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Abstract: In the sixties, Roger Penrose came up with a radical new idea for a quantum geometry which would be entirely background independent,
combinatorial, discrete (countable number of degrees of freedom), and involve only integers and fractions, not complex or real numbers. The basic
structures are spin-networks. One reason we might believe that space or space-time might be discrete is that current physique tells us that matter is
discrete and that matter and geometry are related through gravity. Once a discrete theory is decided on, it seems awkward that the dynamics would
retain "continuous elements" in the form of real numbers (used for the probabilities for example). The great achievement of Penrose's theory is that
there is awell defined procedure which gives the semi-classical limit geometry (always of the same dimension) without any input on topology (the
fundamental theory does not contain a manifold).
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@ Introduction and Motivation
© Spin Networks
© Scalar Product

o Dynamics

‘ The Spin Geometry Theorem, or the (partial) Semi-Classical
limit
© Conclusion and Outlook
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@ Introduction:
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@ Introduction: Roger Penrose proposed this model in the
60's then pretty much forgot about it. J. Moussouris did a
bit more in the 80's.

@ Properties:
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@ Introduction: Roger Penrose proposed this model in the
60's then pretty much forgot about it. J. Moussouris did a
bit more in the 80's.

@ Properties:
e : Quantum theory of geometry
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Introduction and |
@ Introduction: Roger Penrose proposed this model in the
60’'s then pretty much forgot about it. J. Moussouris did a

bit more in the 80’s.
@ Properties:
@ : Quantum theory of geometry
e : Background and Topology independent
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@ Properties:

e : Quanium theory of geomeiry
e : Background and Topology independent

e : Discrete degrees of freedom and discrete mathematics

Page 7/102



Introduction and Motivation

@ Introduction: Roger Penrose proposed this model in the
60’'s then pretty much forgot about it. J. Moussouris did a
bit more in the 80's.

@ Properties:

@ : Quantum theory of geometry

e : Background and Topology independent

e : Discrete degrees of freedom and discrete mathematics

e : BEvolution and measurement might two aspects of the
same thing
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Introduction and Motivation

@ Introduction: Roger Penrose proposed this model in the
60’s then pretty much forgot about it. J. Moussouris did a
bit more in the 80's.

@ Properties:

@ : Quanium theory of geomeiry

e : Background and Topology independent

e : Discrete degrees of freedom and discrete mathematics

e : BEvolution and measurement might two aspects of the
same thing
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Motivation:
@ Current physique tells us that matter is discrete
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Motivation:
@ Current physique tells us that matter is discrete
@ Matter and geometry are related through gravity
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Motivation:
@ Current physique tells us that matter is discrete
@ Matter and geometry are related through gravity

@ “Continuous elemenis” like real numbers are awkward in
discrete theory
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Motivation:
@ Current physique tells us that matter is discrete
@ Matter and geometry are related through gravity
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Motivation:
@ Current physique tells us that matter is discrete
@ Matter and geometry are related through gravity

@ “Continuous elemenis” like real numbers are awkward in
discrete theory
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What is a spin network?
@ Ingredients:
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What is a spin network?
@ Ingredients:
e An abstract graph
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What is a spin network?
@ Ingredients:

e An abstract graph
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@ Recipe:
e Exiract representations from Group
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@ Recipe:
e Exiract representations from Group

er’ ol
.a’“

@ Mix in with group
e But be careful that vertices are invariant under group action
(intertwiners)

Pirsa: 07090010 = Page 23/102

— = — —3

il = — - -
—_— = = - i = T




In what follows we have see the spin network edges as either
lengths or areas.
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@ Recipe:
e Extract representations from Group
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e Mix in with group
e But be careful that vertices are invariant under group action
(intertwiners)
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In what follows we have see the spin network edges as either
lengths or areas.
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T K =248+ 1) - jij+1) - Kik=D)]
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J K =2MI+1) - jij+1) - Kik=D]
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L=J+K= JK=:L- J2-K7]
J K =24M1+1) - jj+1) - Kik=1)]
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L=J+K= JFK=%[L- J2-K7]

J K =24M+1) - jij+1) - Kk=D]

L=J+K
L>—J>—K?
2
_ 1) —jG+1) —k(k+1)
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Note that the cosine of the angle between jand k :

I(1+1)—j(+1)—k(k+1)
2jk

can take on only a finite number of values (because
I < || |[j—k|.j+k |]) all of which are necessarily rational.

(2)

cosﬂj k=
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Scalar Product N

For edges not intersecting at a vertex it is more complicated but
It basically the same principle. For example, if we have the

\

k

following spin network: Then the expected
or “average” scalar product can be calculated as follows.
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For edges not intersecting at a vertex it is more complicated but
It basically the same principle. For example, if we have the
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following spin network: Then the expected
or “average” scalar product can be calculated as follows.
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Scalar Product .5

For edges not intersecting at a vertex it is more complicated but
It basically the same principle. For example, if we have the

\ 7

k

following spin network: Then the expected
or “average” scalar product can be calculated as follows.
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Suppose we have the following spin network, what value should

we attribute to “?" ?
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Scalar Product

For edges not intersecting at a vertex it is more complicated but
It basically the same principle. For example. if we have the
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following spin network: Then the expected
or “average” scalar product can be calculated as follows.
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Scalar Product N

For edges not intersecting at a vertex it is more complicated but
It basically the same principle. For example, if we have the
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following spin network: Then the expected
or “average” scalar product can be calculated as follows.
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Suppose we have the following spin network, what value should

we attribute to “?" ?

Pirsa: 07090010 = Page 64/102

= v L = = = =R




Suppose we have the following spin network, what value should

= Fr
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Suppose we have the following spin network, what value should

we attribute to “?" ? Answer:
I
’ =m
with P=2m+1
2k+D2J+D
» J k
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Suppose we have the following spin network, what value should

we attribute to “?" ? Answer:
I
> ’=m
with P=2m+1
2k+D2]+D
0 J k
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More generally:

Dynamics




Dynamics

More generally:
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Define:

(3)
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Define: Then the Spin Geometry Theorem states that if lis a
set containing 4 elements then

ve>0, 40 > 0s.t

. i
Va.bEl <Top —<Top>">< 5 then
<detT,p, ,, ><€anddet <T,p ,  ><E€

(4)
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Spin Geometry Theorem




@ Discrete Kinematics
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@ Discrete Kinematics
@ Dynamics and measurement unite
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@ Discrete Kinematics
@ Dynamics and measurement unite

e Dynamics not yet really complete Space changes.
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@ Discrete Kinematics

@ Dynamics and measurement unite
o Dynamics not yet really complete Space changes.
e Semi-Classical limit
e Generalization
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