Title: PenroseÂ's Space of Quantized Directions

Date: Sep 07, 2007 04:00 PM

URL: http://pirsa.org/07090010

Abstract: In the sixties, Roger Penrose came up with a radical new idea for a quantum geometry which would be entirely background independent, combinatorial, discrete (countable number of degrees of freedom), and involve only integers and fractions, not complex or real numbers. The basic structures are spin-networks. One reason we might believe that space or space-time might be discrete is that current physique tells us that matter is discrete and that matter and geometry are related through gravity. Once a discrete theory is decided on, it seems awkward that the dynamics would retain "continuous elements" in the form of real numbers (used for the probabilities for example). The great achievement of Penrose's theory is that there is a well defined procedure which gives the semi-classical limit geometry (always of the same dimension) without any input on topology (the fundamental theory does not contain a manifold).

Pirsa: 07090010 Page 1/102

Introduction and Motivation Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

OUTLINE

- Introduction and Motivation
- Spin Networks
- Scalar Product
- **Dynamics**
- **Dynamics**
- **Dynamics**
- The Spin Geometry Theorem, or the (partial) Semi-Classical limit
- Conclusion and Outlook

Pirsa: 07090010

(ロト(伊)(ラ)(ラ)

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Introduction and Motivation

- Introduction: Roger Penrose proposed this model in the 60's then pretty much forgot about it. J. Moussouris did a bit more in the 80's.
- Properties:
 - Quantum theory of geometry
 - : Background and Topology independent
 - Discrete degrees of freedom and discrete mathematics
 - Evolution and measurement might two aspects of the same thing

Pirsa: 07090010

Page 3/102

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Introduction and Motivation

- Introduction: Roger Penrose proposed this model in the 60's then pretty much forgot about it. J. Moussouris did a bit more in the 80's.
- Properties:
 - Quantum theory of geometry
 - : Background and Topology independent
 - Discrete degrees of freedom and discrete mathematics
 - Evolution and measurement might two aspects of the same thing

イロトイクトイラトイラト

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Introduction and Motivation

- Introduction: Roger Penrose proposed this model in the 60's then pretty much forgot about it. J. Moussouris did a bit more in the 80's.
- Properties:
 - : Quantum theory of geometry
 - : Background and Topology independent
 - Discrete degrees of freedom and discrete mathematics
 - Evolution and measurement might two aspects of the same thing

Pirsa: 07090010

(ログイ母)(ランイラ)

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Introduction and Motivation

- Introduction: Roger Penrose proposed this model in the 60's then pretty much forgot about it. J. Moussouris did a bit more in the 80's.
- Properties:
 - : Quantum theory of geometry
 - : Background and Topology independent
 - Discrete degrees of freedom and discrete mathematics
 - Evolution and measurement might two aspects of the same thing

イロトイポトイラトイラト

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Introduction and Motivation

- Introduction: Roger Penrose proposed this model in the 60's then pretty much forgot about it. J. Moussouris did a bit more in the 80's.
- Properties:
 - : Quantum theory of geometry
 - : Background and Topology independent
 - Discrete degrees of freedom and discrete mathematics
 - Evolution and measurement might two aspects of the same thing

(ロト(伊)(ラ)(ラ)

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Introduction and Motivation

- Introduction: Roger Penrose proposed this model in the 60's then pretty much forgot about it. J. Moussouris did a bit more in the 80's.
- Properties:
 - : Quantum theory of geometry
 - : Background and Topology independent
 - Discrete degrees of freedom and discrete mathematics
 - Evolution and measurement might two aspects of the same thing

Pirsa: 07090010

(ロトイタトイラ) (ラト

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Introduction and Motivation

Motivation:

- Current physique tells us that matter is discrete
- Matter and geometry are related through gravity
- "Continuous elements" like real numbers are awkward in discrete theory

Pirsa: 07090010

Page 9/102

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Introduction and Motivation

- Introduction: Roger Penrose proposed this model in the 60's then pretty much forgot about it. J. Moussouris did a bit more in the 80's.
- Properties:
 - : Quantum theory of geometry
 - : Background and Topology independent
 - Discrete degrees of freedom and discrete mathematics
 - Evolution and measurement might two aspects of the same thing

Pirsa: 07090010

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Introduction and Motivation

Motivation:

- Current physique tells us that matter is discrete
- Matter and geometry are related through gravity
- "Continuous elements" like real numbers are awkward in discrete theory

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Introduction and Motivation

Motivation:

- Current physique tells us that matter is discrete
- Matter and geometry are related through gravity
- "Continuous elements" like real numbers are awkward in discrete theory

Pirsa: 07090010

Page 12/102

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit
Conclusion and Outlook

Introduction and Motivation

Motivation:

- Current physique tells us that matter is discrete
- Matter and geometry are related through gravity
- "Continuous elements" like real numbers are awkward in discrete theory

Pirsa: 07090010

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Introduction and Motivation

Motivation:

- Current physique tells us that matter is discrete
- Matter and geometry are related through gravity
- "Continuous elements" like real numbers are awkward in discrete theory

Pirsa: 07090010

Page 14/102

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit
Conclusion and Outlook

Introduction and Motivation

Motivation:

- Current physique tells us that matter is discrete
- Matter and geometry are related through gravity
- "Continuous elements" like real numbers are awkward in discrete theory

Pirsa: 07090010

Page 15/102

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Introduction and Motivation

Motivation:

- Current physique tells us that matter is discrete
- Matter and geometry are related through gravity
- "Continuous elements" like real numbers are awkward in discrete theory

Pirsa: 07090010

Page 16/102

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Spin Networks

What is a spin network?

- Ingredients:
 - An abstract graph
 - A Group su(2)

Pirsa: 07090010

Page 17/102

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Spin Networks

What is a spin network?

- Ingredients:
 - An abstract graph
 - A Group su(2)

Spin Networks

Scalar Product

Dynamics

Dynamics

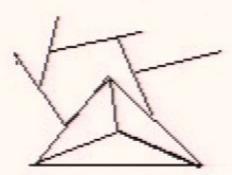
Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Spin Networks

What is a spin network?

Ingredients:



- An abstract graph
- A Group su(2)

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Spin Networks

- Recipe:
 - Extract representations from Group
 - Mix in with group
 - But be careful that vertices are invariant under group action (intertwiners)

Pirsa: 07090010

Page 20/102

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

- Recipe:
 - Extract representations from Group
 - Mix in with group
 - But be careful that vertices are invariant under group action (intertwiners)

Spin Networks

Scalar Product

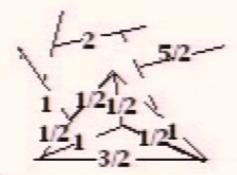
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

- Recipe:
 - Extract representations from Group



- Mix in with group
- But be careful that vertices are invariant under group action (intertwiners)

Spin Networks

Scalar Product

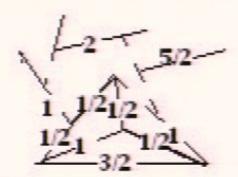
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

- Recipe:
 - Extract representations from Group



- Mix in with group
- But be careful that vertices are invariant under group action (intertwiners)

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Spin Networks

In what follows we have see the spin network edges as either lengths or areas.

Pirsa: 07090010

Page 24/102

Spin Networks

Scalar Product

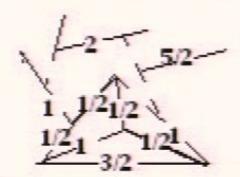
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

- Recipe:
 - Extract representations from Group



- Mix in with group
- But be careful that vertices are invariant under group action (intertwiners)

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Spin Networks

In what follows we have see the spin network edges as either lengths or areas.

Pirsa: 07090010

Page 26/102

Spin Networks

Scalar Product

Dynamics

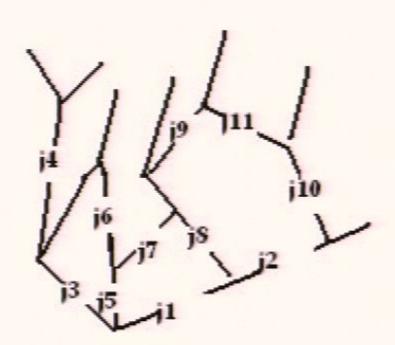
Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Spin Networks

In what follows we have see the spin network edges as either



Page 27/102

Pirsa: 07090010 lengths or areas.

Spin Networks

Scalar Product

Dynamics

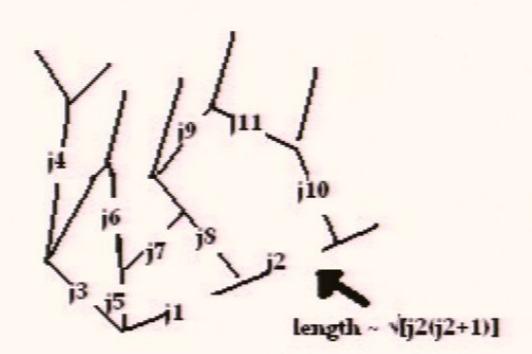
Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Spin Networks

In what follows we have see the spin network edges as either



Pirsa: 07090010 lengths or areas.

Page 28/102

Spin Networks

Scalar Product

Dynamics

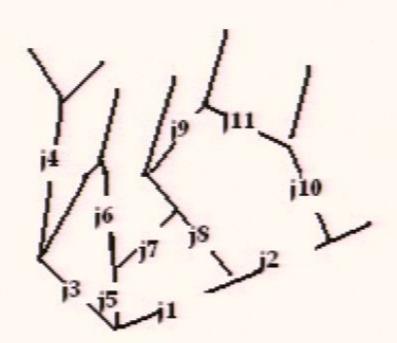
Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Spin Networks

In what follows we have see the spin network edges as either



Spin Networks

Scalar Product

Dynamics

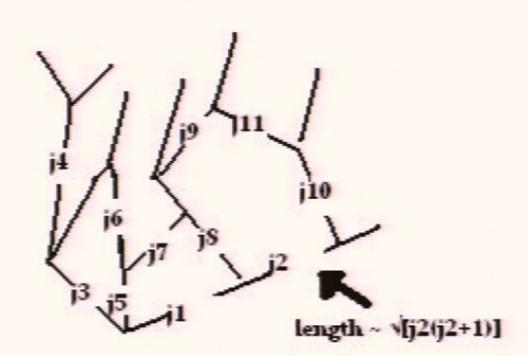
Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Spin Networks

In what follows we have see the spin network edges as either



Pirsa: 07090010 lengths or areas.

Page 30/102

Spin Networks

Scalar Product

Dynamics

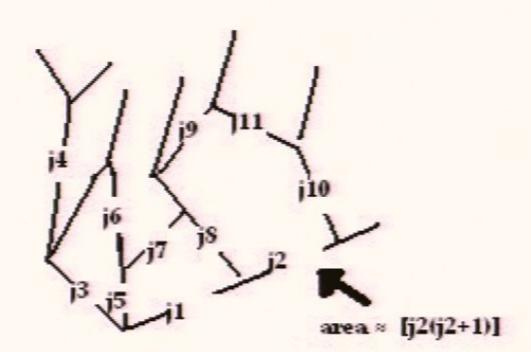
Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Spin Networks

In what follows we have see the spin network edges as either



Pirsa: 07090010 lengths or areas. Page 31/102

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product



$$J \cdot K = \frac{L = J + K}{L^2 - J^2 - K^2}$$

l(l+1)-j(j+1)-k(k+1)

Pirsa: 07090010

Page 32/102

Spin Networks

Scalar Product

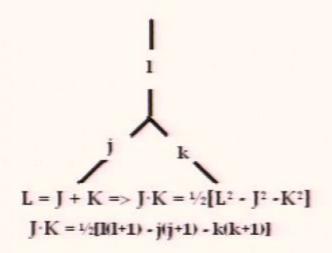
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product



$$J \cdot K = \frac{L = J + K}{L^2 - J^2 - K^2}$$

$$V = \frac{L^2 - J^2 - K^2}{2}$$

Pirsa: 07090010

Page 33/102

Spin Networks

Scalar Product

Dynamics

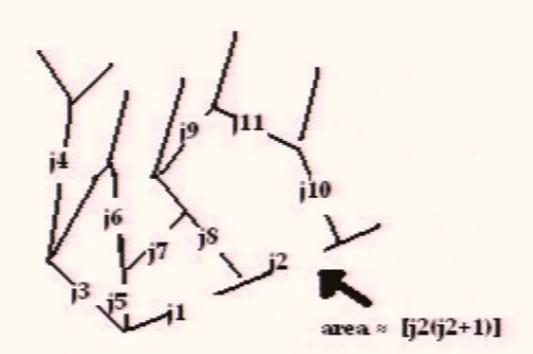
Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Spin Networks

In what follows we have see the spin network edges as either



Page 34/102

Spin Networks

Scalar Product

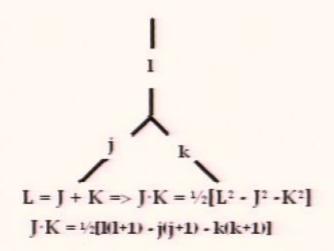
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product

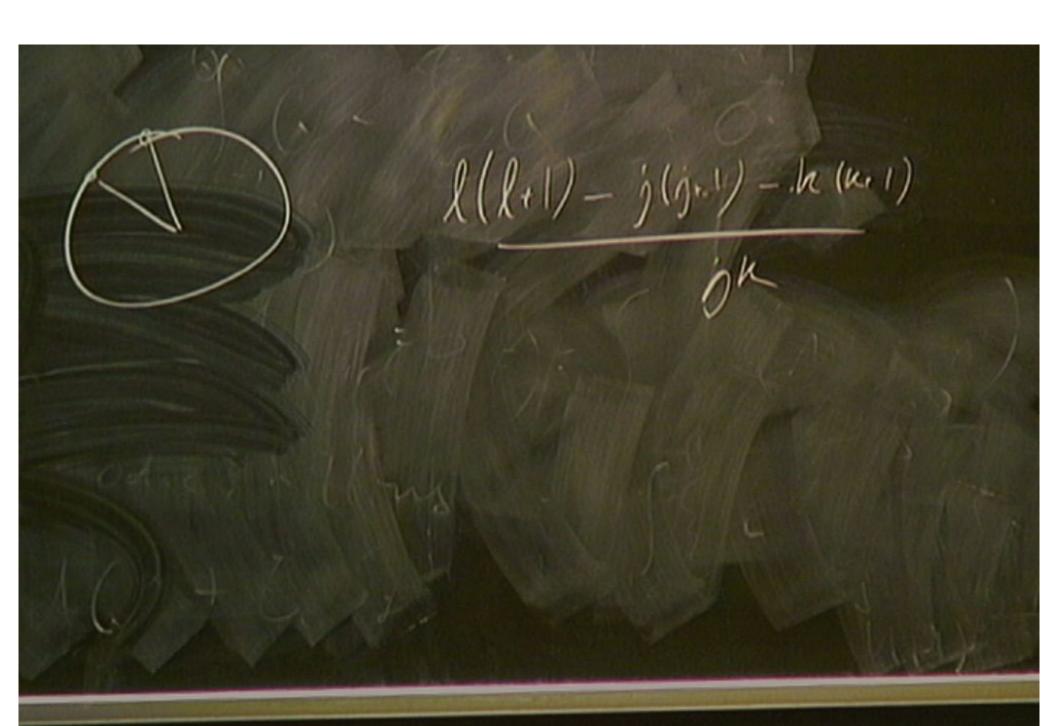


$$J \cdot K = \frac{L = J + K}{L^2 - J^2 - K^2}$$

l(l+1)-j(j+1)-k(k+1)

Pirsa: 07090010

Page 35/102



Spin Networks

Scalar Product

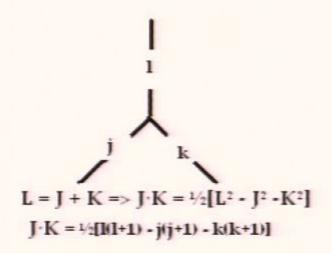
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product



$$J \cdot K = \frac{L = J + K}{L^2 - J^2 - K^2}$$

l(l+1)-j(j+1)-k(k+1)

Pirsa: 07090010

Page 37/102

Spin Networks

Scalar Product

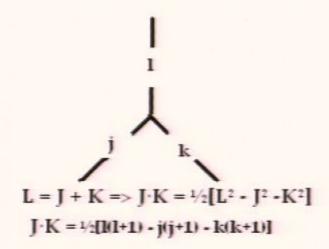
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product



$$J \cdot K = \frac{L^2 - J^2 - K^2}{2}$$

$$J \cdot K = \frac{l(l+1) - j(j+1) - k(k+1)}{2}$$

Pirsa: 07090010

Page 38/102

Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product

Note that the cosine of the angle between j and k:

$$\cos \theta_{j,k} = \frac{l(l+1) - j(j+1) - k(k+1)}{2jk} \tag{2}$$

can take on only a finite number of values (because $l \in [||j-k|,j+k||]$) all of which are necessarily rational.

Pirsa: 07090010

Page 39/102

Spin Networks

Scalar Product

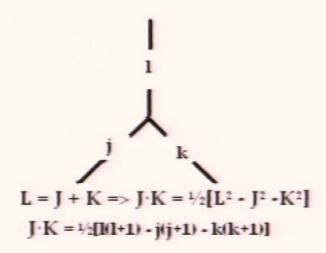
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

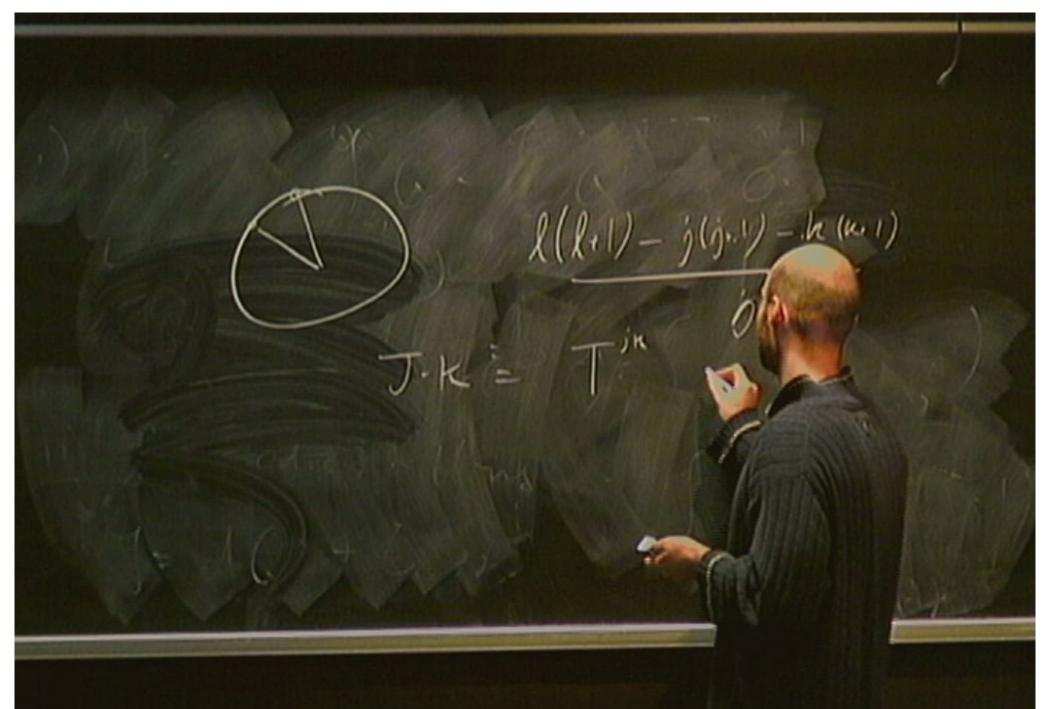
Scalar Product



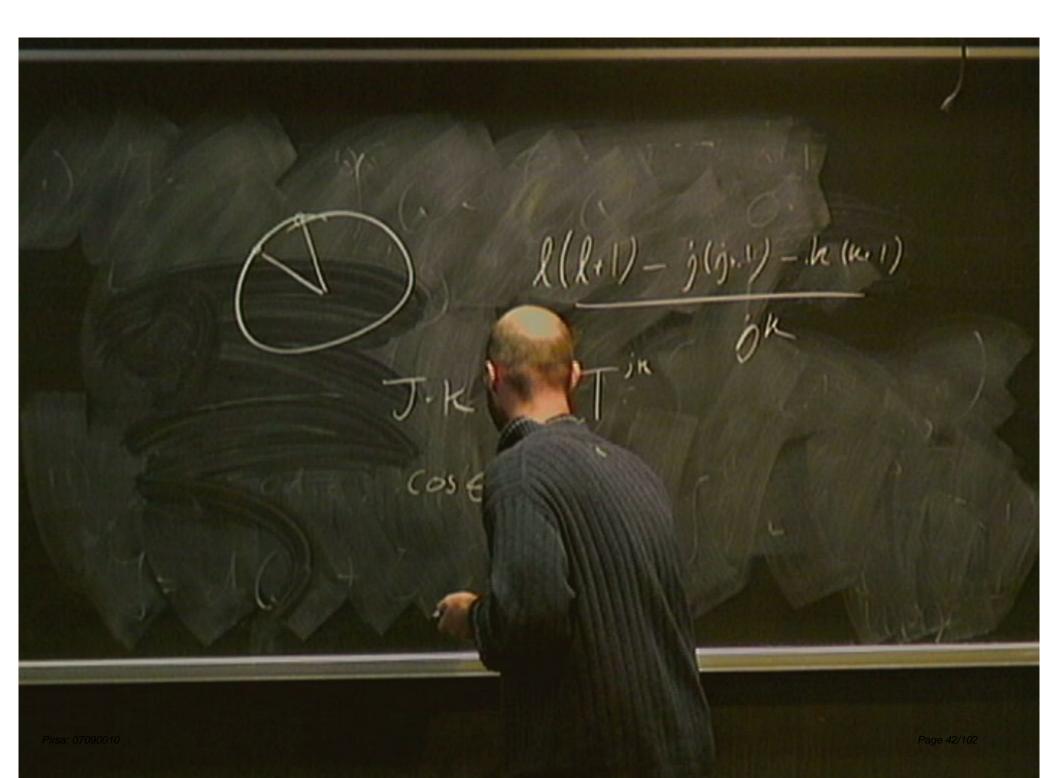
$$J \cdot K = \frac{L - J + K}{2}$$
$$J \cdot K = \frac{l(l+1) - j(j+1) - k(k+1)}{2}$$

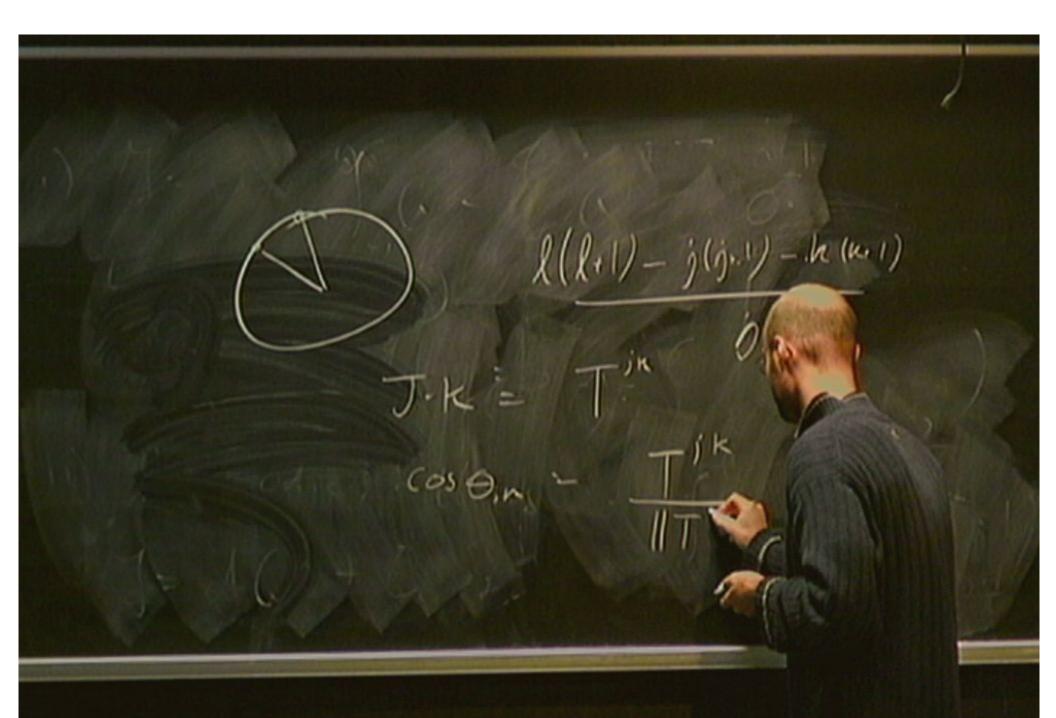
Pirsa: 07090010

Page 40/102

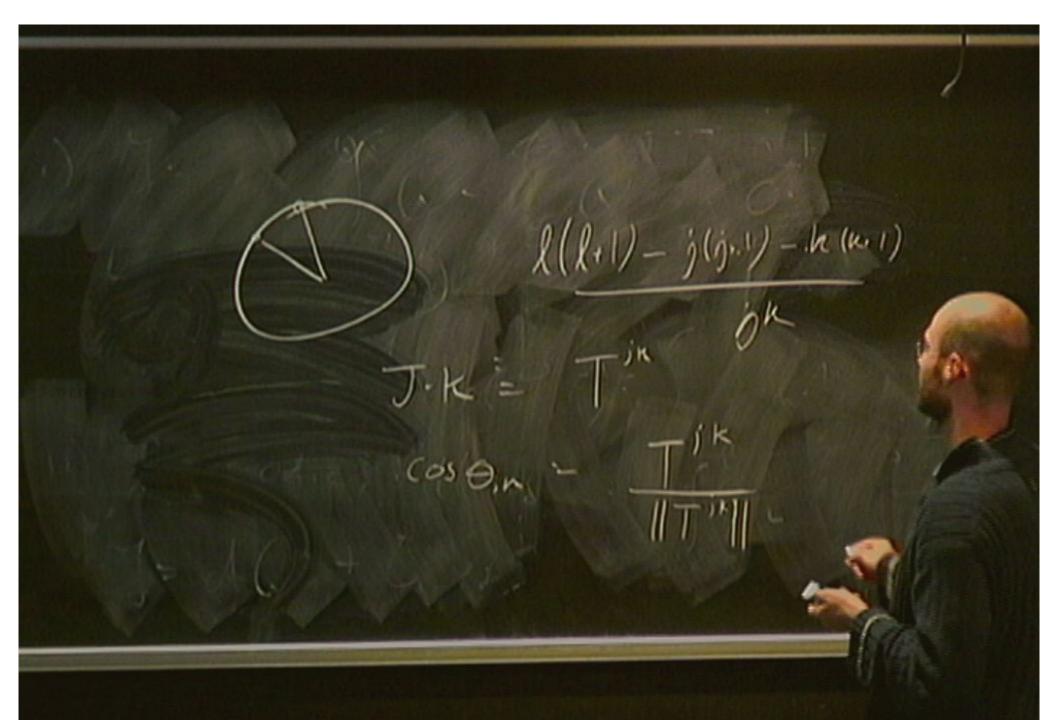


Page 41/102

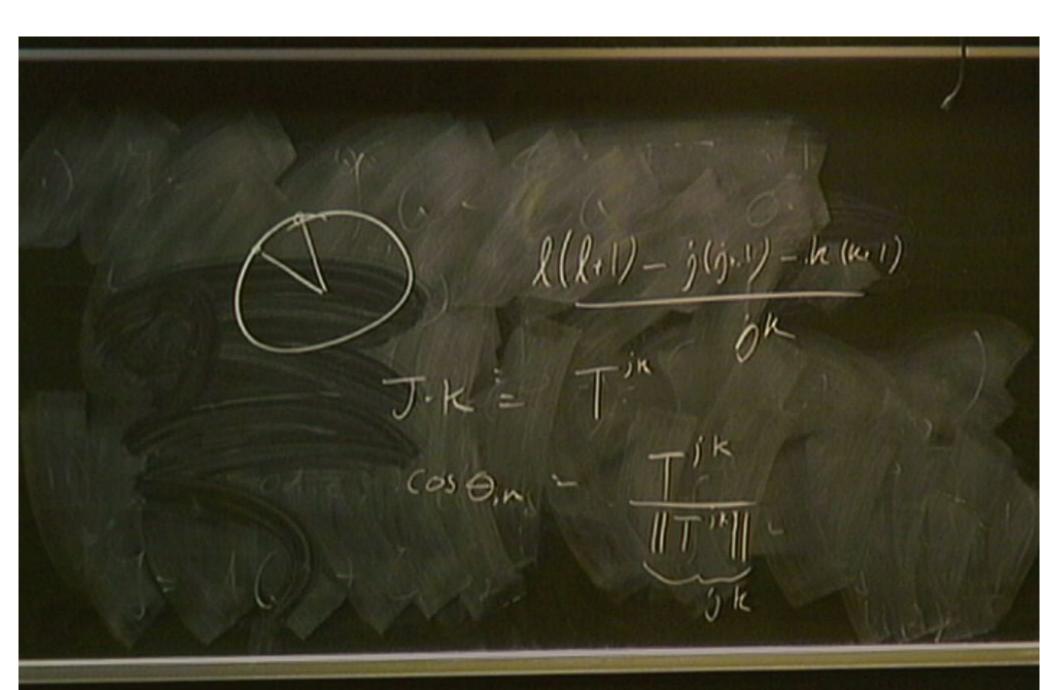




Page 43/102



Page 44/102



Spin Networks

Scalar Product

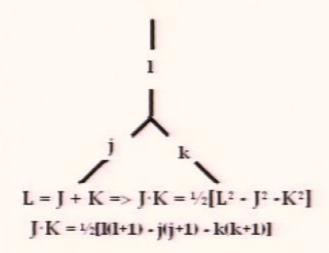
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product



$$J \cdot K = \frac{L = J + K}{2}$$
$$J \cdot K = \frac{l(l+1) - j(j+1) - k(k+1)}{2}$$

Pirsa: 07090010

Page 46/102

Spin Networks

Scalar Product

Dynamics

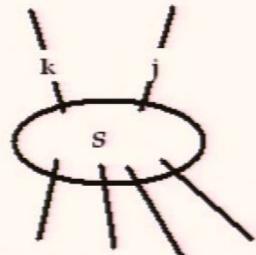
Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product

For edges not intersecting at a vertex it is more complicated but it basically the same principle. For example, if we have the



following spin network:

Then the expected

or "average" scalar product can be calculated as follows.

Pirsa: 07090010

Page 47/102

Spin Networks

Scalar Product

Dynamics

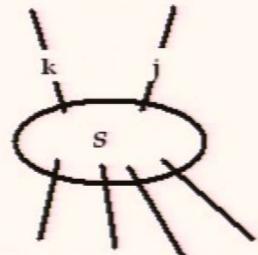
Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product

For edges not intersecting at a vertex it is more complicated but it basically the same principle. For example, if we have the



following spin network: Then the expected or "average" scalar product can be calculated as follows.

Spin Networks

Scalar Product

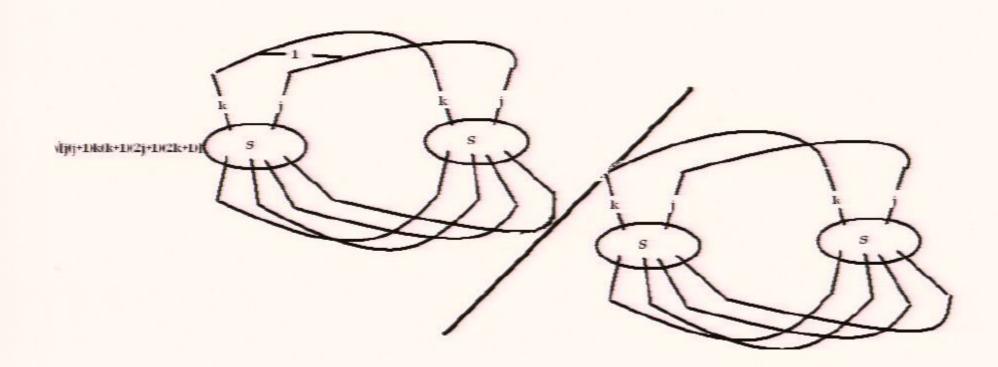
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product



Pirsa: 07090010

Page 49/102

Spin Networks

Scalar Product

Dynamics

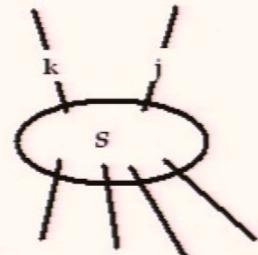
Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product

For edges not intersecting at a vertex it is more complicated but it basically the same principle. For example, if we have the



following spin network: Then the expected or "average" scalar product can be calculated as follows.

Spin Networks

Scalar Product

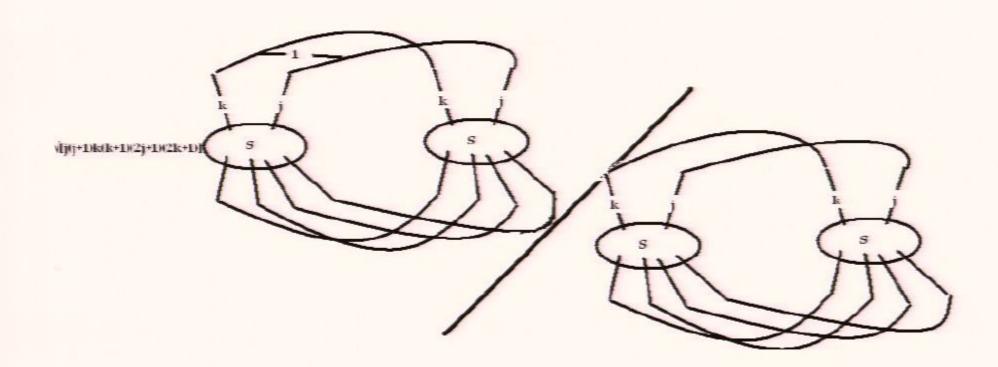
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product



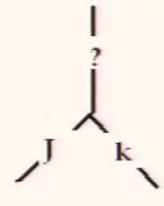
Pirsa: 07090010

Introduction and Motivation
Spin Networks
Scalar Product
Dynamics
Dynamics
Dynamics
The Spin Geometry Theorem, or the (partial) Semi-Classical limit

Conclusion and Outlook

Dynamics

Suppose we have the following spin network, what value should



we attribute to "?"?

Answer:

Spin Networks

Scalar Product

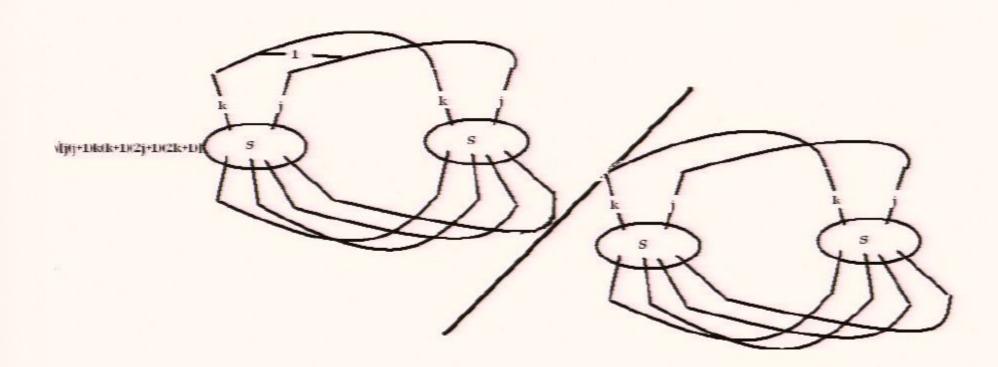
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product



Pirsa: 07090010

Page 53/102

Spin Networks

Scalar Product

Dynamics

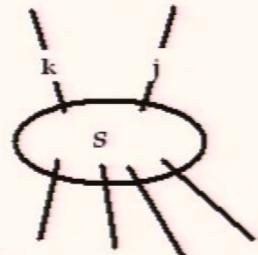
Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product

For edges not intersecting at a vertex it is more complicated but it basically the same principle. For example, if we have the



following spin network: Then the expected or "average" scalar product can be calculated as follows.

Spin Networks

Scalar Product

Dynamics

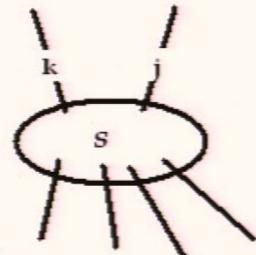
Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product

For edges not intersecting at a vertex it is more complicated but it basically the same principle. For example, if we have the



following spin network:

Then the expected

or "average" scalar product can be calculated as follows.

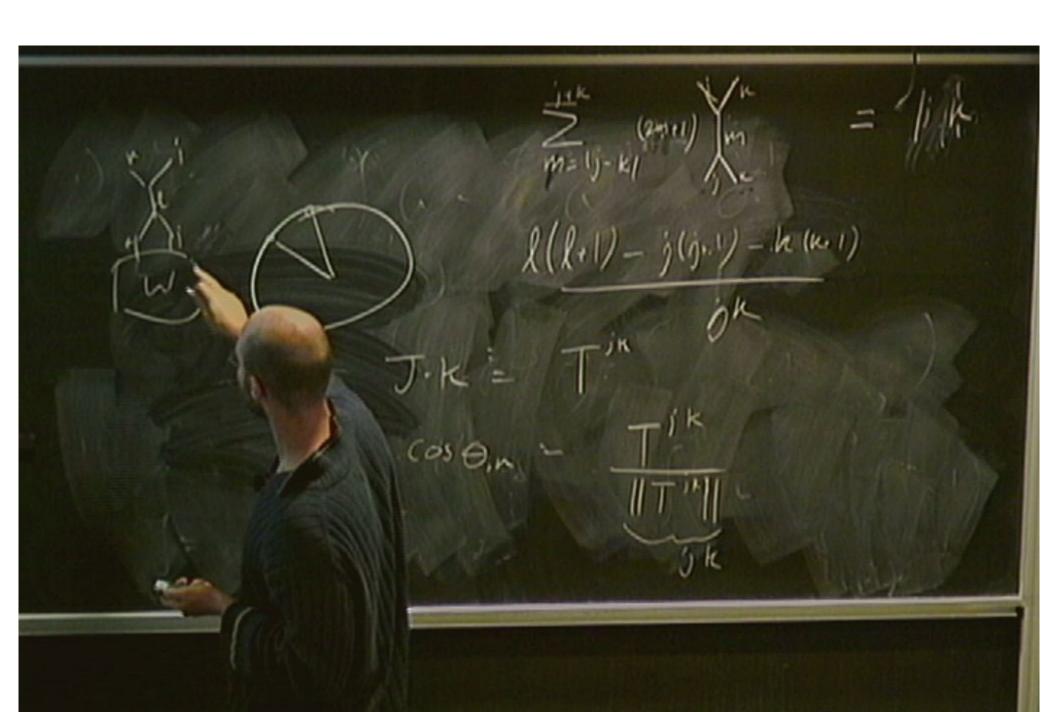
Pirsa: 07090010

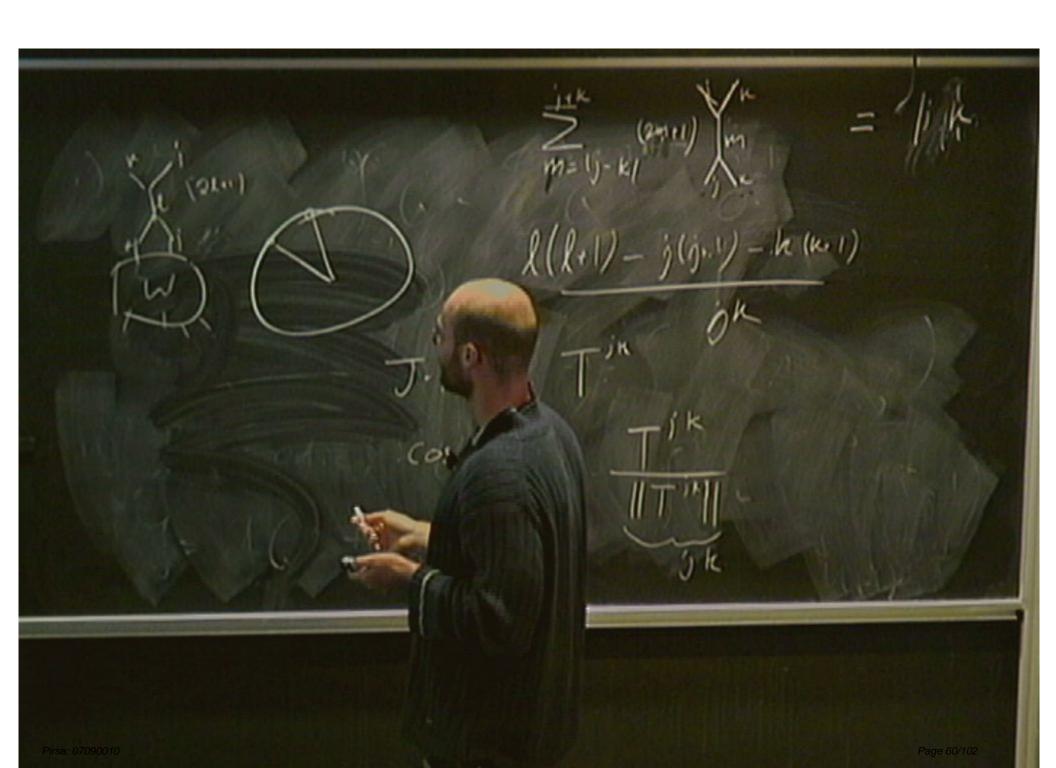
Page 55/102

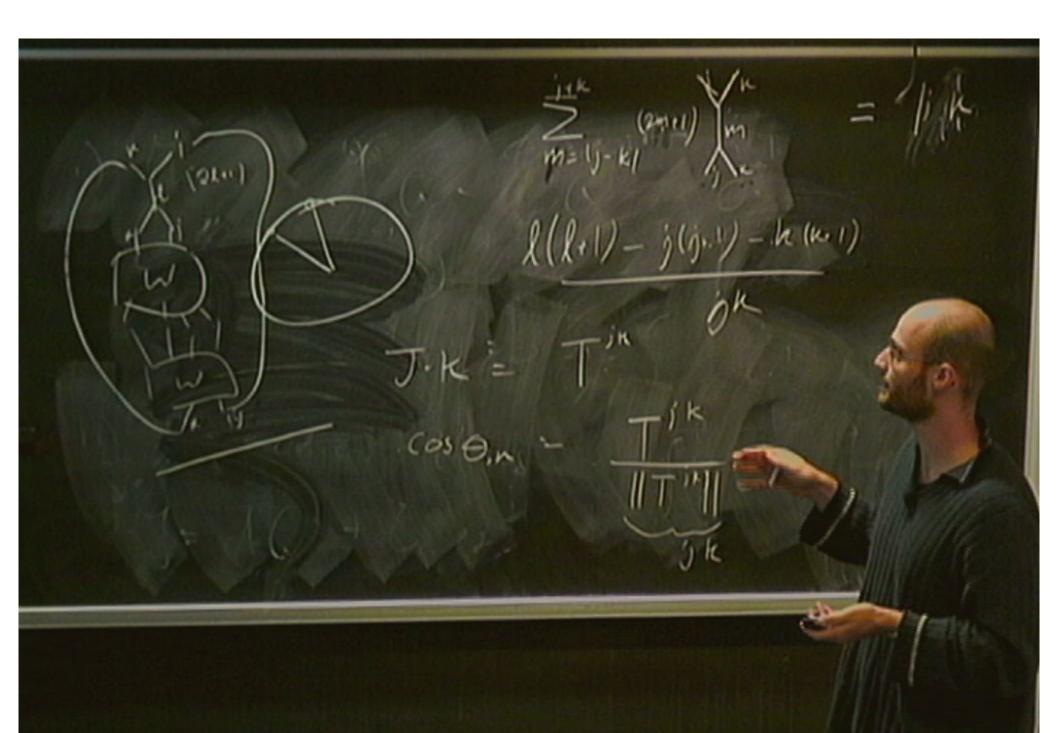
l(l+1) - j(j.1) - h (u1) Cos On

l(l+1) - j(j.1) - h (k.1) Cos O,n

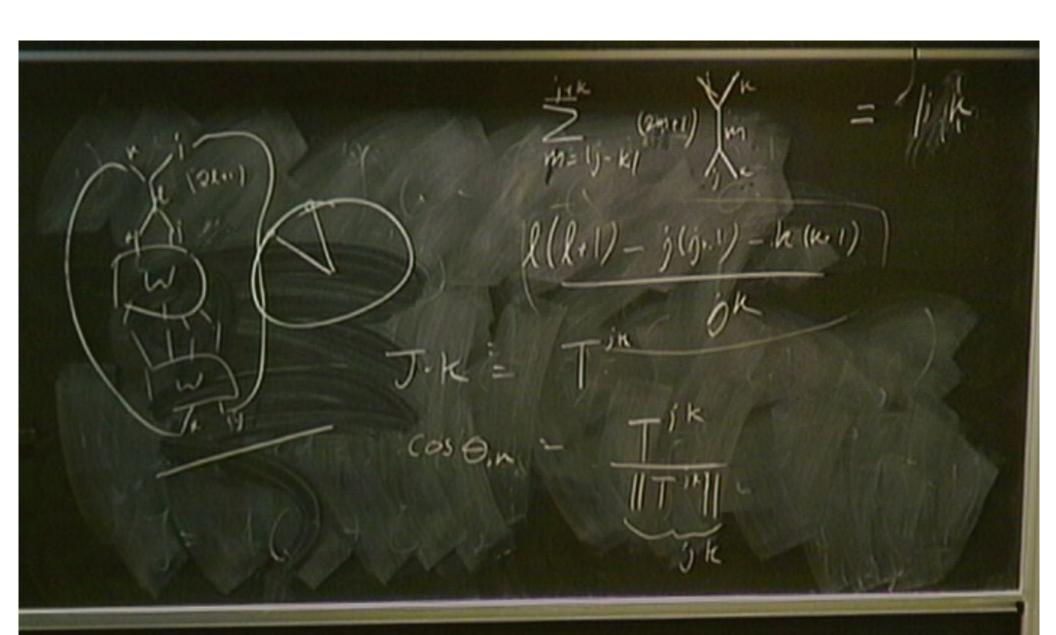
j (j.1) - h (u.1) Cos On







Page 61/100



Spin Networks

Scalar Product

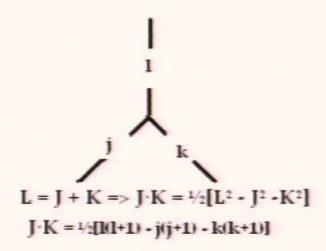
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Scalar Product



$$J \cdot K = \frac{L - J + K}{2}$$
$$J \cdot K = \frac{l(l+1) - j(j+1) - k(k+1)}{2}$$

Pirsa: 07090010

Page 63/102

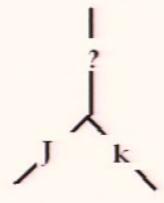
2

Introduction and Motivation
Spin Networks
Scalar Product
Dynamics
Dynamics
Dynamics
Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Dynamics

Suppose we have the following spin network, what value should



we attribute to "?"?

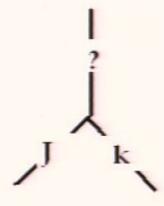
Answer

Introduction and Motivation
Spin Networks
Scalar Product
Dynamics
Dynamics
Dynamics
Dynamics
The Spin Geometry Theorem, or the (partial) Semi-Classical limit

Conclusion and Outlook

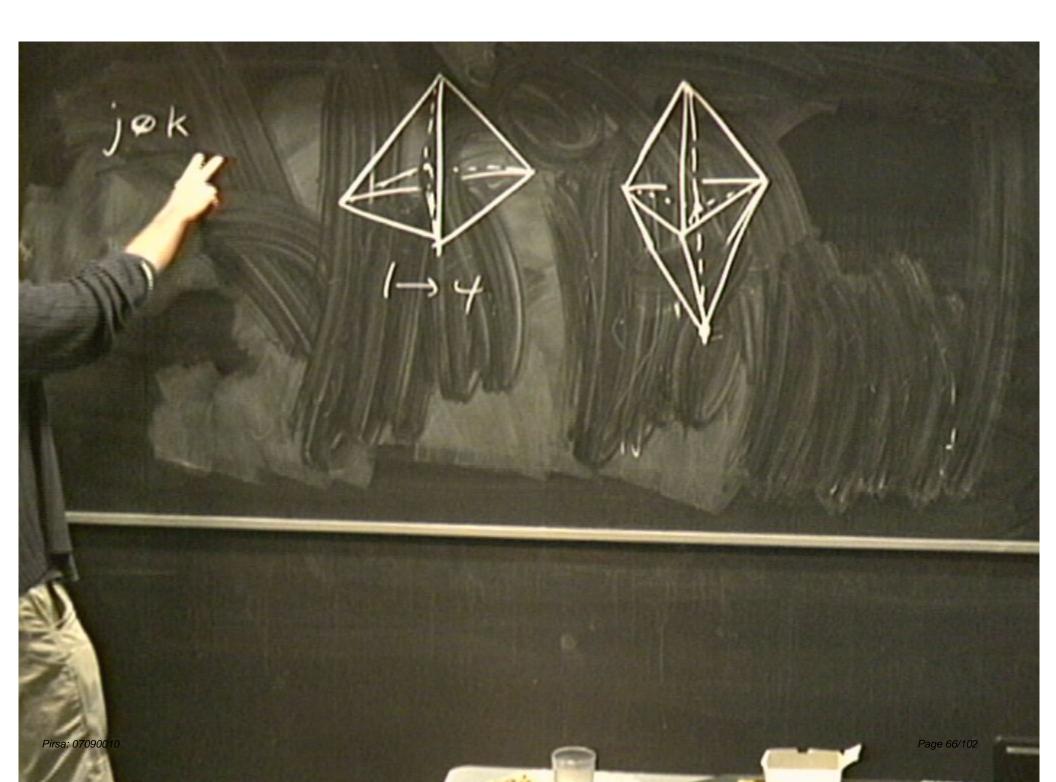
Dynamics

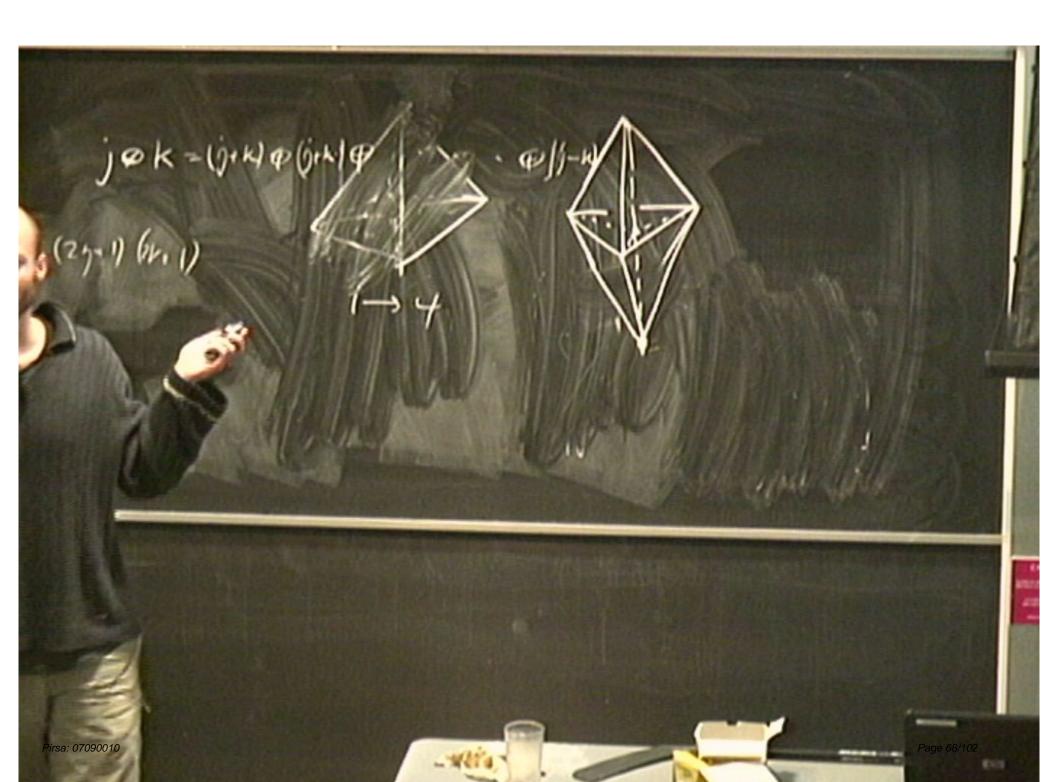
Suppose we have the following spin network, what value should

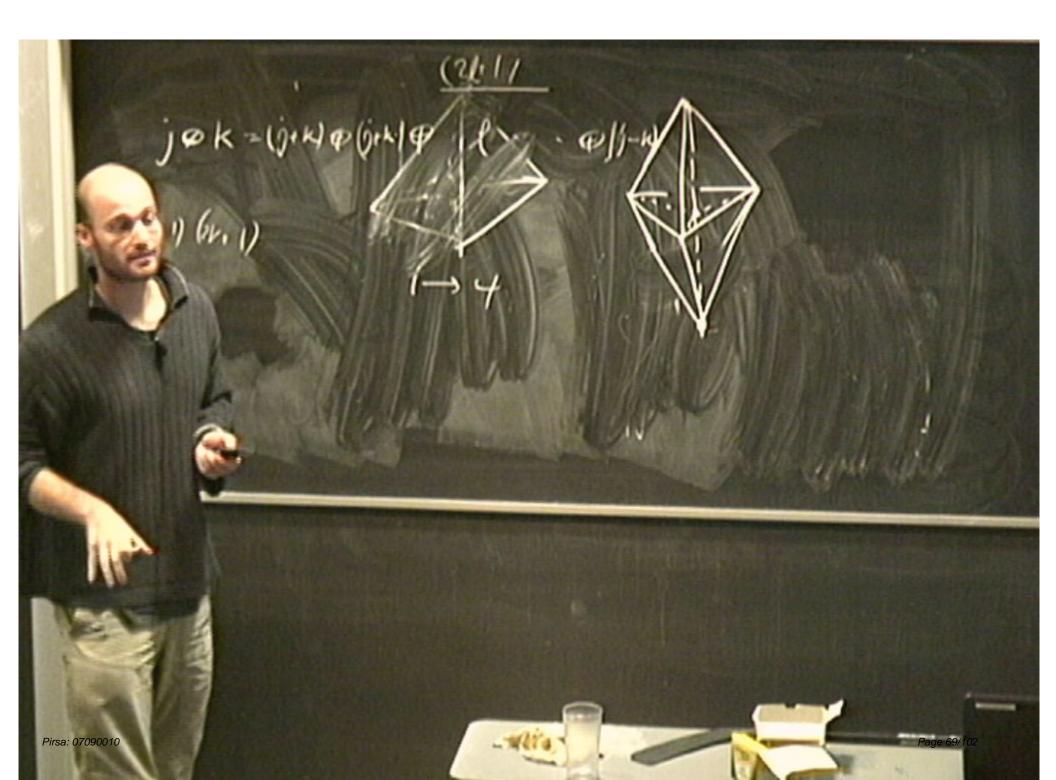


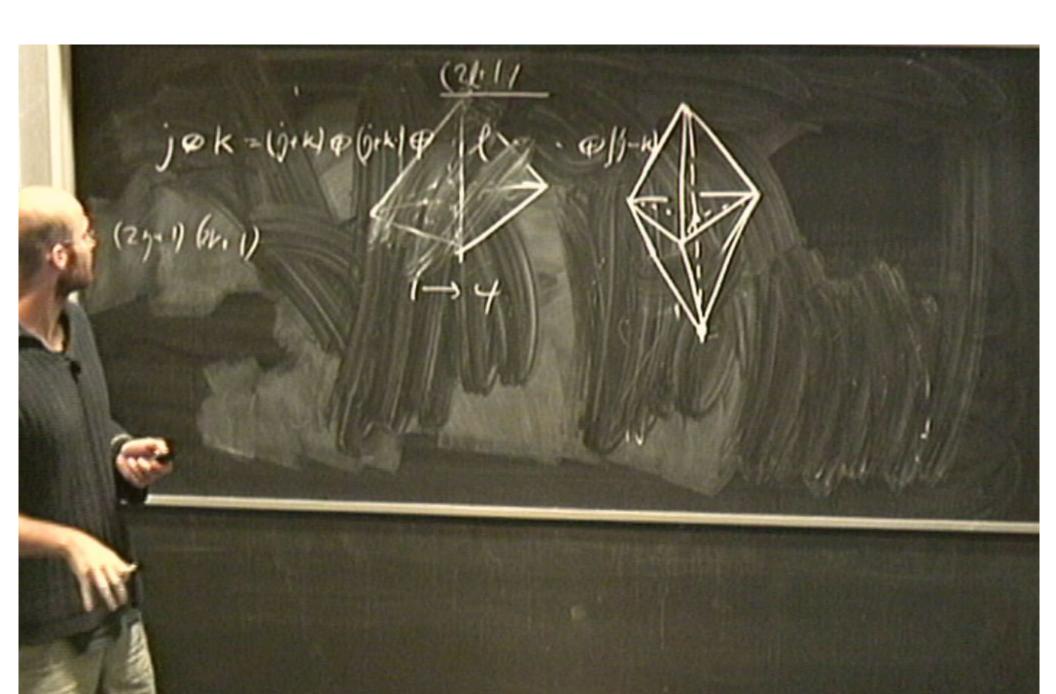
we attribute to "?"?

Answer









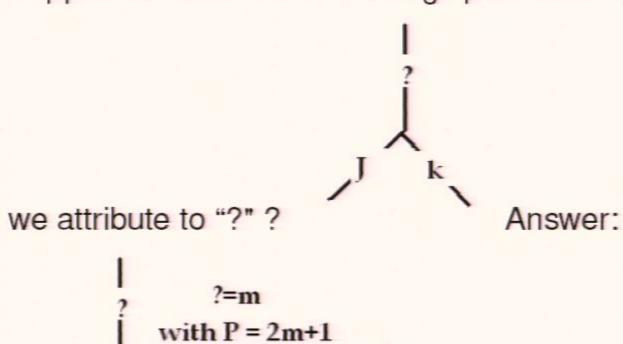
Page 70/102

Introduction and Motivation
Spin Networks
Scalar Product
Dynamics
Dynamics
Dynamics
Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Dynamics

Suppose we have the following spin network, what value should



(2k+1)(2J+1)

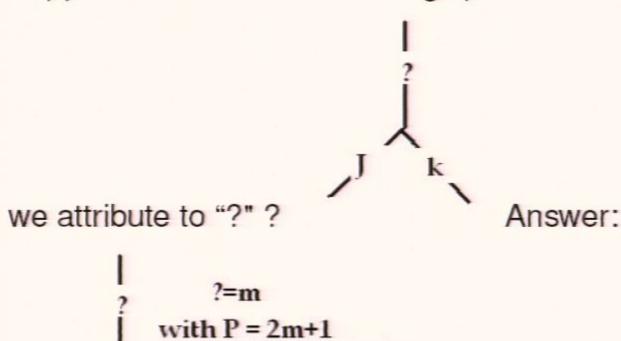
Page 71/102

Introduction and Motivation
Spin Networks
Scalar Product
Dynamics
Dynamics
Dynamics
Dynamics
The Spin Geometry Theorem, or the (partial) Semi-Classical limit

Conclusion and Outlook

Dynamics

Suppose we have the following spin network, what value should

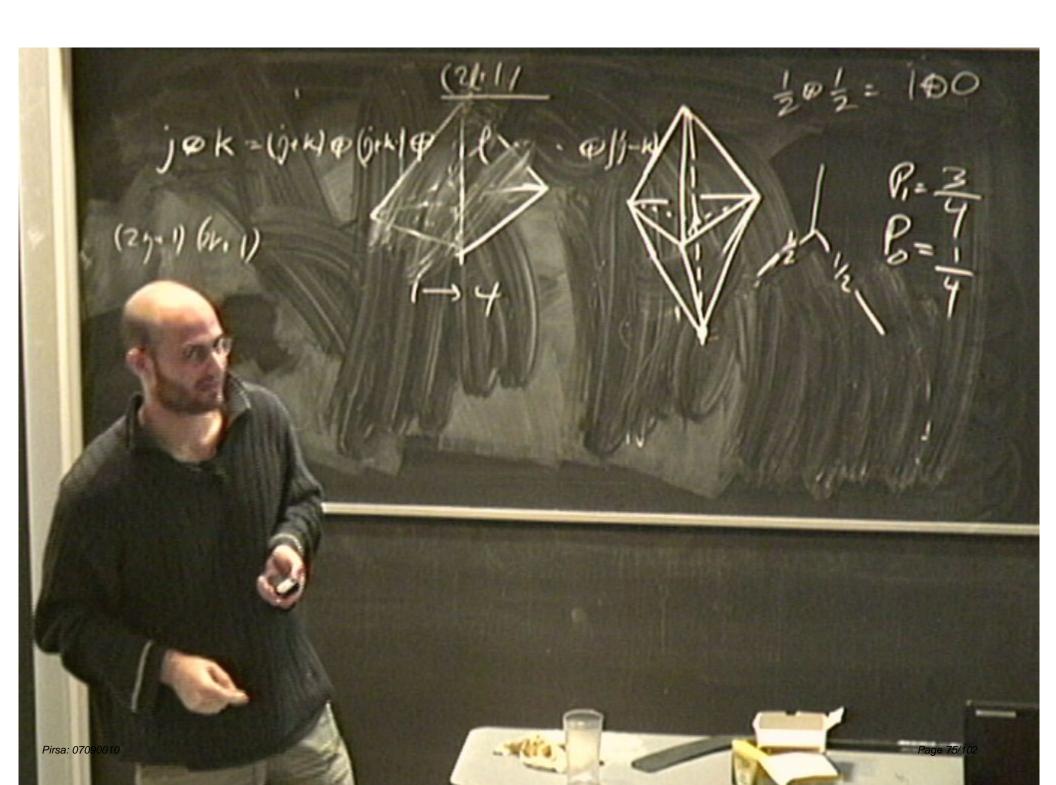


(2k+1)(2J+1)

Page 72/102

Pirsa: 07090010

Pirsa: 07090010

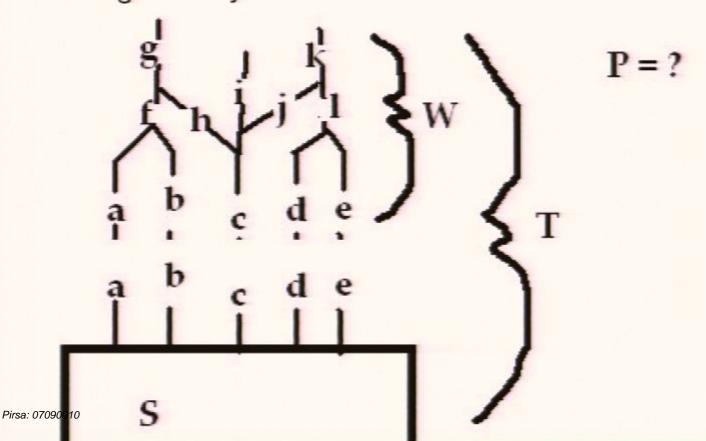


Introduction and Motivation
Spin Networks
Scalar Product
Dynamics
Dynamics
Dynamics
The Spin Geometry Theorem, or the (partial) Semi-Classical limit

Conclusion and Outlook

Dynamics

More generally:



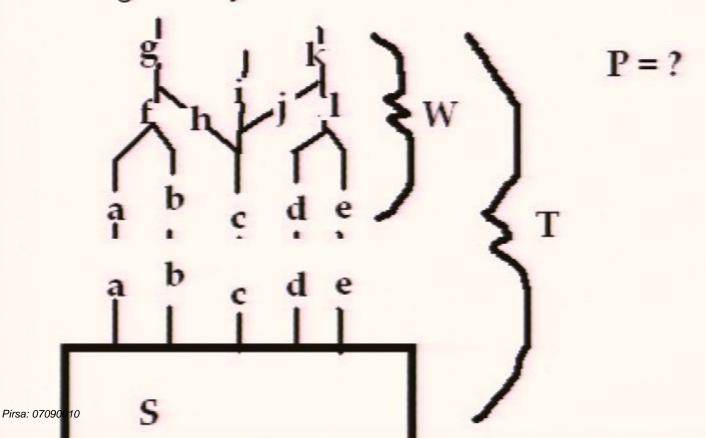
Page 76/102

Introduction and Motivation
Spin Networks
Scalar Product
Dynamics
Dynamics
Dynamics
Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Dynamics

More generally:



Page 77/102

Spin Networks

Scalar Product

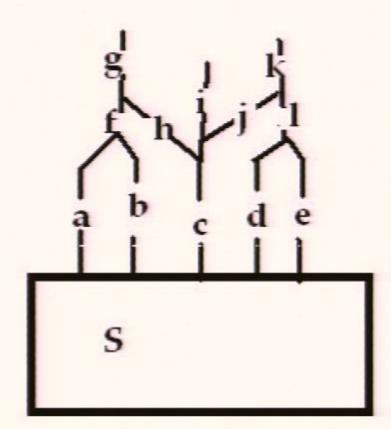
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

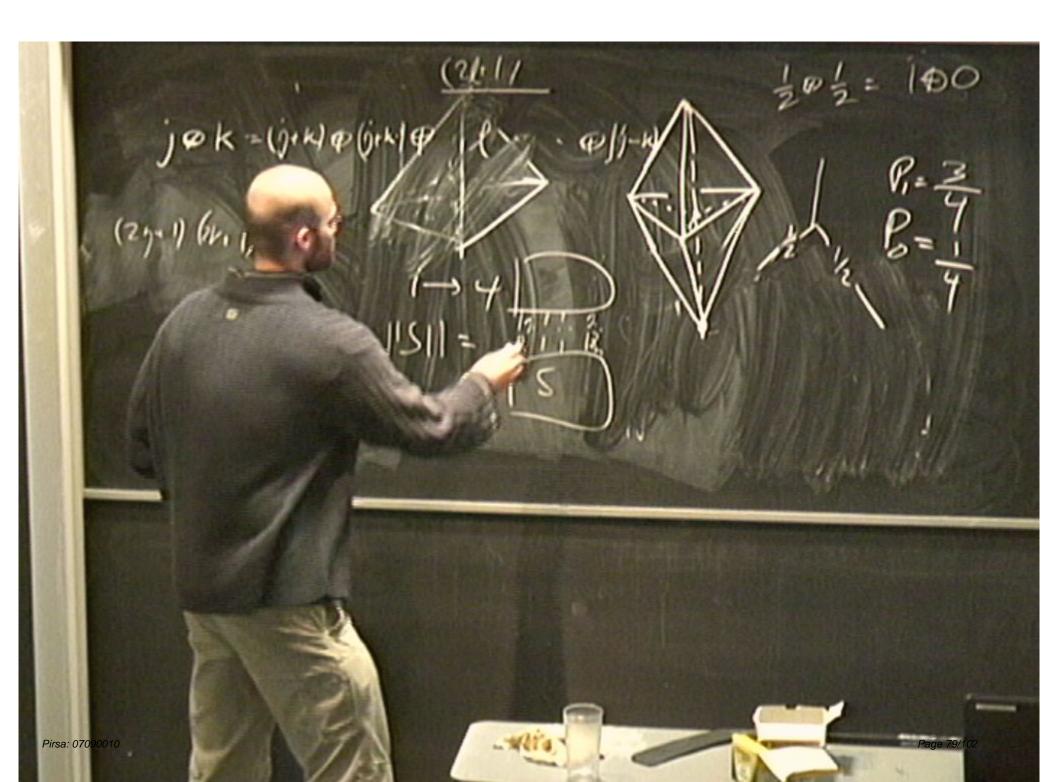
Dynamics

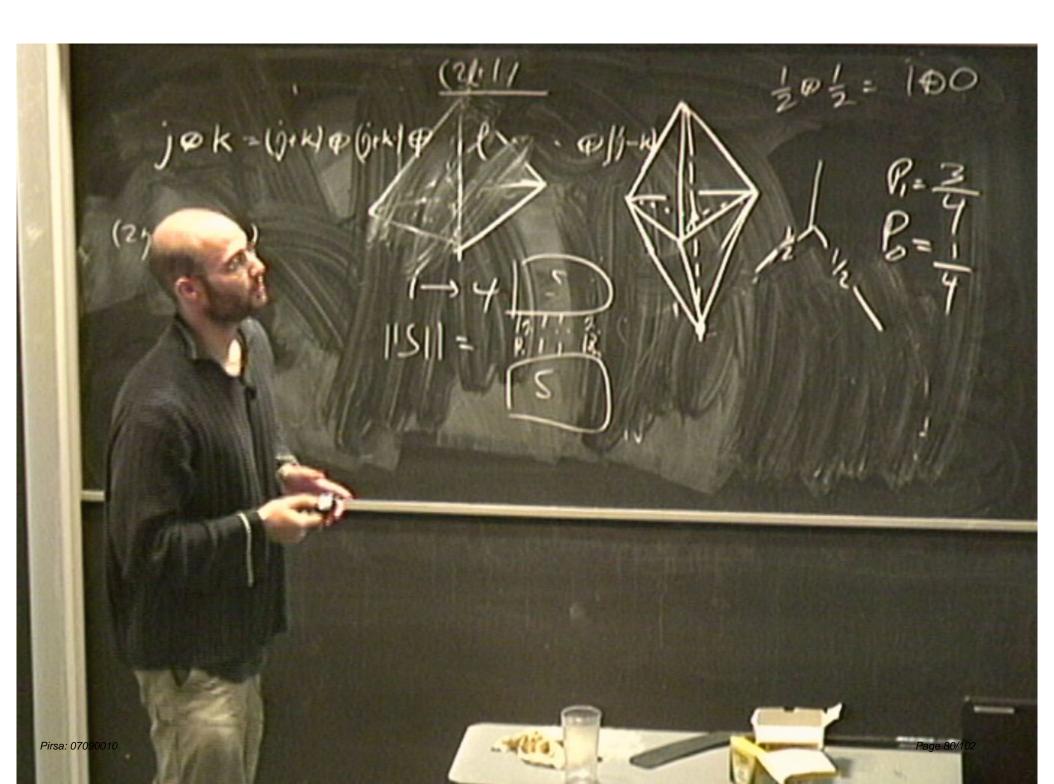


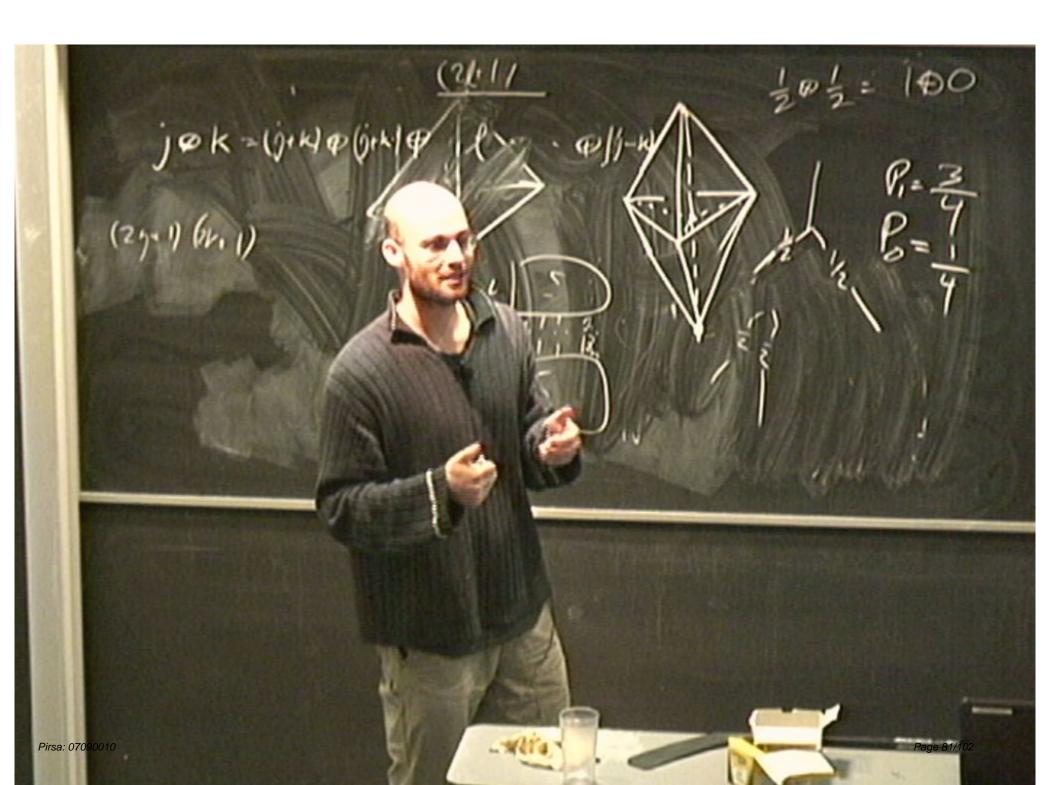
$$P = \|T\| (2g+1)(2i+1)(2k+1)$$

$$\|S\| \|W(f,g,h,i,j,k,l)\|$$

Pirsa: 07090010







Spin Networks

Scalar Product

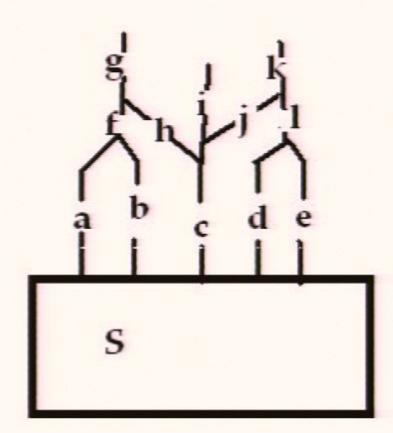
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Dynamics



$$P = \frac{\|T\|}{\|S\|} (2g+1)(2i+1)(2k+1)$$

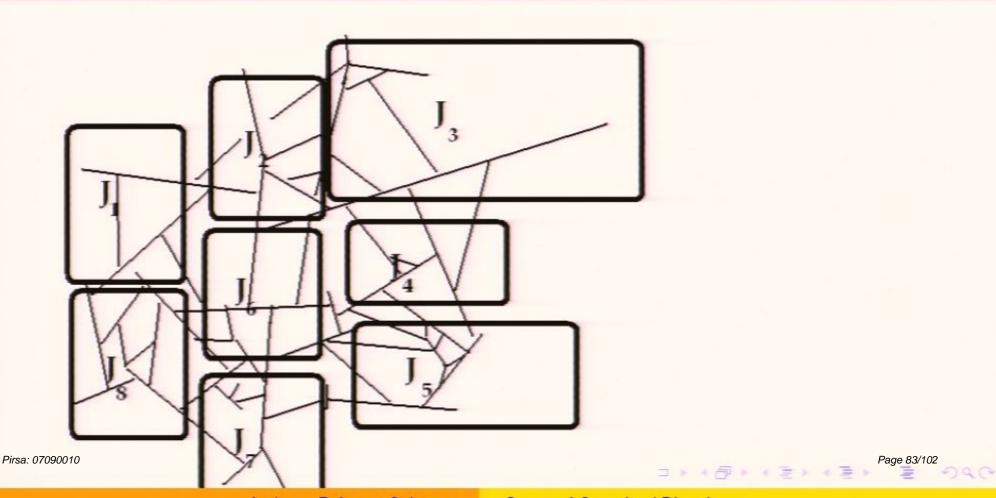
Introduction and Motivation Spin Networks Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook



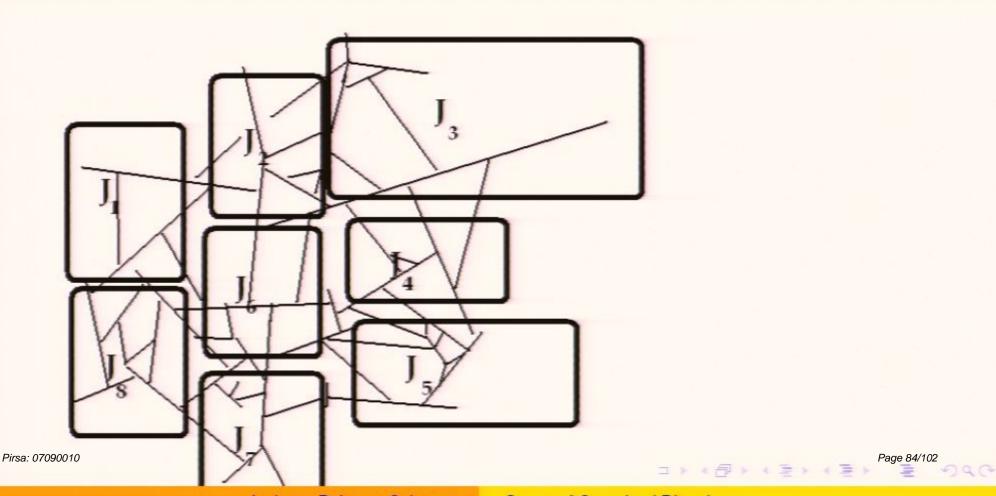
Introduction and Motivation Spin Networks Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook



Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit

Conclusion and Outlook

Spin Geometry Theorem

Define:

$$T_{a,b} = \mathbf{J_a} \cdot \mathbf{J_b}$$

$$T_{a,b} = \mathbf{J_a} \cdot \mathbf{J_b}$$

$$\widehat{T_{a,b}} = \frac{T_{a,b}}{\|T_{a,b}\|}$$

(3)

Pirsa: 07090010

Page 85/102

Introduction and Motivation
Spin Networks
Scalar Product
Dynamics
Dynamics
Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Spin Geometry Theorem

Define: Then the Spin Geometry Theorem states that if I is a set containing 4 elements then

$$\forall \varepsilon > 0, \ \exists \delta > 0 \ s.t.$$

$$\forall a,b \in I \ < \widehat{T_{a,b}}^2 - < \widehat{T_{a,b}} >^2 > < \delta \ then$$

$$< \det \widehat{T_{a,b}}_{a,b \in I} > < \varepsilon \ and \ \det < \widehat{T_{a,b}}_{a,b \in I} > < \varepsilon$$

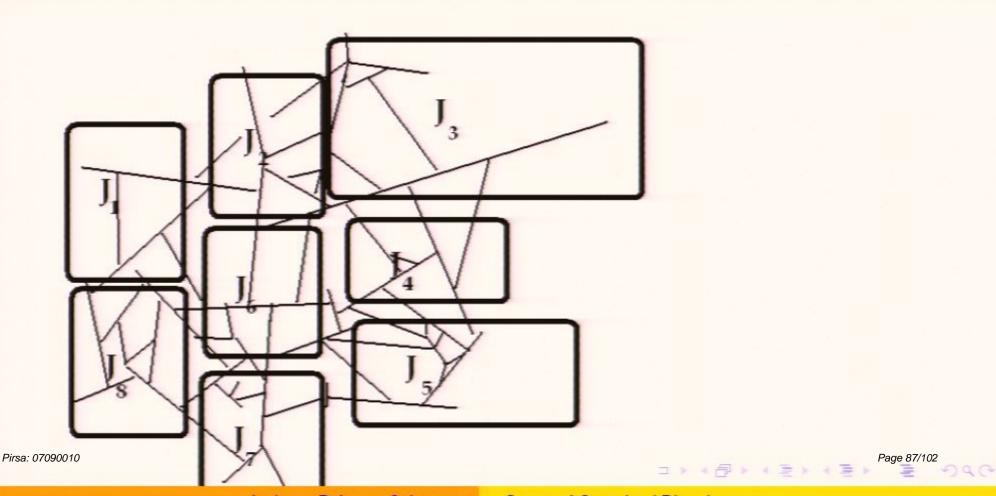
(4)

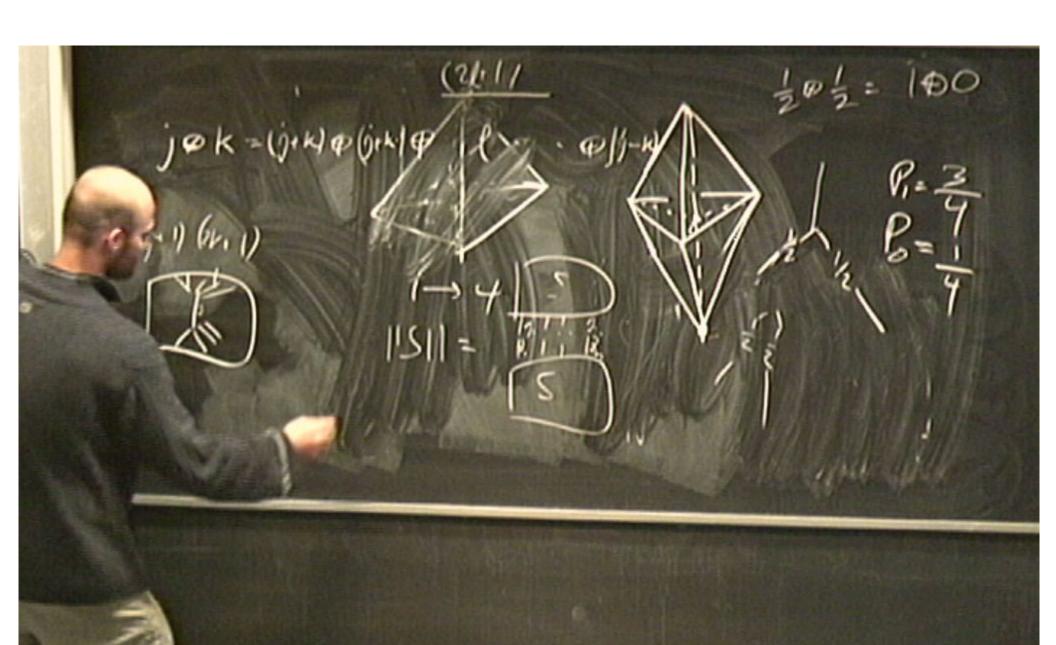
Page 86/102

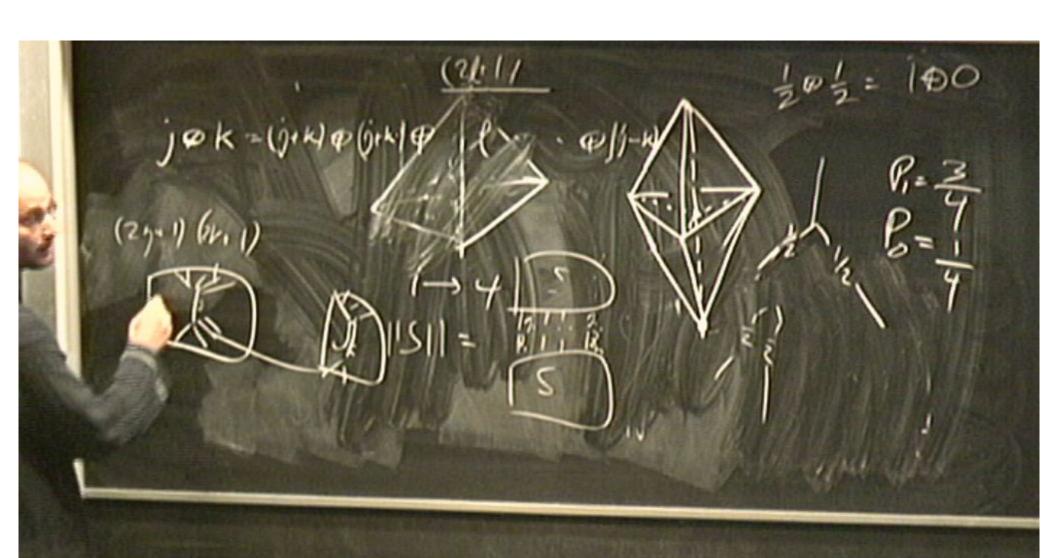
Introduction and Motivation Spin Networks Scalar Product **Dynamics** Dynamics

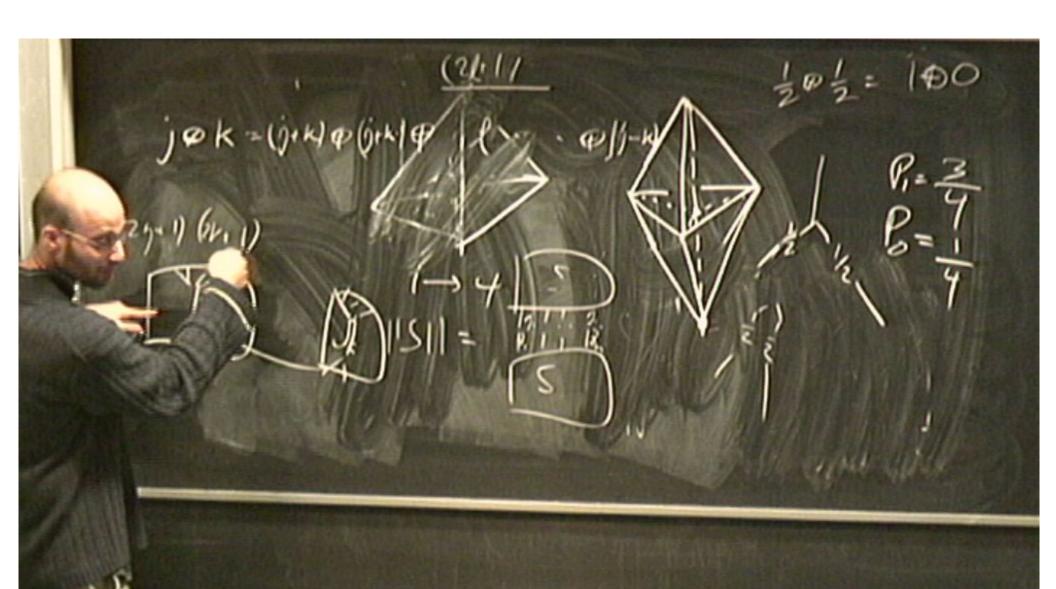
Dynamics

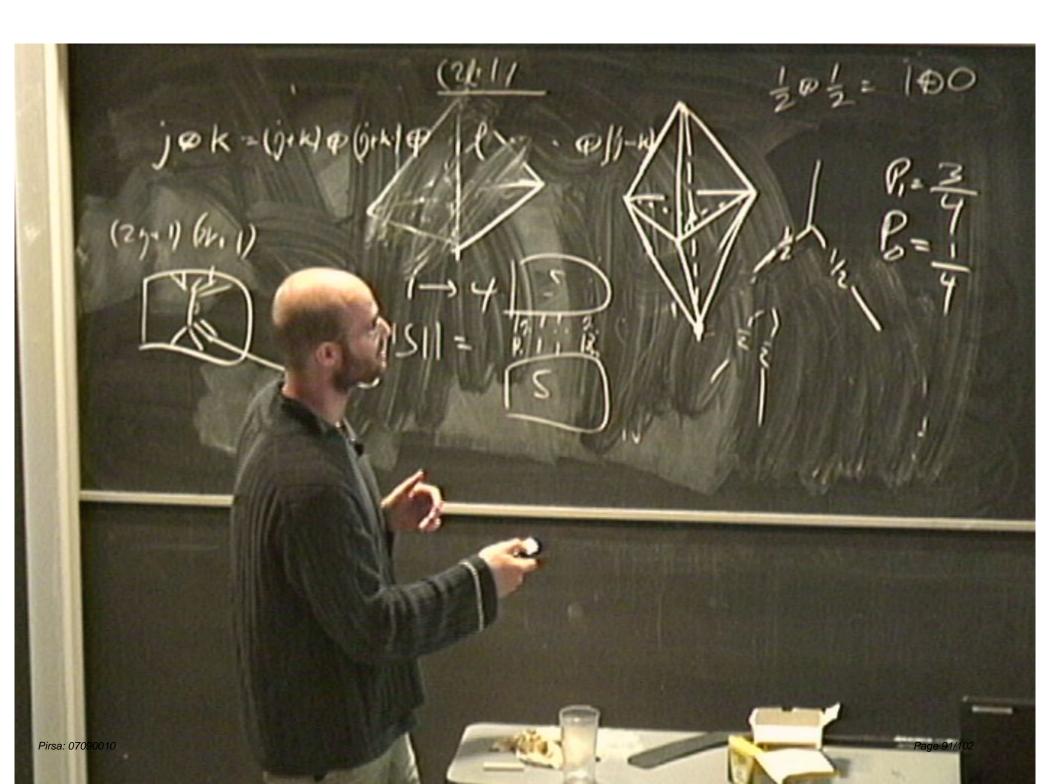
The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook











Introduction and Motivation Spin Networks

Scalar Product

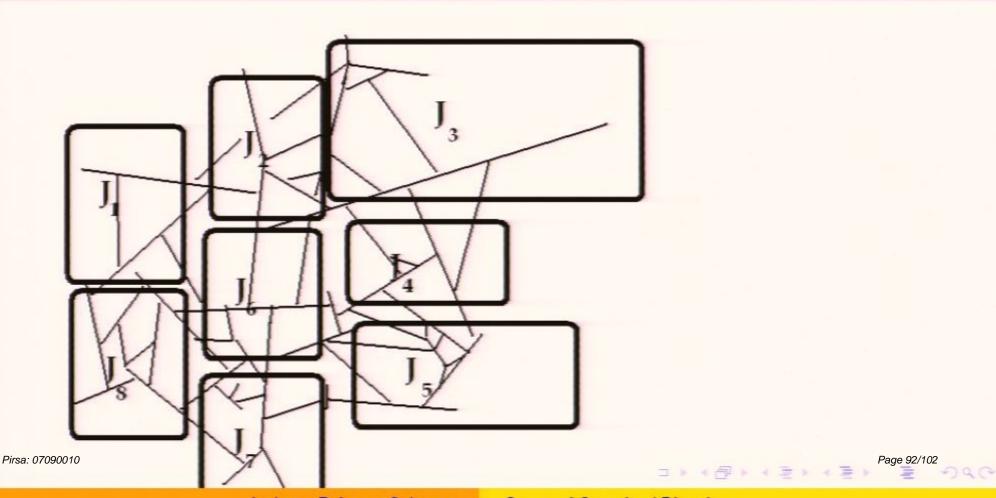
Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit

Conclusion and Outlook



Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit

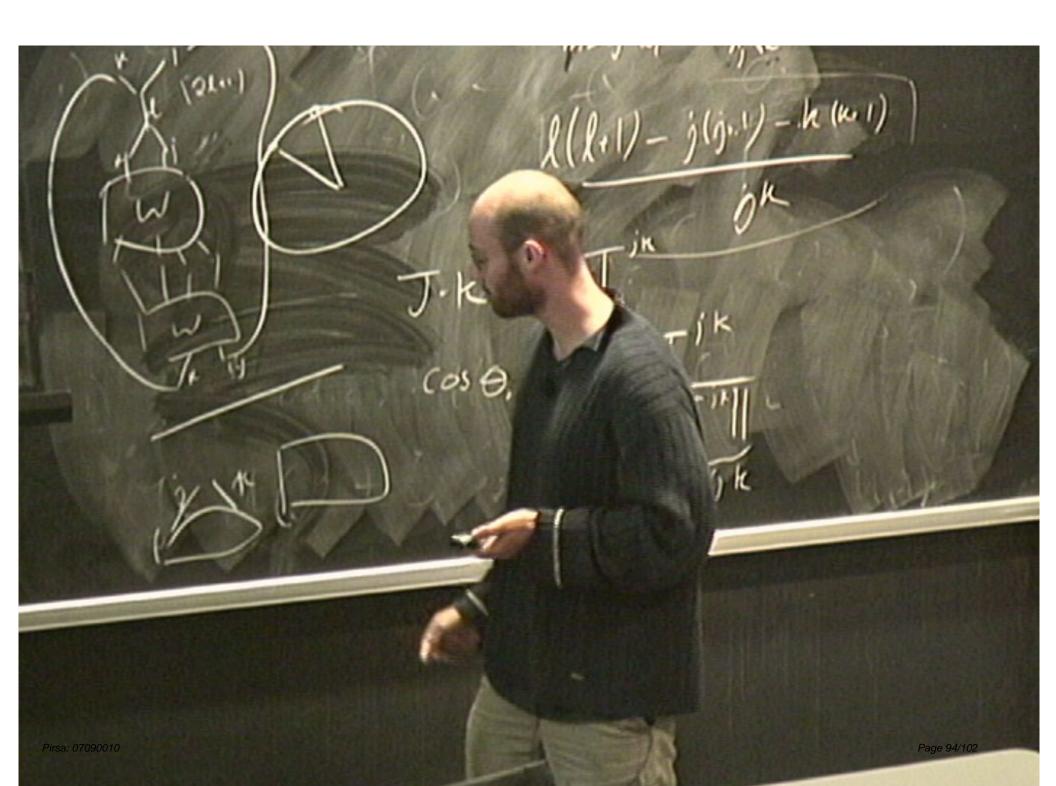
Conclusion and Outlook

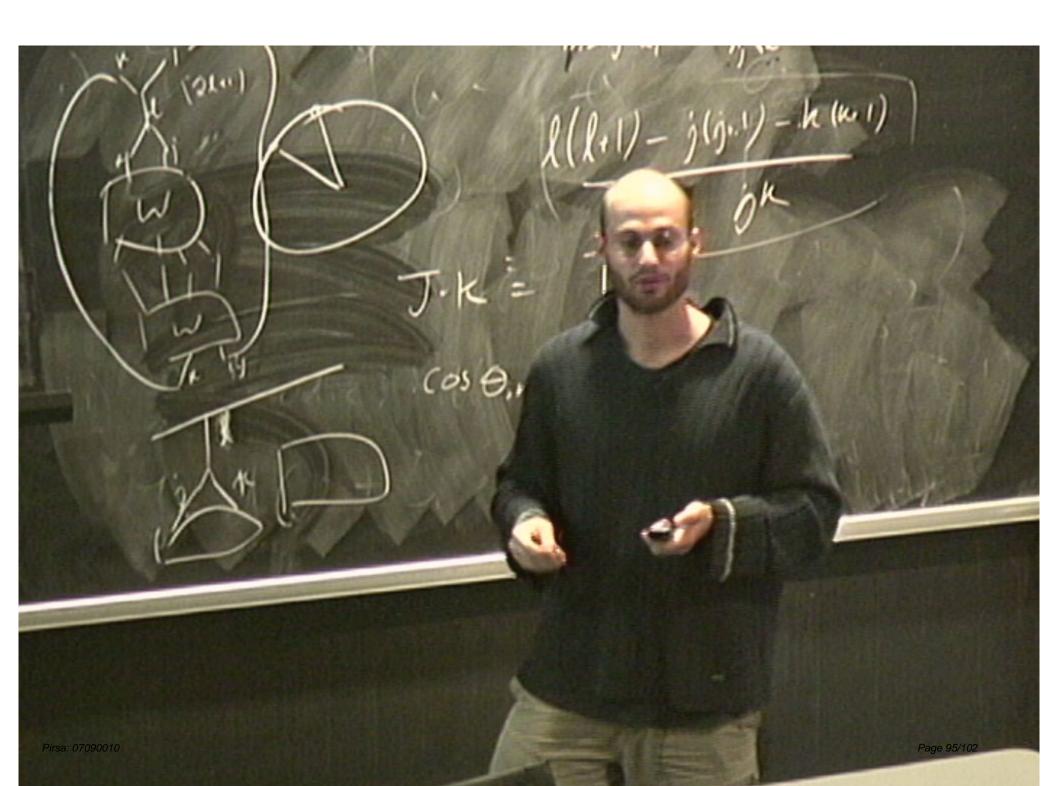
Conclusion and Outlook

- Discrete Kinematics
- Dynamics and measurement unite
 - Dynamics not yet really complete Space changes.
 - Semi-Classical limit
 - Generalization

Pirsa: 07090010

Page 93/102





Spin Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit

Conclusion and Outlook

Conclusion and Outlook

- Discrete Kinematics
- Dynamics and measurement unite

Spin Networks

Scalar Product

Dynamics

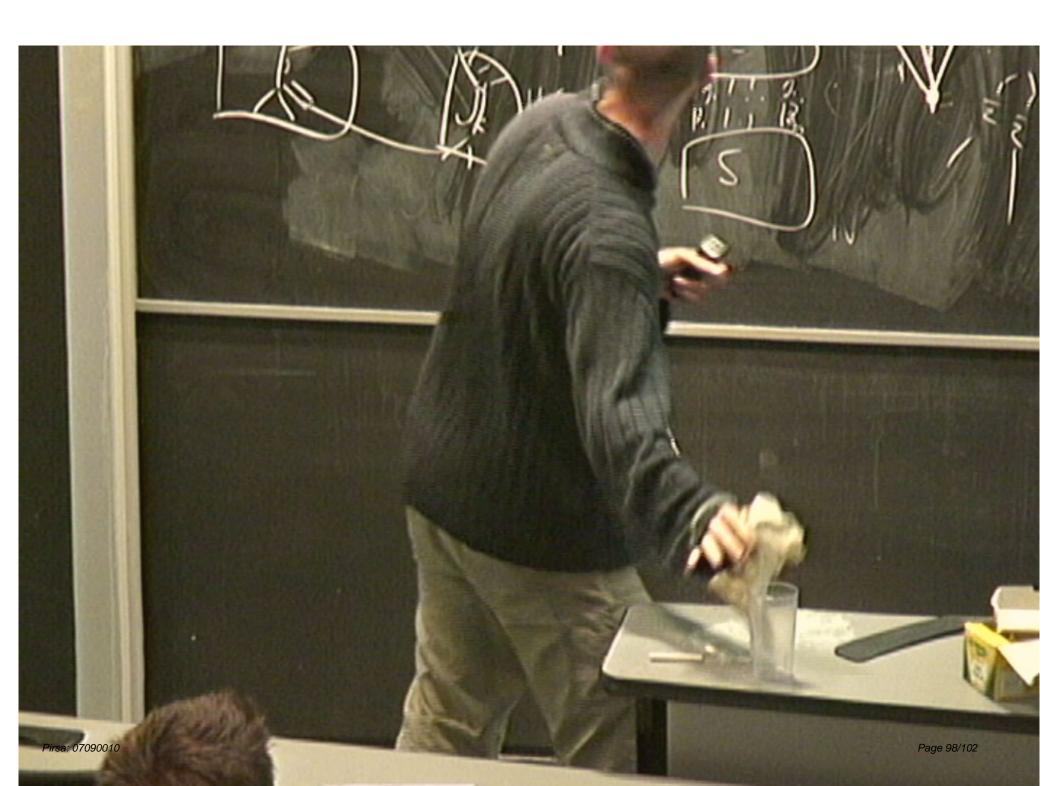
Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Conclusion and Outlook

- Discrete Kinematics
- Dynamics and measurement unite
 - Dynamics not yet really complete Space changes.
 - Semi-Classical limit
 - Generalization



Introduction and Motivation Spin Networks

Spiri Networks

Scalar Product

Dynamics

Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Conclusion and Outlook

- Discrete Kinematics
- Dynamics and measurement unite
 - Dynamics not yet really complete Space changes.
 - Semi-Classical limit
 - Generalization

Pirsa: 07090010

Page 101/102

Spin Networks

Scalar Product

Dynamics

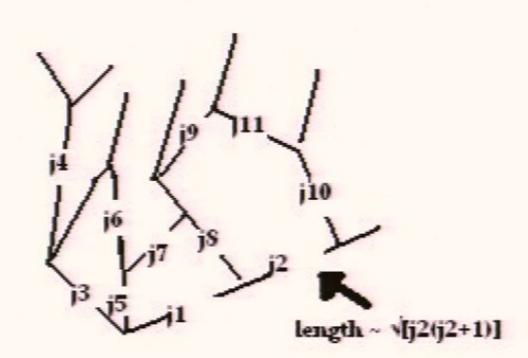
Dynamics

Dynamics

The Spin Geometry Theorem, or the (partial) Semi-Classical limit Conclusion and Outlook

Spin Networks

In what follows we have see the spin network edges as either



Pirsa: 07090010 lengths or areas.

Page 102/102