\-\...
™
i
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09 |
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)8 -
B ,
b
= ™y
o Ty
06 braneworid
| — — braneworid (expansion only)
n = | Page 108/121
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What makes a good theory?
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What makes a good theory?

N.B. The Eddington eclipse results (after Collins & Pinch, “The Golem"”, Canto/CUP 2000)
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What makes a good theory?

N.B. The Eddington eclipse results (after Collins & Pinch, “The Golem"”, Canto/CUP 2000)

“The theory of relativity has received a still more definitive confirmation than for the
perihelion of Mercury for the case of the deflection of light rays. ... Quantitatively,
too, the agreement is a good one. (W. Pauli, Theory of Relativity, 1958)”
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What makes a good theory?
N.B. The Eddington eclipse results (after Collins & Pinch, “The Golem”, Canto/CUP 2000)

“The theory of relativity has received a still more definitive confirmation than for the
perihelion of Mercury for the case of the deflection of light rays. ... Quantitatively,
too, the agreement is a good one. (W. Pauli, Theory of Relativity, 1958)"

“REVOLUTION IN SCIENCE/ NEW THEORY OF THE UNIVERSE/ NEWTONIAN IDEAS
OVERTHROWN?” The Times, November 7, 1919
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What makes a good theory?
N.B. The Eddington eclipse results (after Collins & Pinch, “The Golem”, Canto/CUP 2000)

“The theory of relativity has received a still more definitive confirmation than for the
perihelion of Mercury for the case of the deflection of light rays. ... Quantitatively,
too, the agreement is a good one. (W. Pauli, Theory of Relativity, 1958)"

“REVOLUTION IN SCIENCE/ NEW THEORY OF THE UNIVERSE/ NEWTONIAN IDEAS
OVERTHROWN?” The Times, November 7, 1919

Sobral 8 “good” plates

Sobral 18 “poor” plates

Principe 2 "poor” plates
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What makes a good theory?

N.B. The original Hubble Law:

+1000 KM |——

S0CkM

YELOCITY

|
| DISTANCE
Q o*"pagsEcy 2,10% PARSECS
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What makes a good theory?
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What makes a good theory?

Why were these theories accepted on the basis of such limited evidence?
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What makes a good theory?

Why were these theories accepted on the basis of such limited evidence?

Traditionally value is assigned to a theory based on the probability that it is likely to
be correct, but at the frontier of science there is never enough evidence to judge this
properly.
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What makes a good theory?

Why were these theories accepted on the basis of such limited evidence?

Traditionally value is assigned to a theory based on the probability that it is likely to
be correct, but at the frontier of science there is never enough evidence to judge this
properly.

Instead, one could assign value based on the extent allows us to move forward.
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What makes a good theory?

Why were these theories accepted on the basis of such limited evidence?

Traditionally value is assigned to a theory based on the probability that it is likely to
be correct, but at the frontier of science there is never enough evidence to judge this

properly.
Instead, one could assign value based on the extent allows us to move forward.

From this point of view, small scale structure and complex non-linear dynamics are
attractive features of CDM, not crises or problems.
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What makes a good theory?

Why were these theories accepted on the basis of such limited evidence?

Traditionally value is assigned to a theory based on the probability that it is likely to
be correct, but at the frontier of science there is never enough evidence to judge this

properly.
Instead, one could assign value based on the extent allows us to move forward.

From this point of view, small scale structure and complex non-linear dynamics are
attractive features of CDM, not crises or problems.

Also from this perspective, modifications to gravity need to focus on showing what
else they can do, not on how well they can reproduce existing observations.
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Homework for MOND/MOG etc.:

/.—rnata:h CMB spectrum

A 4
2: calculate
linear
growth

Note that:
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4: make sure
s mooth
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I
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I history is
I

|

I

I

|

|

|

consistent

1) none of these tests constitute a prediction
2) if it's too hard to figure out how to perform these tests
mrmmariy *hatr Asas et ratlasd wall s tha fhasemg
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Real Homework for MOND/MOG/etc.:

Where are the missing baryons? (i.e. the 50-70% of all baryons)
Can we ever detect them?

When do the “first” galaxies form? How do they form?

What are the masses of the first galaxies? Where do AGN come in?
What sets present-day galaxy masses, sizes, spins?

How is the IGM enriched?

How are baryons processed through galaxies?

What are the masses of the first stars?

and finally...

is there a solid theoretical motivation for the theory? e.g. is it some sort of
“attractor” in theory space?
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Real Homework for MOND/MOG/etc.:

Where are the missing baryons? (i.e. the 50-70% of all baryons)
Can we ever detect them?

When do the “first” galaxies form? How do they form?

What are the masses of the first galaxies? Where do AGN come in?
What sets present-day galaxy masses, sizes, spins?

How is the IGM enriched?

How are baryons processed through galaxies?

What are the masses of the first stars?

and finally...

is there a solid theoretical motivation for the theory? e.g. is it some sort of
“attractor” in theory space?
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. Real Homework for MOND/MOG/etc.:
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Structural segregation in the
M-T relation?

: wee 4 |+ Mass measurement wrong for
| iy i > non-SL clusters?
5 2| T Ay -+ Core-related phenomena?
=0 & ZlF o — Pederson et al., 0603260
3 L 7 .+ Cluster-cluster mergers?
£ 3| /L7 4 Possivle A | — Ricker & Sarazin 2001,
s aY 1 Sﬁe;[‘;’;;j”I Randall et al. 2003

2 * What else?

ey

Smith et al., 2005, MNRAS, 358, 417
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