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Abstract: The entanglement entropy between quantum fields inside and outside a black hole horizon is a promising candidate for the microscopic
origin of black hole entropy. | will explain the motivation behind this interpretation of black hole entropy, and why it requires quantum gravity. |
will then apply these ideas to loop quantum gravity and show how to compute the entanglement entropy of spin network states. The result of this
calculation agrees asymptotically with results from the isolated horizon framework, and | will give the reason for this agreement. Finally, | will
show that the entanglement entropy gives extensive corrections to the area law, suggesting corrections to the gravitational action.
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d Entanglement

Black Hole Entropy

Observers outside a black hole horizon see thermal Hawking radiation.

A black hole of horizon area A has an entropy of

A3
S e
Y -

Entropy occurs for cosmological horizons and acceleration horizons.
This suggests that entropy is universal for all causal horizons. !

What is the statistical origin of this entropy?

1Ted Jacobson, Renaud Parentani. Horizon Entropy. gr-qc/0302099.
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d Entanglement

ntanglement

Let |¢/) € Ha @ HB.

If |¢’) cannot be written as ‘r; e 2 ‘s:-B} then |«) is entangled.

When ignoring system B, we get a mixed state of system A

pa = Trz [UXY
The entanglement entropy of system A is the von Neumann entropy of ps |

Se = S(pa) = —Trpalog pa

System AB has zero entropy. System A has positive entropy.
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: Hole Entropy and Entanglement
ol 1o

The Schmidt Decomposition

V) € Hay @ Hg has a Schmidt decomposition:

5 = 3 VE ) @ o)

Every state

Where
° {’;:-A‘x} is an orthonormal set in H
¥5 i A-
o {|¢F)} is an orthonormal set in Hp.
* ] ;\f :-3" 0 Ell"ld ZFIE_I {'\‘; — 1.

The numbers {\\_;} are called the Schmidt coefficients.
The number of elements in Z is the Schmidt rank.
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ntanglement

Let |¥) € Ha @ HB.
If |47) cannot be written as ‘r._-’q} lf;"B} then |« is entangled.
When ignoring system B, we get a mixed state of system A
pa = Trae, |UXY|
The entanglement entropy of system A is the von Neumann entropy of pa |

Se = S(pa) = —Trpalog pa

System AEB has zero entropy. System A has positive entropy.
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g d Entanglement
ol 1s

The Schmidt Decomposition

Every state |i)) € Hy @ Hpg has a Schmidt decomposition:
W — Z \//\; \E'f' ) & ‘I_‘f- /
T
Where

o {|v#)} is an orthonormal set in Ha4.
o {|£F)} is an orthonormal set in Hp.
) ;\f ::" 0 Ell"ld ZF:I {'\‘; = 1.

The numbers {\/A;} are called the Schmidt coefficients.
The number of elements in Z is the Schmidt rank.
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d Entanglement

The Schmidt Decomposition

Suppose we know the Schmidt decomposition

el

Then we can compute the reduced density matrices in diagonal form
f}ﬂ_z\‘:fk') I)B_Z\}-;J; ‘

Note: both reduced density matrices have the same nonzero spectrum.

The entanglement entropy is symmetric:

S([JA) — SE(P'B) — — Z x\; IDg z\,

Pirsa: 07090012 Page 8/60




d Entanglement

ntanglement Entropy in Quantum Field Theory

In Quantum Field Theory, states are functionals:
i - {Field configurationson ¥} — C
Each region of space {2 X is a subsystem

Hy —Ho & 'Hﬁ

An observer with a horizon only has access to Hq, and sees the mixed
state pq.

Proposal: Black hole entropy is entanglement entropy 2

SeH = SE

2L uca Bombelli, Rabinder K. Koul, Joochan Lee, and Rafael D. Sorkin.

oo Cphi@Ntum source of entropy for black holes. oy o
Phys. Rev. D 34, 373 - 383 (1986).




e Entropy and Entanglement
ol

ntanglement Entropy in Quantum Field Theory

Why entanglement entropy?

@ It satisfies the Generalized Second Law:

Se increases if the exterior evolves independently of the interior.>

@ |t scales like the horizon area:
For a scalar field in the vacuum state on a flat background

S x A/u?

Where u is the minimal length.*
But,
@ |t is infinite:
S —>xasu—0

Quantum gravity could provide the required UV cutoff at u = (p.

3Rafael D. Sorkin. Toward a Proof of Entropy Increase in the Presence of
oo SQuantum Black Holes. Phys. Rev. Lett. 56, 1885 - 1888 (1986)
“*Mark Srednicki. Entropy and Area. hep-th/9303048.
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oop Quantum Gravity
L

oop Quantum Gravity

Geometry of space is described by Spin Network States:
@ Labelled by embedded Spin Networks.

@ Show discrete structure at short distances.

@ Have a well-defined area operator

A(0Q) =877 Y \/iplip + 1)

pEP

Plan: Compute Sg for spin network states, using the Schmidt
decomposition.
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Wuantum Grawiy

Ink states

In Loop Quantum Gravity, states are functionals:
> - {su(2) connectionson L} — C
The Hilbert space is spanned by /ink states |~.j.a. b) defined by

(Aly.j.a.b) = RI(U(A.7));
Where

U(A.~) =Pexp /A

-~
¥

RI(-)2 = the (a.b) matrix element

in the spin j representation

Link states are orthogonal and normalized.
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Wuantum Grawity

oop Quantum Gravity

Geometry of space is described by Spin Network States:
@ Labelled by embedded Spin Networks.

@ Show discrete structure at short distances.

@ Have a well-defined area operator
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Ink states

In Loop Quantum Gravity, states are functionals:
> - {su(2) connectionson L} — C
The Hilbert space is spanned by /ink states |~.j.a. b) defined by
(Alv.j.a. by = RI(U(A,7))2
Where
U(A,~) =Pexp /A

RI(-)? = the (a.b) matrix element

in the spin j representation

Link states are orthogonal and normalized.
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ink states

We can easily compute the Schmidt decomposition of a link state.

Let 2 C X} such that ~ intersects 9€2 once.

Split v = 1 © 42, so that
§7

U(A.~) = U(A.v1) > U(A, %)

[
[

By expanding the matrix multiplication:

2i+1
1
i, &by —— V1,4, 3 €) @ |y, i, c, b)
1Y+J ‘____..-21+1;|.1J 2. s €. B

This is a Schmidt decomposition of |7. J, a, b)
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Ink states

In Loop Quantum Gravity, states are functionals:
> - {su(2) connectionson L} — C
The Hilbert space is spanned by /ink states |~.j.a. b) defined by
(Al7.j, 2, b) = RI(U(A, 7))z
Where
U(A,~) :’Pexp/,«i\

RI(-)? = the (a.b) matrix element

in the spin j representation

Link states are orthogonal and normalized.
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ink states

We can easily compute the Schmidt decomposition of a link state.

Let Q C ¥ such that ~ intersects 92 once. Q)

Split v = 41 © 42, so that i
S Y

U(A.~) = U(A. 1) = U(A, %)

By expanding the matrix multiplication:

¥, j. ¢, b)

; 2j+1
Iy, j.a By = —— Yo, .2 €) &
|7, — ; 1.4

This is a Schmidt decomposition of |v. J, a, b)
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Wuantum Grawity
®CC

Wilson loops

Link states are not gauge invariant.

U(A.7) — g(+(1)) o U(A.~) o g(+(0))~*

Need gauge-invariant linear combinations of link states.

Wilson loop states:

)

2/ +1
. = >3
Where ~ is a closed curve. V2 +1 ; |
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oop Wuantum Gravity
o)

ink states

We can easily compute the Schmidt decomposition of a link state.

Let Q C ¥ such that ~ intersects 92 once. ' Q)
Split v = 71 © 72, so that i
S 1
U(A.~v) = U(A. 1) 2 U(A, v2)

By expanding the matrix multiplication:

2j+1

1

1Y, d,a, b)) = — Z In.i.2c)® ., € b
\V 2_,." +1 =

This is a Schmidt decomposition of |4. /. a. b)
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Wuantum Grawity
L _lale

Wilson loops

Link states are not gauge invariant.

U(A.v) — g(7(1)) e U(A.v) o g(+(0))™

Need gauge-invariant linear combinations of link states.

Wilson loop states:

Y
2j+1
v.J) Y, |, 3, 3)
= x2j—12| o L
iy Z A
: ~— P11 -
Where ~ is a closed curve. v2i+1 —
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oop Quantum Gravily
ol 8

Wilson loops

Let |v.j) be a Wilson loop state and suppose ~
intersects d€2 in two points.

Apply the Schmidt decomposition of the link
state twice

1 2j+1
e i — vi.f. 3. b} R . j. b, a)
¥, 24’-—'_1521“‘-11 .J__‘.LJ )

This is the Schmidt decomposition of |~v. /)

SE(Q) = 2log(2j + 1)

Pirsa: 07090012
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== Z V1,4, 31, 32) @ -~ - @ |Vnydi» 3ns 31)

b, S—

R (lr2,4>32,33) ® -

\.\'—'{

The Schmidt rank is (2j + 1)".
Se(Q2) = nlog(2j + 1)

Entropy counts intersections of + with 9}

Pirsa: 07090012
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. 1 . |
e Y1.f, 31,32} &
| /], 2‘; T ln Z | 1./ 41

{

-+~ @ |Ynyjs 3ny31)

1

12,4, 32,33) D -

"
kS

V Y yoany =0
— Y (
— 71-/-491, 32
V2] + ]'” = 3_,1L e
—_h—ﬂ

The Schmidt rank is (2j + 1)".

Se(€2) = nlog(2j + 1)

Entropy counts intersections of ~ with 9Q)
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Wuantum Gravity
CTale

Spin Networks

Wilson loops are not the only gauge-invariant states.

Can have multiple edges meet at a node n

Need a group-invariant map, an intertwiner

ity @l

m

This leads to the Spin Network states

1$) = Qin | = | Q) i a1 bn)
[

n
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Wilson loops

Suppose ~ intersects d€2 at n points

. 1 . -
Y.J) = : Yi.}, 31,2} X -
| ) y 2‘; I 1n Z | 1.J-41

ﬂl.,,,.ﬂ_n

1 : 3 :
— A Z (I71.4; 31, 32) @ --- ) @ (|72, 4, 32, 33 )
aE R > _ ~ ’
I 71 _:Hﬂ ':_HE
Q)
The Schmidt rank is (2j + 1)". .
Se(€2) = nlog(2j + 1) : L
Entropy counts intersections of + with 9} 74
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oop Quantum Gravity
al e

Wilson loops

Let |v./) be a Wilson loop state and suppose ~
intersects d€2 in two points.

Apply the Schmidt decomposition of the link
state twice

1 2j+1
§ — & a.b 8% b a
7. 2;'+1Zi14’,, "Ljv 5
a.b=—1 cHq E'Hﬁ

This is the Schmidt decomposition of |7, )

SE(Q) = 2log(2j + 1)
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oop Quantum Gravity
L _lale

Wilson loops

Link states are not gauge invariant.

U(A.~) — g(7(1)) o U(A.7) o g(+(0))~*

Need gauge-invariant linear combinations of link states.

Wilson loop states:

v
2j+1
Y. J) a.a)
= E2J—IZ| . o
Where ~ is a closed curve. v2j +1 az::l
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Guantum Grawity

ink states

We can easily compute the Schmidt decomposition of a link state.

Let 2 C > such that v intersects 9€2 once.

Split v+ = 41 o ¥, so that
5

U(A.~) = U(A.v1) > U(A, %)

(PN
'

By expanding the matrix multiplication:

2j+1
Ikaby——— Z .4, a €) ® |y, i, c, b)
Vv 2‘1( +1 c=1

This is a Schmidt decomposition of |v.J. a. b)
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ink states

In Loop Quantum Gravity, states are functionals:
- {su(2) connectionson L} — C
The Hilbert space is spanned by /ink states |~.j.a. b) defined by
(Alv.j,a. b) = R(U(A, 7))
Where
U(A,~) =Pexp /A

RI(-)2 = the (a.b) matrix element

in the spin j representation

Link states are orthogonal and normalized.
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Ink states

We can easily compute the Schmidt decomposition of a link state.

Let Q C ¥ such that + intersects 92 once. Q)

Split v = 41 © ¥, so that i
af Y

U(A.~7) = U(A. 1) o U(A. )

By expanding the matrix multiplication:

2j+1

1 |

Fy.i. &8 ——— Z In.iaxc}® e, | c. B
V 2_;‘ +1 =

This is a Schmidt decomposition of |7. J, a, b)
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Wilson loops

Link states are not gauge invariant.

U(A.7) — g(7(1)) o U(A.7) o g(+(0))~*

Need gauge-invariant linear combinations of link states.

Wilson loop states: s

2j+1
~. |) a.a)
- = sz_lz| J 2j+1

Where ~ is a closed curve. v21+1 —
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oop Wuantum Gravity
al e

Wilson loops

Let |v.Jj) be a Wilson loop state and suppose 4
intersects d€2 in two points.

Apply the Schmidt decomposition of the link
state twice

1 2j+1
v = ¥1.J.a.b) ® |vo. . b, 3)
‘.J’ 2j-_|_1bzll.1j .J_\.LJ‘ /
2.0—

This is the Schmidt decomposition of |7.J)

Se(Q) = 2log(2) + 1)
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oop Quantum Gravity
alel |

Wilson loops

Suppose ~ intersects d€2 at n points

bl = — E Y1:J>31,32) @ - - @ |Yn,J> 3n, 1)
| J %_..21 T ln = | 1./ | nyJ-dn

& T 1" Z S|‘*-1-J- a,a)Q---)& £|frj.j.ag.33__j:- Q) ~-
\Y

k\-_..-/

.\

31,---.3n _:?}_’iﬂ E;fﬁ
Q)
The Schmidt rank is (2j + 1)". o
Se(Q) = nlog(2j + 1) : i
Entropy counts intersections of ~ with 9Q) -
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Wuantum Grawity
( Tala)

Spin Networks

Wilson loops are not the only gauge-invariant states.

Can have multiple edges meet at a node n /
jjz
Need a group-invariant map, an intertwiner n
’n:Hjl & “*Hjm—-'a_, k’.’j
/

This leads to the Spin Network states

S — @ i, | o ® v1. ji- a1 by)
[

n
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Luantum Grawity

_.._
A -

Where we have defined

190. 3p) = (@fn) ° (®"rf-ﬁ-af.bf)
nef

LS9

The Schmidt rank is N = [](2j, + 1)

Se(Q) = ) log(2)j, +1)
pEP

Entropy is extensive over the boundary.
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Wuantum Grawity
alal |

Spin Networks

The density matrix pq is a gauge-invariant “mixed spin network state” .

2jp+1

A pure spin network cannot have endpoints; a mixed spin network can.
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solated Honzons

elation to Isolated Horizons

Sg depends only on the boundary. Can we describe Sg using a theory
living on 9Q27

Yes. The Isolated Horizon framework® has exactly such a Hilbert space.

P P -
Hin = 69 Ha : Hsa
D ~ D
Open spin networks U(1) Chern-Simons
ending at P states on 90 —P

Trace over Hg gives a maximally mixed density matrix pso

S = logdim Ho ~ ) log(2j, + 1) = Se(Q)
pEP

The same result arises from Chern-Simons theory.

SA. Ashtekar, J. Baez, A. Corichi, and K. Krasnov. Quantum Geometry and Blagks

Pirsa: 07090012

Hole Entropy. gr-qc/9710007.




Wuantum Gravity
alal

Spin Networks

The density matrix po is a gauge-invariant “mixed spin network state” .

2jp+1

1 "
oo = N Z |Sﬂ. ap_:i:--:f_SQ. apﬁ

ap_l

A pure spin network cannot have endpoints; a mixed spin network can.
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solated Honzons

elation to Isolated Horizons

Sg depends only on the boundary. Can we describe Sg using a theory
living on 9Q27

Yes. The Isolated Horizon framework® has exactly such a Hilbert space.

Hin = @ Ho - Haa
D g D

Open spin networks U(1) Chern-Simons

ending at P states on 90 —P

Trace over Hg gives a maximally mixed density matrix pso

S = logdim Ho ~ Y log(2j, + 1) = Se(Q)
pEP

The same result arises from Chern-Simons theory.

SA. Ashtekar, J. Baez, A. Corichi, and K. Krasnov. Quantum Geometry and Blagk,s

Pirsa: 07090012

Hole Entropy. gr-qc/9710007.
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Spin Networks

The density matrix pg is a gauge-invariant “mixed spin network state” .

2jp+1

partial trace

A pure spin network cannot have endpoints; a mixed spin network can.
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solated Honzons

elation to Isolated Horizons

Sg depends only on the boundary. Can we describe Sg using a theory
living on 9Q27

Yes. The Isolated Horizon framework® has exactly such a Hilbert space.

. P P
Hin = 69 Ho - Haq
P e Nt
Open spin networks U(1) Chern-Simons
ending at P states on 90—

Trace over H{: gives a maximally mixed density matrix psq

S = logdim Ho ~ ) log(2j, + 1) = Se(Q)
psP

The same result arises from Chern-Simons theory.

>A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov. Quantum Geometry and Blagk,
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elation to Isolated Horizons

We have a boundary space Hso such that
@ For each |5) € Hg @ Hg there exists |S") € Hao @ Haa

@ |S) and |S”) agree on Q:
Trae |SKS| = Trape |SUS
Then the state of the boundary is
paa = Tryg |S'NS'
The spectrum of psyq is the same as the mixed spin network.

So it must be maximally mixed on a subspace S € Hsq with

logdim S = Z log(2j, + 1)
peP
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Yes. The Isolated Horizon framework® has exactly such a Hilbert space.

‘ 14 P 4P
Hin = 69 Ha : H3a
D S~ N—
Open spin networks U(1) Chern-Simons
ending at P states on 90 —P

Trace over Hg gives a maximally mixed density matrix psq

S = logdim Ho ~ ) log(2j, + 1) = Se(Q)
pEP
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solated Honmzons

elation to lsolated Horizons

We have a boundary space Hsq such that
@ For each |5) € Hg @ Hg there exists |S') € Hao @ Haa

-

@ |S) and |S7) agree on Q:

S'YS'|

Tl’-hfﬁ ISXS| = Tray,

Then the state of the boundary is
paa = Trg |S'(S|
The spectrum of psq is the same as the mixed spin network.

So it must be maximally mixed on a subspace S € Hsq with

logdim S = z log(2j, + 1)
peP
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Black hole entropy is naturally explained in terms of entanglement.

@ It's universal; it applies to arbitrary horizons.

@ It's extensive; it can be computed as a sum over punctures.

@ It's holographic; it agrees with Chern-Simons theory in 2+1.
But,

@ |t isn't exactly proportional to area.

So now what?
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Corrections to Sgy

For an arbitrary diffeomorphism-invariant Lagrangian, the classical black
hole entropy is ©

S—2n¢ ¢
o 902

Where Q is a Noether charge depending on the Lagrangian.

Open Question: s there a quantity @ such that when quantized

.—'—""----'""-\—\.

(2:% o) S) = log(2j, +1)|5)
Jog b P

Knowing @ could tell us corrections to the Lagrangian.

SRobert M. Wald. Black Hole Entropy is Noether Charge. Phys. Rev. D 1993.

Pirsa: 07090012

gr-qc/9307038
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Corrections to Sgy

For an arbitrary diffeomorphism-invariant Lagrangian, the classical black
hole entropy is ©

S0 O
o 902

Where Q is a Noether charge depending on the Lagrangian.

Open Question: s there a quantity @ such that when quantized

.—'—""-'-‘-'"‘-\—\.

(2: 5{ Q) S) = log(2j, +1)|5)
Jag o

Knowing @ could tell us corrections to the Lagrangian.

SRobert M. Wald. Black Hole Entropy is Noether Charge. Phys. Rev. D 1993... . s
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Black hole entropy is naturally explained in terms of entanglement.

@ It's universal; it applies to arbitrary horizons.

@ It's extensive; it can be computed as a sum over punctures.

@ It's holographic; it agrees with Chern-Simons theory in 2+1.
But,

@ It isn't exactly proportional to area.

Se(Q) = ) log(2jp +1)
pEP

So now what?
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Corrections to Sgy

For an arbitrary diffeomorphism-invariant Lagrangian, the classical black
hole entropy is °

S— 7@ €
o 912

Where Q is a Noether charge depending on the Lagrangian.

Open Question: s there a quantity @ such that when quantized

.—'—""-'-‘-'"‘-\—\.

(2:% o) S) = log(2j, +1)|S)
Jaq b P

Knowing @ could tell us corrections to the Lagrangian.

SRobert M. Wald. Black Hole Entropy is Noether Charge. Phys. Rev. D 1993, ...
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Black hole entropy is naturally explained in terms of entanglement.

@ It's universal; it applies to arbitrary horizons.

@ It's extensive; it can be computed as a sum over punctures.

@ It's holographic; it agrees with Chern-Simons theory in 2+1.
But,

@ |t isn't exactly proportional to area.

Se(Q) =) log(2jp + 1)
pEP

So now what?
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Corrections to Sgy

For an arbitrary diffeomorphism-invariant Lagrangian, the classical black
hole entropy is ©

5—Tx Q
o 92

Where Q is a Noether charge depending on the Lagrangian.

Open Question: s there a quantity @ such that when quantized

.—'—""-'-‘-'"‘-\—\.

(2:% Q) S) = log(2jp +1)|S)
Jag peP

Knowing @ could tell us corrections to the Lagrangian.

SRobert M. Wald. Black Hole Entropy is Noether Charge. Phys. Rev. D 13> - SR
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Corrections to Sgy

For an arbitrary diffeomorphism-invariant Lagrangian, the classical black
hole entropy is ©

S—7n¢ €
o 902

Where Q is a Noether charge depending on the Lagrangian.

Open Question: Is there a quantity @ such that when quantized

.—'—""-'--""‘-i-\.

(2: 7,( Q) S) = log(2j, +1)|5)
Joag o

Knowing @ could tell us corrections to the Lagrangian.

S Robert M. Wald. Black Hole Entropy is Noether Charge. Phys. Rev. D 1993.
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Black hole entropy is naturally explained in terms of entanglement.

@ It's universal; it applies to arbitrary horizons.

@ It's extensive; it can be computed as a sum over punctures.
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solated Honzons

elation to Isolated Horizons

Sg depends only on the boundary. Can we describe Sg using a theory
living on 9Q27

Yes. The Isolated Horizon framework® has exactly such a Hilbert space.

HiH = @ HQ 5 Hfﬂ'ﬂ
- — N~

Open spin networks U(1) Chern-Simons

ending at P states on 911 —P

Trace over Hg gives a maximally mixed density matrix psq

S = logdim Hg ~ ) log(2j, + 1) = Se(Q)
pEP

The same result arises from Chern-Simons theory.

SA. Ashtekar, J. Baez, A. Corichi, and K. Krasnov. Quantum Geometry and Blagk,s
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elation to Isolated Horizons

We have a boundary space Hso such that
@ For each |S) € Hqo @ Hg there exists |S') € Hao @ Haaq

@ |S) and |S”) agree on Q:
Tra [SHS| = Trg |S XS’
Then the state of the boundary is
paa = Try, |S'XS'|
The spectrum of p;q is the same as the mixed spin network.

So it must be maximally mixed on a subspace S € Hsq with

logdim S = z log(2j, + 1)
peP
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solated Honzons

elation to Isolated Horizons

Sg depends only on the boundary. Can we describe Sg using a theory
living on 9Q27

Yes. The Isolated Horizon framework® has exactly such a Hilbert space.

F = iP
i = @ Ho : Hoq
D ~ Ny
Open spin networks U(1) Chern-Simons
ending at P states on 91 —P

Trace over Hg gives a maximally mixed density matrix pso

S = logdim Ho ~ Y log(2j, + 1) = Se(Q)
pEP

The same result arises from Chern-Simons theory.

SA. Ashtekar, J. Baez, A. Corichi, and K. Krasnov. Quantum Geometry and Blagk,s

Pirsa: 07090012

Hole Entropy. gr-qc/9710007.




