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Bigravity and
Lorentz-violating

Massive Gravity

(Do we really understand how to
get rid of the vDVZ discontinuity ?)

FART 1: Some words about
« massive gravity »

PART 2: Some words about Static
Spherically Symmetric
Solutions (S%) of bigravity
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Why being interested in « massive gravity »?

—) One way to modify gravity at « large distances »
... and get rid of dark matter and/or dark energy 7

H? = 55%p

\__ Dark matter or dark
energy ?
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Why being interested in « massive gravity »?

—) One way to modify gravity at « large distances »

... and get rid of dark matter and/or dark energy 7

_ 8nG

Changing the dynamics
of gravity 7
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Why being interested in « massive gravity »?

—) One way to modify gravity at « large distances »
... and get rid of dark matter and/or dark energy 7

_ 871G
/Hé—TP

Changing the dynamics
of gravity 7

A Frencf'| (appropriate in a place called Waterloo !) hero
personifying the success/failure of both approaches is
Le Verrier

» The discovery of Neptune

» The non discovery of Vulcan... but that of GR.




1. What is massive gravity and some
general things about S+ ?

1.1. Pauli-Fierz theory and the vDVZ discontinuity
1.2. Non linear Pauli-Fierz and its Pathologies
1.3. DGP Theory

1.4. Bigravity
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1.1. Quadratic massive gravity: the Pauli-Fierz theory
and the vDVZ discontinuity

Pauli-Fierz action: second order action
for a massive spin two h ©y
fd4;r\/§Rg + m? f d4rh.pyha3 (-rr"'“1 n""’3 — r;“”n“-ﬁ)
\ﬂ—/

secondorderinh, . =g,-1,,
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1.1. Quadratic massive gravity: the Pauli-Fierz theory
and the vDVZ discontinuity

Paull-Fierz action: second order action
for a massive spin two h ©wy

f d4I\/§Rg + m_'.? f d4$h‘pyha3 ('f?‘m ”?Uj o nﬂvnﬂ.ﬂ)
H_}

secondorderinh, . =g,.-1,,

;] Only Ghost-free (quadratic) action for a
massive spin two  Pauli. Fierz
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1.1. Quadratic massive gravity: the Pauli-Fierz theory
and the vDVZ discontinuity

Pauli-Fierz action: second order action
for a massive spin two h ©y
fdJ‘,r\/_R — ?ﬂ'fd[_]:l'hpyhaj (
—

secondorderinh, =g,.-1,.

L nu.ﬂ T?;.Lu_nr_x_j

;I Only Ghost-free (quadratic) action for a
) massive spin two  Paui. Fierz
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The propagators read

5

propegator for  m—0 D’;m' (p) — ”?m’?;’i??“ﬁ” zp— - O(p)
e torfor md0 | DRe(p) _ P oty




Coupling the graviton with a conserved energy-momentum tensor

Sine = [d*r \/Gh W T

El
-
Y

’I? il { 2= JDLI\. e j{ dn': = .:f ! 'ICt j{ :{. f ;!f_-{—-l:.,r /

The amplitude between two conserved sources T and S

IS given b - it
- y A= f d*x S*"(x)h g X )

For a massless graviton: <. = | 1., —=.. 1" 5

In Fourier
space

For a massive graviton: .= (1. —..1 5"
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e.g. amplitude between two non relativistic sources:

T x diagim;.0.0.0) - |
\ A~ Smym: Instead of A =5 =1 Nt>

S% x diaeim-.0.0.0)

Rescaling of Newton constant  Gireron = 3G,

¥ 4

defined from Cavendish appearing in
experiment the action

o

but amplitude between an electromagnetic probe
and a non-relativistic source Is the same as in the

massless case (the only difference between massive and massless
case is in the trace part) == Wrong light bending! (factor 7)
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NB. the PF mass term reads

Mgm? [ d*x (hijhij — 2hoihoi — hiihjj + 2hiihoo)
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NB. the PF mass term reads
J[;ng f d_L;I' (hl_}h'*') — thih-gf — h“hjj + thihg(ﬂ

hyq enters linearly both in the kinetic /,f'
part and the mass term, and is thus a

Lagrange multiplier of the theory...
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NB. the PF mass term reads
J[f;,mg fd_L;I' (hIJhU — Qh-{j.ihgi = h'iihjj . thihgo.:]

hyo enters linearly both in the kinetic o
part and the mass term. and is thus a
Lagrange multiplier of the theory...

... which equation of motion enables to eliminate
one of the a priori 6 dynamical d.o.f. h;
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NB. the PF mass term reads
J[ﬁ,mg f d_L;I' (hUhU = Qh{}i h‘D'if — h”h‘jj _i_ thihOO}

hyo enters linearly both in the kinetic L
part and the mass term. and is thus a

Lagrange multiplier of the theory...

... which equation of motion enables to eliminate
one of the a priori 6 dynamical d.of. A,

By contrast the h,, are not Lagrange multipliers
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NB. the PF mass term reads
Ml%m? f d*z (Bisshis — 2haihg: — hezhis + 2hishiss)

hyo enters linearly both in the kinetic /f”"
part and the mass term. and is thus a
Lagrange multiplier of the theory...

... which equation of motion enables to eliminate
one of the a priori 6 dynamical d.o.f. h;

By contrast the h,, are not Lagrange multipliers

~~ 5 propagating d.o.f. in the quadratic PF
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1.2. Non linear Pauli-Fierz theory and its pathologies

Can be defined by an action of the form

f d'“L;r\ﬁRg + m? f d4Ih-pyha_3 ('ﬁ”a ”?Uj = 77’“‘1/77&3)
—
Keep allorderinh, . =g,.-7,, Some

"~ background
metric
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1.2. Non linear Pauli-Fierz theory and its pathologies

Can be defined by an action of the form

f d*x\/ERg + m? f d4Ih'puha_3 ("7”& e — n““"n“'j)
—
Keep allorderinh, . =g,.-7n,, Some
.~ background

»;j - metric

<> At quadratic order in h,  this
reduces to Pauli-Fierz
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1.2. Non linear Pauli-Fierz theory and its pathologies

Can be defined by an action of the form

f d4IﬁRg -+ m? f d4$h,u.uha3 ('TP‘M nyj o= n‘uvnﬂ:ﬁ)
—
Keep all order in h,u v =G dl Some

—~  background
metric

—_

> At quadratic order in h,, this
reduces to Pauli-Fierz

. Look at Spherically Symmetric
Solutions of this theory
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ds? = — e”Pdt® +eXPdp® + ) p’dQ,
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vir) = —%9(1 +

Ar) =42 21 +.

This coefficient equals +1
INn Schwarzschild solution
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ds? = — e?(Pdt? 1 eNPgp? 1 E“(P)pzdﬁg

Hr) =— ? 1 + ...

A(D) =D 21 ..

Wrong light bending!

This coefficient equals +1
INn Schwarzschild solution

>

e
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ds? = — e”Pdt® +eXPdp® + ) p’dQ,
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L-’(’I") - Trs l—I_ST_"E_I_ rg
i with e=—5
- 1L ‘Ysyy 21 mirs

A(?ﬂ) =% ?(1 gf_l_ Vainshtein '72

In some kind of
non linear PF
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plr) =— ?_'?S(l—l—%ﬁ—l— T
with €= HEE
1 Tspq 21 '
A(r) = 3 ?(1 g€t Vainshtein ‘72

In some kind of
non linear PF

Introduces a new length scale r , In the problem lﬁ
below which the perturbation theory diverges! \ i

For the sun: bigger than solar system! «—u with r, = (rgm —*)/3
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So. what i1s going on at smaller distances?

f Vainshtein's answer (1872):
There exists an other perturbative expansion at
smaller distances. reading:

-

mry=—=2 14+017% ~/r ‘ : with » - acm= -

) = =20 L2 — - |

This goes smoothly
toward Schwarschild as
m goes to zero
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S0, what I1s going on at smaller distances?

==, Vainshtein's answer (1972):

g

There exists an other perturbative expansion at
smaller distances. reading:

T ) = —_: j_ —[—t_-', J,- _ .'-'"T _ ] With ,‘r"._-_ XN me 3

\(1) = _i__S _L +1‘~—-‘! ?' B i ‘I .
7l i This goes smoothly

toward Schwarschild as
m goes to zero

=

=, No warranty that this solution can be matched with

!
Pirsa: 07090027 the Other for |arge r Bguhuare‘ Deser TZ Page 27/116




The vDVZ discontinuity is due to the scalar polarization of
the graviton being coupled to the trace of the source energy
momentum tensor...
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The vDVZ discontinuity is due to the scalar polarization of
the graviton being coupled to the trace of the source energy
momentum tensor...

While the Vainshtein mecanism Is due to this

polarization having strong self interaction
C.D..Gabadadze, Dvali, Vainshtein

irsa: 07090027 Page 29/116




The vDVZ discontinuity is due to the scalar polarization of
the graviton being coupled to the trace of the source energy
momentum tensor...

While the Vainshtein mecanism is due to this

polarization having strong self interaction
C.D..Gabadadze, Dvali, Vainshtein

This polarization can be described by the following action:
Arkani-Hamed. Georgi, and Schwartz
(V2P + ... )
L_Y_J
Other cubic terms omitted

| bt

5(Vo)? — 3150T +

With \ = (m* M)/

1
A°>

“J

I
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The vDVZ discontinuity is due to the scalar polarization of
the graviton being coupled to the trace of the source energy
momentum tensor...

While the Vainshtein mecanism is due to this
polarization having strong self interaction

C.D..Gabadadze, Dvali, Vainshtein
This polarization can be described by the following action:
Arkani-Hamed. Georgl, and Schwartz
il )2 1 1 2 1\3
3(VO)* — 31707 + 55 (V7)) + ... ]
i 4 1/5
With .\ = (m* Mp) Other cubic terms omitted

E.g. around a heavy source: % of mass M

Interaction M/M-of The cubic interaction above generates
thewmgernal source O(1) coorrection at T =1, = (Tw_fl)laéésu.us

with O " B




An other pathology of non-linear Pauli-Fierz: at non linear
level. it propagates © instead of © degrees of freedom. the
energy of the sixth d.o.f. having no lower bound!
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An other pathology of non-linear Pauli-Fierz: at non linear

level. it propagates © instead of © degrees of freedom. the
energy of the sixth d.o.f. having no lower bound!

Using the usual ADM decomposition of the metric. the
non-linear PF Lagrangian reads (for n  flat)

JIE:; / dhll' { (TTUQU = *\-—RD = *\_E'Ri)

—1m? (Righyy — 2NGNG— highss +2hg (1 — N? + ~\-ﬁcgm+\‘:’-))}

With v = (—¢%) 7" Neither N, nor N, are
VNG = b Lagrange multipliers
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An other pathology of non-linear Pauli-Fierz: at non linear
level. it propagates © instead of © degrees of freedom. the
energy of the sixth d.o.f. having no lower bound!

Using the usual ADM decomposition of the metric. the
non-linear PF Lagrangian reads (for n  flat)

JIE; / d_jt.l' {(FUQU = *\—RO — _\'E'Ri)

—m? (hizhij — 2N;N; — hizhjj + 2hi; (1 — N2 + Npg® Vi) }

With [ N = (—g%)7"/ Neither N. nor N. are
1 N = Lagrange multipliers

T

= The e.o.m. of N and N, determine those as

functions of the other variables
Boulware, Deser ‘72
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An other pathology of non-linear Pauli-Fierz: at non linear

level. it propagates © instead of © degrees of freedom. the
energy of the sixth d.o.f. having no lower bound!

Using the usual ADM decomposition of the metric. the
non-linear PF Lagrangian reads (for n  flat)

JI‘}ED / dhl.l' { (FTUQIJ == *\—RO == *\_E'Ri)

—m? (hijhij — 2N;N; — hyihjj + 2hi; (1 — N2 + Nig™' Ny)) )
With [ N = (—g%) '/ Neither V. nor N. are
1 N = b Lagrange multipliers
F
= The e.o.m. of N and N, determine those as

functions of the other variables
;j Boulware, Deser ‘72

% 6 propagating d.o.f.. corresponding to the di




Moreover, the reduced Lagrangian for
those propagating d.o.f. read

Boulware. Deser ‘72

R’ (n = hiig);,, R”

S8m?2

M3 / d*z {Iljfiz; — m” (hijhij — hiihjj;) —

1

Sm-2h;;
e S

1' R{} .}2 == QIHEhH}

—_—

— Unbounded from Below Hamiltonian
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Moreover, the reduced Lagrangian for
those propagating d.o.f. read

Boulware. Deser ‘72

s I . 5 1 .
M2 / d*r {:Ugu — m? (hijhi; — hishj;) — — R' (n — hiig),, R™

Sm=
1

Sm=h;,
S

{ RD '}2 — 2”12}?55}

—_—

= — Unbounded from Below Hamiltonian
<>  This can be related to the « strong
coupling »problem

C.D.. Rombouts 05
(See also Creminelli. Nicolis, Papucci, Trincherini ‘03)
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Moreover, the reduced Lagrangian for
those propagating d.o.f. read

Boulware. Deser ‘72

‘1‘[15 / d-’:‘l‘{ﬁug;j _nluﬂh.{_}hu _huh_j-_j) = .‘:RI{”_hif.g)fn} Rm

aIN-<

1 149 5
— (R°Y: — Om~he
Sm=h;; | r “}

—— B
————

— Unbounded from Below Hamiltonian

F
=>  This can be related to the « strong
coupling »problem

C.D.. Rombouts 05
(See also Creminelli. Nicolis, Papucci, Trincherini "03)

Indeed the action for the scalar polarization

L(Vo)? — poT + & {(V26) + .. }

ok ads to order 4 E.O.M. —. it describes two scalar

fialAde Arne RhaimAa Alb~aet ke




1.3. The DGP model (or brane-induced gravity).

Dvali, Gabadadze, Porrati § = J[{‘%} / d°r \/g (E’ B v )
0 Bl / d*r V@ﬁmatter
f - > brane
50D Minkowski bulk | 4 2 |
<O ‘l‘/ d*z\/g (Mp R+ ---)
o brane
2"
S cpé}“
« s . L .
/ — Large distance modification of gravity.
. - ot
with the crossover distance Te = 5313

(5)

—

— But the tensorial structure of the graviton propagator is
that of a massive graviton
it Leads to the van Dam-Veltman-Zakharov

Aiece~rarmtimi ity A Mink Awvsvicelrt hasrlrAarasrim Al




Solutions of DGP gravity and the vDVZ
discontinuity

* Exact cosmological solutions provide an explicit example of interpolation
between theories with different tensor structure for the graviton propagator.

C.D..Gabadadze, Dvali. Vainshtein (2002)

larger. 2
H2 — P g€l _ H? - p
3M j%, ' 36 M5,
mh small r, Witnag
Solution of 4D GR with cosmic Solution of 5D GR with a brane
fluid source

So = M3 [ d*z\/—gR Sy = ;1{(:35) [ d°z\/—gR

u Comes in support of a « Vainshtein mechanism » [non perturbative

recovery of the « massless » solutions] at work in DGP ... ... Recently an
other exact solution found by Kaloper for localized relativistic source
showing the same recovery... ..
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« Perturbative study of Schwarzschild type solutions of DGP

model: | .
Gruzinov. Paorrati. Lue. Lue & Starkman. Tanaka

Potential: 4D 4D 5D

I )

. )1f3

s v B Te 45

i
Tensor A T[.':(?"

Q Vainshtein radius for DGP model
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« Perturbative study of Schwarzschild type solutions of DGP

model: | :
Gruzinov. Porrati. Lue. Lue & Starkman. Tanaka

Potential: 4D 4D D

)

| ‘ |
Tensor 4C ry — (T‘Srs)ljs A Te

!
(|

Q Vainshtein radius for DGP model

Related to strong self interaction of the brane bending sector

C.D..Gabadadze, Dvali. Vainshtein; Arkani-Hamed. Georgi
Schwariz; Rubakov: Luty. Porrati. Rattazzi.
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* Perturbative study of Schwarzschild type solutions of DGP

model: | .
Gruzinov. Parrati. Lue. Lue & Starkman. Tanaka

Potential: 40 4D 5D

Tensor A0 ry — (TETS)IXB 50 /o 5

!
(]

Q Valnshtein radius for DGP model

Related to strong self interaction of the brane bending sector

C.D..Gabkadadze, Dvali, Vainshtein; Arkani-Hamed. Georgi
Schwariz; Rubakov: Luty. Porrati. Rattazz.

Indeed. from

3K®) /re + K Kty — Ky K® = T/ M2
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« Perturbative study of Schwarzschild type solutions of DGP

model: | ,
Gruzinov. Porrati. Lue. Lue & Starkman. Tanaka

Potential: 40 4D 5D

Tensor ArC ry — (.TST'S) H3 S0 Te S0

Q Vainshtein radius for DGP model

Related to strong self interaction of the brane bending sector
C.D..Gabadadze. Dvali. Vainshtein: Arkani-Hamed. Georgi
Schwartz; Rubakov; Luty. Porrati. Rattazz.
Indeed. from

3K®) /r. + K Kly) — Ky K® = T /M2

—~

_J

. e . Tanaka; Nicalis
Non linearities responsible for Rattazzi:Damour
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However
« Cosmological solutions play a tricky role for the vDV.Z discontinuity: No

vDVZ discontinuity on AdS (and dS) (Higuchi: Porrati: Kogan. Mouslopoulos.
Papazoglou)
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However

» Cosmological solutions play a tricky role for the vDV.Z discontinuity: No

vDVZ discontinuity on AdS (and dS) (Higuchi: Porrati: Kogan. Mouslopoulos.
Papazoglou)

+ Known solutions of bigravity theory. with « cosmological asymptaotics »
which are arbitrarily close to « massless » Schwarzschild solutions (Salam.
Strathdee 77, Isham Storey 78; Damour, Kogan, Papazoglou '03). See PART Z.
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However

« Cosmological solutions play a tricky role for the vDVZ discontinuity: No

vDVZ discontinuity on AdS (and dS) (Higuchi: Porrati: Kogan. Mouslopoulos.
Papazoglou)

« Known solutions of bigravity theory. with « cosmological asymptotics »
which are arbitrarily close to « massless » Schwarzschild solutions (Salam.
Strathdee 77; Isham Storey 78; Damour, Kogan, Papazoglou '03). See PART Z.

- As far as asymptotically flat S* are concerned. results obtained in some
approximation scheme. surprises can arise trying to find the exact
solution... similarly to what was recently studied by Damour, Kogan and
Papazoglou in massive gravity or by Gabadadze and Iglesias for DGP!
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However

« Cosmological solutions play a tricky role for the vDVZ discontinuity: No

vDVZ discontinuity on AdS (and dS) (Higuchi: Parrati: Kogan. Mouslopoulos.
Papazoglou)

« Known solutions of bigravity theory. with « cosmological asymptotics »
which are arbitrarily close to « massless » Schwarzschild solutions (Salam.
Strathdee 77; Isham Storey '78: Damour. Kogan. Papazoglou '03). See PART 2.

- As far as asymptotically flat S* are concerned. results obtained in some
approximation scheme. surprises can arise trying to find the exact
solution... similarly to what was recently studied by Damour, Kogan and
Papazoglou in massive gravity or by Gabadadze and Iglesias for DGP!

=

—_ Need for a better understanding of those issues, In particular:
v s Validity of the linear pert. theory (linearization instability ? See
Gababadze, Iglesias; C.D. ,Gabadadze, Iglesias)
» Theories where Vainshtein's mechanism does work vs those
where it does not.

ok TOVides some motivation for a better understanding of S* ..
in similar theories... e.q. bigravity




However

« Cosmological solutions play a tricky role for the vDVZ discontinuity: No

vDVZ discontinuity on AdS (and dS) (Higuchi: Porrati: Kogan. Mouslopoulos.
Papazoglou)

« Known solutions of bigravity theory. with « cosmological asymptotics »
which are arbitrarily close to « massless » Schwarzschild solutions (Salam.
Strathdee 77, Isham Storey 78; Damour, Kogan, Papazoglou '03). See PART .

- As far as asymptotically flat S* are concerned. results obtained in some
approximation scheme, surprises can arise trying to find the exact
solution... similarly to what was recently studied by Damour, Kogan and
Papazoglou in massive gravity or by Gabadadze and Iglesias for DGP!

o

~—_  Need for a better understanding of those issues, Iin particular:
¥« Validity of the linear pert. theory (linearization instability ? See
Gababadze, Iglesias; C.D. ,Gabadadze, Iglesias)
» Theories where Vainshtein's mechanism does work vs those
where it does not.

ok TOVides some motivation for a better understanding of S* ..
in similar theories... e.q. bigravity




1.4. Bigravity (f-g gravity) Salam et al. 77

Isham. Storey "78

Let the background metric of non linear PF be dynamical.
one is led to consider actions of the type

S=[dry=g (32 +L,) + [d'av=F (£ + Ls) + Sinelf. g

Where S, [f.g] Is some Interaction term for
the two metrics.
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1.4. Bigravity (f-g gravity) Salam st al. 77

Isham. Storey 78

Let the background metric of non linear PF be dynamical.
one is led to consider actions of the type

S=[d'zy=g (322 +Ly) + [ d*av/=F (3L + Ls) + Sintlf. g

g

Where S, [f.g] I1s some Interaction term for
the two metrics.

E.g.
Smt =" A fd4 g)u(—f}L‘[f#U _ .9“”)()('5_ _‘ (g,ucrg,u .g,u,ugcr'r}

and u+v =1/2
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1.4. Bigravity (f-g gravity) Salam et al. 77

Isham. Storey "78

Let the background metric of non linear PF be dynamical.
one is led to consider actions of the type

S = [d*z\/—g (__2:? ) i dJ‘r\/i( ‘mf + Lf) Sint! [, g]

Where S, [f.g] I1s some Interaction term for
the two metrics.

E.g
Smt = fdhk 9]“’ f (f,uu — Q’W] fg_ - (.g,ucrgg g,u.ugo“r]
and u+v =1/2
i
This eqsgres t_hat the G — 0,279,270,
theory Is invariant under I
Pirsa: 07090027 2 ’ fpy — a# K2 au Ip f_.OO' Page 52/116

common diffeomorphisms




R

2

f—.LLf)

= /d{r\Fg (gfg+Lg)+/d4x\ﬁf( f

—2(=g)*(=F)T7*(f* = ¢*)(F77 = 9°)(GuoGur — GuvGor)
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2K

= /d“rﬂ (%TLQ) —{—/d']‘r\/jf(

(_g)u(_f)%—u(fuy = g'uu)(fm- = ggr)(g,ucrg,u?‘ _g,uugcr'rj*

e +Lf)
 f

f fnon dynamical (a; — x ), this reduces to non
linear PF theory ... with the correct mass term.
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S = /d"‘r\/—g (% L) fdﬁrf( )

(_g)u(_f)%—u(fpu fGT gpc:rg,u'r Juvdor )

f fnon dynamical (a; — x ), this reduces to non
linear PF theory ... with the correct mass term.

Letting f dynamical (&;finite), and looking at
quadratic action for perturbations around
Minkowski space-times, ones finds a
massless and a massive graviton (95+2 d.o.f)
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R; +Lf)
v f

2K

§ = /d{r\ﬁg (Q—I?E*Lg)+/d4x\/7(

<hg

_i(_g)u(_f)%“u(fﬂv — gﬁiu)(fcr?' L go'r)[gﬂggﬁT o gpuggj_)

If fnon dynamical (s; — x ), this reduces to non
linear PF theory ... with the correct mass term.

Letting f dynamical (&;finite). and looking at
quadratic action for perturbations around
Minkowski space-times, ones finds a
massless and a massive graviton (5+2 d.o.f)

—' A way to investigate various properties of
massive gravity
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Other motivations
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Other motivations

Equations of motions read
{ G4, =13 g, f] + T3, [matter]
Giv = TJ lg, f| + TJL, ‘matter|

r

&

—__ Comes from the interaction
between the two metrics
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Other motivations

Equations of motions read
{ GS, =13 g, f] + T3 [matter]
G’ﬁu = Tgy g, f| + Tiu ‘matter|

&

—__ Comes from the interaction
between the two metrics

—N - 0. Damour, Kogan,
— A new type of quintessence ol i
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Other motivations

Equations of motions read
{ G9, =T94,lg, f] + T3, [matter]
Gl = va g. f1 + T, [matter]

—_ Comes from the interaction
between the two metrics

, 1 2 Damour, Kogan,
A new type of quintessence * S

Some S* solutions breaks spontaneously
Lorentz-invariance and give a Lorentz-
violating mass term to the graviton...(similar
to ghost condensate and Co. )

Blas. C.D., Garriga 07.
Berezihani, Comelli, Nestl, Pilo ‘07
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Is it really a realistic theory?
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Is it really a realistic theory?

Various reasons to worry...
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Is it really a realistic theory?

Various reasons to worry...

Among which the vDVZ discontinuity
and the Boulware Deser type of
instabllity...
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Is it really a realistic theory?

Various reasons to worry...

Among which the vDVZ discontinuity
and the Boulware Deser type of
instability...

... and others to be discussed thereafter
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2. Some aspects of Static Spherically
Symmetric Solutions of bigravity

D. Blas, C.D., J.Garriga CQG 2006
D. Blas, C.D., J.Garriga, arXiv:0705.1982

Consider a bigravity theory

S=[d'oy=g (222 +Ly) + [ d*ay=F (32 + Ls) + Sinelf. g
E.g. in the PF « universality class »
Sint = _‘1 dhl ( .g ( f) (f,uu — .fg— (.g,ucrg,u g,uugcr'r}

and u+v =1/2

Then look at S* for the system (f.g)
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Those solutions are of the form:

guvdztdz” = Jdt? — Kdr® — r? (d6? + sin® §do?)
fuvdrtdz® = Cdt? — 2Ddtdr — Adr® — B (dffa'2 + sin” Hdéz)

With J. K. C. D. A. B function of r

Salam. Strathdee 77
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Those solutions are of the form:

guodrtdr’ = Jdt® — Kdr® = r* (dﬁz 4+ sin? Hdog)
fuvdatdz? = Cdt* — 2Ddtdr — Adr® — B (d6? + sin? 0do?)

With J. K. C. D. A. B function of r

1
o S L

Then one has either

B
or 4

Pirsa: 07090027

Salam. Strathdee 77

Type | solutions

r2 /
\ Type |l solutions
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2.1.Type |l solutions (D = 0)
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2.1.Type |l solutions (D = 0)

» The general solution is not known analytically!
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2.1.Type |l solutions (D =0)

» The general solution is not known analytically!

» Asymptotic form of the f metric. when one assumes that

9. My (and is non dynamical) has been found to be of
Yukawa type Aragone. Chela-Flores 72
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Those solutions are of the form:

guvdrtdr’ = Jdt® — Kdr® = r* (dﬁz 4 sin? HdOE)
fuydrtdz” = Cdt? — 2Ddtdr — Adr® — B (d(?? + sin® Ado?)

With J. K. C. D. A. B function of r

Salam. Strathdee 77

Type | solutions
Then one has either

1
s SRR LT %

B
or D

r2 /
\ Type |l solutions
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2.1.Type |l solutions (D = 0)

» The general solution i1s not known analytically!

» Asymptotic form of the f metric. when one assumes that

o s I (and i1s non dynamical) has been found to be of
Yukawa type Aragone. Chela-Flores 72
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2.1.Type |l solutions (D = 0)

» The general solution is not known analytically!

» Asymptotic form of the f metric. when one assumes that

J. =My (and i1s non dynamical) has been found to be of
Yukawa type Aragone. Chela-Flores ‘72

» With the same assumptions. numerical integration of
the E.o.m show that the asymptotically flat solutions

develop singularities at finite radius Damour, Kogan
Papazoglou, ‘03
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2.1.Type |l solutions (D =0)

» The general solution is not known analytically!

» Asymptotic form of the f metric. when one assumes that

9. M. (and i1s non dynamical) has been found to be of
Yukawa type Aragone. Chela-Flores ‘72

« With the same assumptions. numerical integration of
the E.o.m show that the asymptotically flat solutions

develop singularities at finite radius Damour, Kogan
Papazoglou, ‘03

o=

~, S0 Vainshtein mechanism seems not to
work for non linear PF!
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2.1.Type |l solutions (D = 0)

» The general solution i1s not known analytically!

» Asymptotic form of the f metric. when one assumes that

9. My (and 1s non dynamical) has been found to be of
Yukawa type Aragone. Chela-Flores 72

« With the same assumptions. numerical integration of
the E.o.m show that the asymptotically flat solutions

develop singularities at finite radius Damour, Kogan
Papazoglou, ‘03
=, S0 Vainshtein mechanism seems not to
work for non linear PF!

+ Letting g be dynamical, exact (and boring) solutions can
be found (both metric are proportional) and again no
~epeawa asymptotics, Blas, C.D.. Garriga




Salam, Strathdee 77
Isham, Storey, 78

2.2. Type | solutions
Type | solutions are known analytically L
GiupdePdes” =11 = g)dt? — (1 — q) ldr? — 2 ( sinzf?doj]
fuvdz#dr? = 2 (1 — p)dt? — 2Ddtdr — Adr® — 2/3r? (d6? + sin*6do?)
With [ A=3501-9)*(+3-q-5q)
| b= (5% ) (1—-—q)2%(p—q)(p+8—1-3q)
2M 2A; o
and | p= — L7

2M, , Ay 2

- 3

Page 76/116
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Salam, Strathdee 77

2.2. Type | solutions Ef
Isham, Storey, 78
Blas, C.D., Garriga

Type | solutions are known analytically
= (1 —q)dt2 —(1 — q) Ldr® —v* (dﬁz + sin*6do”)

GurdePde” =
fupdztdz” = 2(1 — p)dt? — 2Ddtdr — Adr? — 2/3r? (d6? + sin*0do?)
With (A=FH01-9)(+58-q—5g
D? = (% ) (1—q)3(p—q)(p+8—1-3q)
Both metric are of
and [ p= 2" 4 E-E‘;f 2 Schwarzschild-(A)dS form
_2M, |, Ay 2 (no sign of vDVZ or
-3 massive gravity!)

Page 77/116
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2.2. Type | solutions

Type | solutions are known analytically
= (1 —gq)dt®> — (1 — q) tdr?* — 2 (dﬂ- + sin” QdO‘]

g dztdz’ =
fiadxtdx” = %( — p)dt? — 2Ddtdr — Adr? — 2
With [ A=351-9)(p+5-q—5q)
D*=(3) 1-9*(p-gp+3-1-30

Both metric are of

and [ p=2"r 4 E-E‘;f o Schwarzschild-(A)dS form
| oM, | Ay 2 (no sign of vDVZ or
1= 737 massive gravity!)

Namely. the change of variable dt = 7
In the usual static form of S(A)dS:

Put the metric 7,

= {(1 —p)dt* —

Salam., Strathdee 77

Isham, Storey, 78
Blas, C.D., Garriga

2/3r2 (6% + sin?0do?)

At — \/{p—q}ljp——j—l—.j?q'ld
Ll (1—g)(1—p)

]

(1 —p)~tdr? — r? (d6? + sin® HdS*J}



The (A)dS curvature radii of the solutions are
determined by an integration constant g (and
constrained if p; and p, both vanish)

i,.—
oty
|

£ )m B* {3v+96(1 —v)}
(2)* B=v {3u — 98(1 + u)}

b |

b

't._h
W= s oy
OIS

Vacuum energy density
entering into the action

= Similar to unimodular gravity

g
Page 79/116
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Some pathologies of those solutions:
» Causal structure

» Extension and global hyperbolicity ?

One virtue, and one interesting property:

» Spontaneous breaking of Lorentz
invariance (and no vDVZ discontinuity),
linearization instability 7

Pirsa: 07090027  Page 80/116




_.\fr‘})

E.g. De Sitter with Minkowski (with 3 =1, p=

[ 'l L]

— dr? — r2dQ:

Quptdede™ =
p)dt* — —p dtdr — (1 + p)dr? — %r 0

JupdxHda® =

N :1.,

-

The metric is not singular at p=1

Minkowski coordinates are Eddington-Finkelstein type
of coordinates for the dS metric...

Page 81/116
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Carter-Penrose diagrams of both metrics

¢

-
-

(

Obviously the two metrics do no share the same light cone !

Pirsa: 07090027
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The past timelike infinity of Minkowski is mapped into part
of the de Sitter horizon

: L
Il T f
& H -
(W
= R e
—— i :H =
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lore fun: de Sitter with Schwarzschild

(1 —gq)dt®— (1 — g) dre—»" (_df?z + sm‘zedoﬂj
T apdxtda® = %(l — p)dt? — 2Ddtdr — Adr® — 2/3r? (d6‘2 - sz'n.zﬁdogj

With

g, dztdz”

irsa: 07090027
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This part of the dS horizon
IS mapped into the past
timelike infinity of r=r
2-sphere of Schwarzschild

Pirsa: 07090027

This part of the
Schwarzshild horizon is

mapped into the future
timelike infinity of r=r,
2-sphere of de Sitter
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Pirsa: 07090027

-
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Can one cross the horizon ?

Can one cross the horizon ?
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A geometric extension is possible

The Two Minkowski metrics are glued together along the

time like infinities of r=r, spheres

Pirsa: 07090027
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A geometric extension is possible

The Two Minkowski metrics are glued together along the
time like infinities of r=r spheres

Bt ;.. * Not unique
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A geometric extension is possible

] * 1\* -
e 1] T pEX !
~ S
F |

The Two Minkowski metrics are glued together along the
time like infinities of r=r, spheres

. bUt ... * Not unique
* Not globally hyperbolic
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A geometric extension is possible

.
[I N
& : 1‘\-* ™ =
s P o S N
’ [ N \
,'!j’ I T~ N [
| 7 B & " N ' N
2 % o % - —
\ - - "r‘ ’ff
: ) Ll P
Y -
4 b i
. - ™ 4
L \
: b )
i ‘lrl H \ |
e R

The Two Minkowski metrics are glued together along the
time like infinities of r=r, spheres

. bt ... * Not unique
* Not globally hyperbolic

* Not in an obvious way a solution
Afthaa a m




A possible solution to this extension puzzle

N , - Y
o [T S
a A
s " N
7’ N
F[J-’ P e I N
[\ ’ i : \
& ¢ ~ N
A u ~
- ! -
s‘\ \ X
p ¥ N :
\.‘ '\‘
“ - k 3
; S 1) S
Fi "'_‘ \ %
\“ \ 4

A Cauchy Horizon type of instability on the dS horizon?

irsa: 07090027
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One possible interest of this weird causal structure ...

==
= - |
o . e~
Past directed NNy, W A
] n ] ‘.‘\ F i \ .
in Minkowski. N T N
, . * N\ %
is no longer in g Al SR Y
de Sitter ~—__ S W L™ | 2|
hhh“*x_,____h_____ﬂ_ﬁ__,x”ﬁ 2 ‘,1 “

An r=0 observer can see the blue area below thanks to
signals transmitted in the Minkowski metric

NB: Similar situations have recently been discussed for BH and

srsacomoeozz LNIEIT NAIS  (Babichev. Mukhanov and Vikman: Dubovsky. Sibiryakov: Ellifg s
Faoster. Jacobson, Wall; Dubosvky, Tinyakav, Zaldarriaga)




An other pathology if p =17

gwd;r“dr” (1 — q)df‘

Frpdatda”

Pirsa: 07090027

(1—gq) tdr?® —r? (d@‘ + sin*fdo”)
p)dt?* — 2Ddtdr — Adr? — 2r? (d6* + sin*0d¢?)

=g p+P— 1—0q)
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An other pathology if p =17
gudrtdr = (1 — q)dt* — (1 —q) " Hdr® —r? (dﬁ'2 + sin*fdo”)
— %rz (dA* + sin*0dp*)

fpudrpdrv — 5;_;(]_ = p)ﬂltz - 2Ddfd}"‘ B A_ldrz

2

With D*= (&) (1-9)2(p—a)(p+3—-1-5g

For generic 3. D can become complex at some radiusr....

t g
‘\H\‘\
>
i
b ST
e T
How to extend the N 2

{;\“ p. A 3
'\.‘il-J - ™ 5
v 2 p.
_'_.r“ bt -_E_

1)

solution beyond ?

|
Page 94/116 |
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An interesting type | solution (and generic 3):
Gupdrtdr’ = (1 — q)dt? — (1 — q)~tdr? — r? (d6? + sin20d¢?)
TanBd dE” = %(l — p)dt? — 2Ddtdr — Adr® — 2/3r? (dﬁz + sinzﬁdez)

With [A=3(1-¢) 2 (p+38—q—3q)

D= =33
. p=0and g=1
g drtdr? =|dt* — dr® —r? (dé‘— + sin“fBdo” ]
m—>
fupdztdz” = %dfz d"' - ‘f" > (dB* + sin*Ado?)

=
Both metrics are flat, but this generates a
Lorentz violating mass term for one graviton

Spontaneous breaking of Lorentz symmetry

Pirsa: 07090027




’erturbations around this solution 3. Perturbations

\e obtain the mass term for
he « gravitons » 2/ and A%
M4

W R B+ h ) - mo(hog + 87 ) (R + 57 )

-2n4(h%50 — eg_lhfoﬂ)(hgﬁ T hfﬂ) +na(h?,; + h‘fﬂ)z}

n;, are potential
dependent coefficients
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Yerturbations around this solution 3. Perturbations

Ne obtain the mass term for
he « gravitons » A/ and A%

M- i iy e B
) {nz(h"gij —h 7Y k) no(h¥y + 8 Ihfm)(hgcm Y 1hf03)
-2n4(h%g0 ﬁ_lhfoa)(hgie L3 hfﬁ) +n3(h?; + hfﬁ)z} A

n; are potential '¥

dependent coefficients Case similar with a single

graviton were studied
(Rubakov ‘04, Dubovsky '04)
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Yerturbations around this solution 3. Perturbations

\/e obtain the mass term for
he « gravitons » A/ and A% ,
MLL

S {na(B + B Y+ B+ mo(B0 + B RO (g + 5 )

~2n4(h%50 + .ng_lhfﬁﬂ)(hgﬁ L3 hfﬂ) +n3(h?; + h‘fﬁ)z} A

n; are potential =
dependent coefficients Peculiarity of this mass term:
components &, and k%,

are absent
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Yerturbations around this solution 3. Perturbations

\e obtain the mass term for
he « gravitons » A/ and A%

M4 i s ij g —1; 00 ~1; 00
—{na(h®y; ~h 7Y, h7) +no(h%e B h, ) (Ao — 8 )
-2n4(h% 0 + ﬁ_lhfﬁﬁ)(hgz‘z‘ L hf“) +n3(h%; + h‘fﬂ)z} NN
n; are potential <
dependent coefficients Case similar with a single

graviton were studied
(Rubakov ‘04, Dubovsky '04)
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Yerturbations around this solution 3. Perturbations

\/e obtain the mass term for
he « gravitons » A/ and A%

M4
‘%{nvihg R #)h%, — h ) (kO — 5 1h ) (Ao 8 h,%0)
-2n4(h%y +~ 8 thy  )(h; — k) +na(hY —h;‘)z} /,x

n;, are potential =

dependent coefficients Peculiarity of this mass term:

components &, and k%,
are absent
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Yerturbations around this solution 3. Perturbations

\/e obtain the mass term for
he « gravitons » 2/ and A%

M4
8

oW by Y, — b ) < no(hq ~ O (g — 5 h )

Ina(ho, 8 h ) (B0, — ")~ ng(h%, — b)) =

n; are potential
dependent coefficients

No propagating
scalars and vectors,
only tensors are
propagating but stable
perturbations

8

Pirsa: 07090027

"“-u:n.

Peculiarity of this mass term:
components &, and k%,
are absent

( (3+1 split of the metric)

"
D X X
.< h Di — B!i e E,;‘ Page 101/116
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Coupling to matter and the vDVZ discontinuity

B

'5.‘?1.—_1*-_"? = _1 ‘:i‘—L__?_._ { ;\9/2 BL” TjL ' ,\ Hh 4 i TI_LL )

X

We obtain e.g. for the gauge invariant scalar potentials

£

{fﬁﬂ — 19 _PBY9 _ L9
df = 4AFf _ 3BF — 3ES

AP = — HHAH [Iﬂﬂ4_1ﬁé__iifﬂﬂa
4 g9 g A9y

g - —1: i - b = §

[ KgM™na\ no+3n3 —3ng - "
=i P} — : d (R hg TV 1A 2 9T9)

4N /) nao+n3—ng 7 g JoRFL |

-’ H;A;j ;1 0 s 3 Tﬂnm‘
APf = - (TR +TE - T

[ k3D N> ) n- + 3n3 — 3ng

[-.. A\ / no> 4+ ns—ng

(KT + K (A s 3T
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Pirsa: 07090027

e L _Tu} \

no -+ 3ns3 — 3ng

n-> 4+ n3 — ng

= 5 30 s =
(KgAgly +hHgAps

00
s |
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» Massless result: no vDVZ discontinuity

Pirsa: 07090027
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» Massless result: no vDVZ discontinuity

9--.q J

» This interaction leads
to correction to

the « massless »
metric proportional the
(squared) graviton

Mass (analogous to « half
massive gravity » of
Gabadadze Grisa)
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* Massless result: no vDVZ discontinuity

A(I)H — 23 HQAE'; { I"{_:"{:' iy 1"22 o ;Z—'ﬁ!] )
L 5= 5 A9
[ K Ao\ na 4+ 3ns — 3ng | ” s

» This Interaction leads

to correction to

the « massless »

metric proportional the

(squared) graviton , s

MAass (analogous to « half | _ - : .
massive gravity » of
Gabadadze Grisa)
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» Massless result: no vDVZ discontinuity

ABI — A g/\ g [

1 L 9 g

00 ii 5 30
79 e 700 )
g G \ g

|
¥
§

\" 1)

» This interaction leads
to correction to

the « massless »
metric proportional the
(squared) graviton

MAass (analogous to « half

massive gravity » of
Gabadadze Grisa)

Pirsa: 07090027

(.. \ 700 .\ . 27700
'-"“-1-;”\5;'2:_; TR JT_—‘ /

2> == Flg — 1

Question: these corrections are not
seen In the known exact

solutions.... Linearization instability 7
(see e.gq. C.D. Gababdaze. Iglesias in the case of
DGP gravity )
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Conclusions (of Part ll)

- Exact. known S* of bigravity have weird causal
structure. and are geodesically incomplete...

— some new pathologies of these solutions
(theories?)

* |s there an exact, non singular solution which shows
the Vainsthein recovery of the vDVZ discontinuity ?

* Interesting solution with spontaneous breaking
of Lorentz sym.

- Linearization instability (is it true and generic) ?
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An interesting type | solution (and generic [3):
— (1 —gq) tdr® — r* (d6* + sin*6do~)
— p)dt* — 2Ddtdr — Adr* — 2/3r> (d6* + s-z'n.zﬂdozj

With [A=2(1-¢)2(p+83—q— 3¢

33
D=42(1—g) " v/(p—q)p+B—18q)
. Pp=0and g=0

Both metrics are flat, but this generates a
Lorentz violating mass term for one graviton

Spontaneous breaking of Lorentz symmetry
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A possible solution to this extension puzzle

\.\“ \-
I \
‘\ i ! \
- ~
s ™ \ N
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’ ~ - T ~ I b
j [ ’ ~ S % \ [ \
‘ A ~ N Y
i “ ~ i -
o \ =
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s N
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; O i G
i 'i\\ \ LY
1.\ '\ N

A Cauchy Horizon type of instability on the dS horizon?
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A geometric extension is possible

Y
[1 N
' ? 1'\* b i
& [ & SV %
| i d b | "
Fd T Ty Ta b F
A'IJ /' ,-"" : ..,,_‘. . ' & [
f‘- { \ -“-‘ ; .—’N o R I #
~ = | i
% . N "Ir__ e g |
. "
i . e
._ \ ;_.r
L \
: L 3
i ‘Ifi \‘ 4
b, T
\ | /

The Two Minkowski metrics are glued together along the

time like infinities of r=r, spheres

. Bt ... * Not unique
* Not globally hyperbolic

* Not in an obvious way a solution
Afthaa an m
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2.1.Type |l solutions (D = 0)

» The general solution is not known analytically!

» Asymptotic form of the f metric. when one assumes that

J. M. (and i1s non dynamical) has been found to be of
Yukawa type Aragone. Chela-Flores ‘72

« With the same assumptions. numerical integration of
the E.o.m show that the asymptotically flat solutions

develop singularities at finite radius Damour, Kogan
Papazoglou, ‘03

o=

~, S0 Vainshtein mechanism seems not to
work for non linear PF!
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2k

— /d%\ﬁg (Qfg +Lg) +/d4x\ﬁf(

(_g)u(_f)%—u(fuy = g”u)(ng = ggr)(g,ucrg;n — 9uvGor)

- —.LLf)
f

s |
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However

« Cosmological solutions play a tricky role for the vDV.Z discontinuity: No

vDVZ discontinuity on AdS (and dS) (Higuchi: Porrati: Kogan. Mouslopoulos.
Papazoglou)

« Known solutions of bigravity theory. with « cosmological asymptotics »
which are arbitrarily close to « massless » Schwarzschild solutions (Salam.
Strathdee '77; Isham Storey 78; Damour. Kogan, Papazoglou '03). See PART Z.
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An other pathology of non-linear Pauli-Fierz: at non linear
level. it propagates © instead of © degrees of freedom. the
energy of the sixth d.o.f. having no lower bound!

Using the usual ADM decomposition of the metric. the
non-linear PF Lagrangian reads (for n  flat)

.l[l-; / dhjc.l' { (TTIJgEJ —= *\—RO = :\}Ri)

—m? (h;jhij — 2N;N; — hijhjj + 2hi; (1 — N7 + *\lg""f*\}))}

With [ N = (—g%)"? Neither V. nor N. are
1 = Lagrange multipliers

< The e.o.m. of N and N, determine those as

functions of the other variables
Boulware, Deser 72
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The vDVZ discontinuity is due to the scalar polarization of
the graviton being coupled to the trace of the source energy
momentum tensor...

VWhile the Vainshtein mecanism Is due to this

polarization having strong self interaction
C.D..Gabadadze, Dvali, Vainshtein

This polarization can be described by the following action:
Arkani-Hamed. Georgl, and Schwartz
1 A2 I . 1 2 1\3
5(Vo)? — gpoT + 1 {(V20)P + ... }
: 4 1/5
With .\ = (m* Mp)*'* Other cubic terms omitted
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