Title: Recent Gravitational Experiments and their Implications for Particle Physics Date: Sep 11, 2007 08:30 AM URL: http://pirsa.org/07090036 Abstract: Pirsa: 07090036 #### **TOPICS COVERED** - Equivalence Principle tests - short-range Inverse-square Law tests - cosmic preferred-frame tests #### WILL SUMMARIZE - motivations - techniques - results #### **TOPICS COVERED** - Equivalence Principle tests - short-range Inverse-square Law tests - cosmic preferred-frame tests #### WILL SUMMARIZE - motivations - techniques - results # the Eöt-Wash® group in experimental gravitation Faculty **EGA** Jens Gundlach Blayne Heckel Staff Erik Swanson Postdocs Seth Hoedl CD Hoyle Stephan Schlamminger Current Grad students Claire Cramer Ted Cook Charlie Hagedorn William Terrano Todd Wagner 1/r² FP spin Part of this talk is based on PhD thesis work of recent graduate Dan Kapner (currently Kavli Fellow KCCP in Chicago) Primary support from NSF Grant PHY0355012 with supplements from the DOE Office of Science and to a lesser extent NASA unifying gravity with the other forces in physics is the central problem in fundamental science string or M theory provides the only known framework for doing this BUT: it inherently contains features that have to be hidden from experiment: 10 or 11 dimensions hundreds of massless scalar particles must find a way to account for the extreme weakness of gravity and the observed dark energy some of these new features could show up in Equivalence Principle and/or inverse-square law tests ### A brief history of Equivalence Principle tests: Do all materials have the same mi/mg? Galileo test Newton-Bessel test Eötvös test are fall times equal? $T=\sqrt{(2d/g (m^i/m^g))}$ $\Delta a/a \leq 0.1$ are periods equal? T=2 π $\sqrt{(l/g (m^i/m^g))}$ $\Delta a/a \le 10^{-4}$ are angles equal? ε=ω²R sin2θ/(2g) (mⁱ/i ∆a/a≤ 10⁻⁹ #### implementation as a null experiment balance twists only if force vectors are not parallel if the EP is violated down is not a unique direction ### modern era in EP tests was ushered in by Fischbach's reanalysis of Eötvös's results Fischbach at el., PRL 56, 3 (1986) This result along with geophysical measuremen was taken as evidence for a "5th force" $$V(r) = V_{\rm N} \left(1 + \tilde{\alpha} \left[\frac{B}{u} \right] \left[\frac{B}{u} \right] \right) \exp(-$$ with $\alpha \approx .01$ 30m $\leq \lambda \leq 1000$ m #### 2 WAYS TO THINK ABOUT EP TESTS - test a key prediction of Einstein's theory of gravity is $m_i = m_g$? - assume EP is exact for gravity; use tests to probe for new quantum exchange forces even weaker than gravity any quantum exchange force will violate the EP $$\begin{array}{lll} & & & & \\ &$$ most of the ideas for solving the big problems in physics Oredict effects that could show up in EP tests e.g. String theory dilaton #### torsion pendulum of the new Eöt-Wash EP test 20 μm diameter 108 cm long tungsten fiber eight 4.84 g test masses (4 Be & 4 Ti) or (4 Be & 4 4 mirrors tuning screws adjust the mas multipole moments & minimi sensitivity to gravity gradient free osc freq: 1.261 ml quality factor: 4000 decay time: 11d 6.5 l machining tolerance: 5 μm total mass: Page 0/6g #### turntable of the new EP balance servoed rotary contactor for electric signals thermal insulation air-bearing turntable angle encoder electronics thermal expansion feet fedback to keep turntable rotation axis level from the bearing which rotates at 0.833 mHz #### gravity-gradiometer pendulums q₂₁ configuration instal #### gravity-gradient compensation #### limitations on gradient cancellation these data were taken in early November #### gravity-gradient compensation #### 1σ statistical + systematic uncertainties from our Equivalence Principle experiment with beryllium and titanium test bodies | Source | Δa (cm/s²) | ∆a/a _{source} | |--------|----------------------------------|---------------------------------| | Earth | $(-1.0 \pm 3.6) \times 10^{-13}$ | $(-0.6 \pm 2.2) \times 10^{-1}$ | | Sun | $(1.2 \pm 2.7) \times 10^{-13}$ | $(2.1 \pm 4.6) \times 10^{-1}$ | | Galaxy | $(0.0 \pm 3.0) \times 10^{-13}$ | $(0.0 \pm 1.6) \times 10^{-1}$ | | СМВ | $(3.0 \pm 2.6) \times 10^{-13}$ | $(1.8 \pm 1.5) \times 10^{-1}$ | # 95% confidence level exclusion plot for interactions coupled to baryon number # 95% confidence level exclusion plot for interactions coupled to B - L Is gravity the only long-range force between dark and luminous matter? check universality of free fall for different materials falling toward center of our galaxy. although 90% of galaxy mass is thought to be DH much of it lies outside Ro, so $$a_0^{DM} = 25-30\% a_0 \implies a_0^{DM} \approx 5 \times 10^{-9} \, \text{cm/s}^2$$ component of a 1 we can detect differential accels. With a sensitivity of 10-3 a 5 x 10-12 cm/s # 95% confidence level exclusion plot for interactions coupled to B - L Is gravity the only long-range force between dark and luminous matter? check universality of free fall for different materials falling toward center of our galaxy. although 90% of galaxy mass is thought to be DH much of it lies outside Ro, so $$a_0^{DM} = 25-30\% a_0 \implies a_0^{DM} \approx 5 \times 10^{-9} \, \text{cm/s}^2$$ component of and it we can detect differential accels. With a sensitivity of 10-3 and in 5×10-12 cm/s assume $$a_0^{OM} \equiv 9_0^{OM} + \tilde{a}_0^{OM}$$ where $a_0^{OM} \sim 5 \times 10^{-9} \text{ m/s}^2$ we want this but measure this - · make no assumptions about (90) - · parameterize \(\tilde{q} \) of Ordinary, electrically neutral matter \(\tilde{q} \) = \(2(\tilde{q} \) + N\tilde{q} \) our la results: $$\Delta \tilde{a}_{\Theta}^{DM} (T_i - \theta e) = (0.0 \pm 3.0) \times 10^{-13} \text{ cm/s}^2$$ $\Delta \tilde{a}_{\Theta}^{DM} (EC - HH) = (3.3 \pm 3.2) \times 10^{-13} \text{ cm/s}^2$ #### 95% confidence limits on non-gravitational acceleration of hydrogen by galactic dark matter # motivations for sub-millimeter tests of the inverse-square law - untested regime - probes the dark energy length scale - large extra dimensions? - chameleons? - "fat gravitons"? #### Parameterising breakdowns of 1/2 law · Old-fashioned way $$F(r) = G \frac{m_1 m_2}{r^2 + \varepsilon}$$ no theoretical basis · modern way $$F(r) = G \frac{m_1 m_2}{r^2} \left[1 + \alpha \left(1 + \frac{r}{\lambda} \right) e^{-r/\lambda} \right]$$ - · exchange of boson with m 0 - · extra dimensions scenario when core * #### 95% confidence limits as of 2000 #### the Irvine experiment loskins et al. PRD 32, 3084 (1985) # Does dark energy define a new fundamental length scale in physics? $$\rho_{\rm d} \approx 3.8 \ {\rm keV/cm^3}$$ $$\lambda_{\rm d} = \sqrt[4]{\hbar c/\rho_{\rm d}} \approx 85 \ \mu {\rm m}$$ a second "Planck length"? #### Gauss's Law and extra dimensions illustration from Savas Dimopoulis #### the 42-hole inverse-square law pendulum ### rotating attractor and its electrostatic shield - tightly stretched 10- µm thick, Aucoated BeCu foil shields electrostat effects. - placed 12 µm above rotating attractor ### power spectral density of twist noise ### measuring the detector-membrane separation ### signal processing these data were taken with the calibration turn-table stationary raw signal 2-pt digital filt used in our earlier work 5-pt digital fil ### data from 42-hole experiment III ## 95% confidence upper limits on ISL violation ### some 20 implications of our data - inverse-square law holds down to 56 microns - largest possible size of an extra dimension is R = $\lambda(\alpha=8/3)$ = 44 microns - for ADD's 2 equal extra dimensions scenario M*≥ 3.4 TeV/c² - radion exchange with n extra dimensions gives a Yukawa force with α=n/(n+2) and λ≈2.4 mm [1 TeV/M*c²]; this implies M*(n=6) ≈ 6.4 TeV/c² #### the chameleon mechanism can circumvent experimental evidence against string theory's gravitationally coupled low-mass scalars by adding a self-interaction term to the effective potential density $$V_{\mathrm{eff}}(\phi, \vec{x}) = \frac{1}{2} m_{\phi}^2 \phi^2 + \frac{\gamma}{4!} \phi^4 - \frac{\beta}{M_{\mathrm{Pl}}} \rho(\vec{x}) \phi$$ natural values of β & γ are 1 in presence of matter, massless chameleons acquire an effective mass $$m_{\rm eff}(\rho) = \frac{\hbar}{c} \left(\frac{9}{2}\right)^{1/6} \gamma^{1/6} \left(\frac{\beta \rho}{M_{\rm Pl}}\right)^{1/3}$$ so that an object's external field comes only from a thin skin of material of thickness $\sim 1/m_{\rm eff}$ (≈ 60.00 m) #### the chameleon mechanism can circumvent experimental evidence against string theory's gravitationally coupled low-mass scalars by adding a self-interaction term to the effective potential density $$V_{\mathrm{eff}}(\phi, \vec{x}) = \frac{1}{2} m_{\phi}^2 \phi^2 + \frac{\gamma}{4!} \phi^4 - \frac{\beta}{M_{\mathrm{Pl}}} \rho(\vec{x}) \phi$$ natural values of β & γ are 1 in presence of matter, massless chameleons acquire an effective mass $$m_{\rm eff}(\rho) = \frac{\hbar}{c} \left(\frac{9}{2}\right)^{1/6} \gamma^{1/6} \left(\frac{\beta \rho}{M_{\rm Pl}}\right)^{1/3}$$ so that an object's external field comes only from a thin skin of material of thickness $\sim 1/m_{\rm eff}$ (≈ 6000 m) ### 2σ chameleon constraints natural value Pirsa: 07090036 Page 47/68 ### the Fourier-Bessel pendulum ### the plate pendulum ## cosmic preferred frames? We all were taught that there are no preferred frames. But the Universe defines a frame in which the CMB is essentially isotropic. Could there be other preferred frame effects defined by the Universe? Kostelecky et al. developed a scenario where vector and axial-vector fields were spontaneously generated in the early universe and then inflated to enormous extents; particles couple to these preferred-frame fields in Lorentz-invariant manners. This "Standard Model Extension" predicts lots of new observables many of which violate CPT. One observable is $E = \sigma_e$, $\tilde{b_e}$ where $\tilde{b_e}$ is fixed in inertial space - its benchmark value is $m_e^2/M_{Planck} \approx 2 \times 10^{-17} \text{ eV}$ Pirsa: 07090036 # non-commutative space-time geometry string theorists have suggested that the space-time coordinates may not commute, i.e. that $$[\hat{x}_{\mu}, \hat{x}_{\nu}] = i\theta_{\mu\nu}$$ where Θ_{ij} has units of area and represents the mimimum observable patch of area, just as the commutator of x and p_x represents the minimum observable product of $\Delta x \ \Delta p_x$ "Review of the Phenomenology of Noncommutative Geometry" > I. Hinchliffe, N Kersting and Y.L. Ma hep-ph/0205040 # effect of non-commutative geometry on spin non-commutative geometry is equivalent to a "pseudo-magnetic" field and thus couples to spins $$\mathcal{L}_{eff} = \frac{3}{4} m \Lambda^2 \left(\frac{e^2}{16\pi^2} \right)^2 \theta^{\mu\nu} \overline{\psi} \sigma_{\mu\nu} \psi$$ Anisimov, Dine, Banks and Graesser Phys Rev D 65, 085032 (2002) A is a cutoff assumed to be 1TeV ### the Eöt-Wash spin pendulum - 9.8 x 10²² polarized electrons - negligible mass asymmetry - negligible composition asymmetry - flux of B confined within octagons - negligible external B field - Alnico: all B comes from electron spin: spins point opposite to B - SmCo₅: Sm 3+ ion has spin pointing along total B and its spin B field is nearly canceled by its orbital B field--so B of SmCo₅ comes almost entirely from the Co's electron spins - therefore the spins of Alnico and Co cancel and pendulum's net spin comes from the Sm and J = - S ## the Eöt-Wash rotating torsion balance ### neasuring the stray magnetic field of the spin pendulum ## spin-pendulum data span a period of 36 months a 113 hour stretch is shown below definition of β : $E_{pend} = -N_p \beta \cdot \sigma$ simulated signal from assumed b_v=2.5×10⁻²⁰ eV best fit out-of-phase sine waves--corresponds to preferred-frame signal: $b_x = (-0.20\pm0.76)\times10^{-21} \text{ eV}$ $b_y = (-0.23\pm0.76)\times10^{-21} \text{ eV}$ ### lab-fixed spin pendulum signal gyrocompass effect ### The gyrocompass #### Anschütz's gyrocompass. Anschuetz-Kaempfe and Sperry separately patented gyrocompasses in JK and US. In 1915 Einstein ruled that Anschütz's patent was valid. #### Our gyrocompass. Earth's rotation Ω acting on J of pendulum produces a steady torque along suspension fiber $\mid \Omega \times J \cdot n \mid$ where n is unit vector along local vertical. Because S=-J this is equivalent to $\beta_N = -1.616 \times 10^{-20}$ eV ## Lorentz-symmetry violating rotation parameters TABLE IX: 1σ constraints on the Lorentz-symmetry violating \tilde{b}^e parameters. Units are 10^{-22} eV. | parameter | electron ^a | proton ^b | $neutron^c$ | |-------------------------|-----------------------|----------------------|-----------------| | $ ilde{b}_{\mathbf{X}}$ | $+1.0 \pm 1.5$ | $\leq 2 \times 10^4$ | 0.22 ± 0.79 | | $ ilde{b}_{ m Y}$ | -0.6 ± 1.5 | $\leq 2 \times 10^4$ | 0.80 ± 0.95 | | $ ilde{b}_{\mathbf{Z}}$ | $+3.7 \pm 21.2$ | / | 1 | Cane et al, PRL 93(2004) 230801 Phillips et al, PRD 63(2001) 111101 These should be compared to the benchmark value $m_e^2/M_{\rm Planck} = 2 \times 10^{-17} \ {\rm eV}.$ ## an amusing number - our upper limit on the energy required to invert an electron spin about an arbitrary axis fixed in inertial space is ~10⁻²² eV - this is comparable to the electrostatic energy of two electrons separated by 90 astronomical units ## 95% confidence upper limits on CP-violating monopole-dipole interactions # effect of non-commutative geometry on spin $$\mathcal{L}_{eff} = \frac{3}{4} m \Lambda^2 \left(\frac{e^2}{16\pi^2} \right)^2 \theta^{\mu\nu} \overline{\psi} \sigma_{\mu\nu} \psi$$ A is a cutoff assumed to be 1TeV Anisimov, Dine, Banks and Graesser hep-ph/2010039 minimum observable patch of area implied by our results $|\theta^{\mu\nu}| \le 6 \times 10^{-58} \,\mathrm{m}^2$ 6×10^{-58} m² seems very small. In another sense it is also still large: 6 × 10⁻⁵⁸ m² ~ $$(10^6 L_p)^2$$ where L_p is the Planck Length √(ħ G/c³)=1.6 × 10⁻³⁵ m or $\sim (10^3 L_U)^2$ where L_U is the Grand Unification length $L_U = \hbar c / 10^{16}$ GeV But 10¹³ GeV is pretty good for a table-top result! We are now studying the interactions between our spin pendulum and a larger spin source based on the same principles as those used in the pendulum #### some motivations: - test for the spin-spin interactions predicted by Arkani-Hamed's "ghost condensate" modification of gravity - test for proposed torsion fields that couple to intrinisic spin ### references - Equivalence Principle tests - Y. Su et al., PRD 50, 3614 (1994) - S. Baessler et al., PRL 83, 3585 (1999) - G.L. Smith et al., PRD 61, 022001 (2000) - Inverse-square law tests - D.J. Kapner et al., PRL 98, 021101 (2007) - E.G. Adelberger et al., PRL 98, 13104 (2007) - Preferred-frame tests - B.R. Heckel et al., PRL 97, 021603 (2006) Pires: 07000036 Pires: 07/00/036 ### references - Equivalence Principle tests - Y. Su et al., PRD 50, 3614 (1994) - S. Baessler et al., PRL 83, 3585 (1999) - G.L. Smith et al., PRD 61, 022001 (2000) - Inverse-square law tests - D.J. Kapner et al., PRL 98, 021101 (2007) - E.G. Adelberger et al., PRL 98, 13104 (2007) - Preferred-frame tests - B.R. Heckel et al., PRL 97, 021603 (2006)