Title: Effeciently generating generic entanglement

Date: Sep 07, 2007 09:30 AM

URL: http://pirsa.org/07090006

Abstract:

'Budding minds' Perimeter Institute

Efficient Generation of Generic Entanglement

Oscar C.O. Dahlsten with

Martin B. Plenio and Roberto Oliveira

Waterloo, 7 Sep 2007

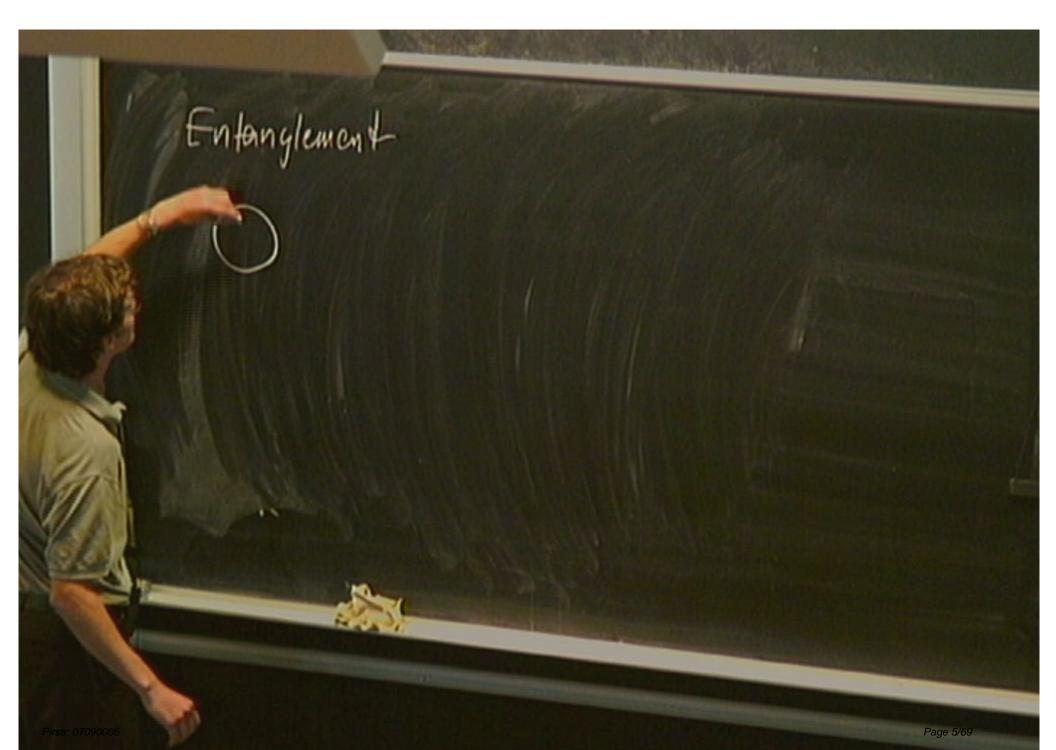
'Efficient Generation of Generic Entanglement'

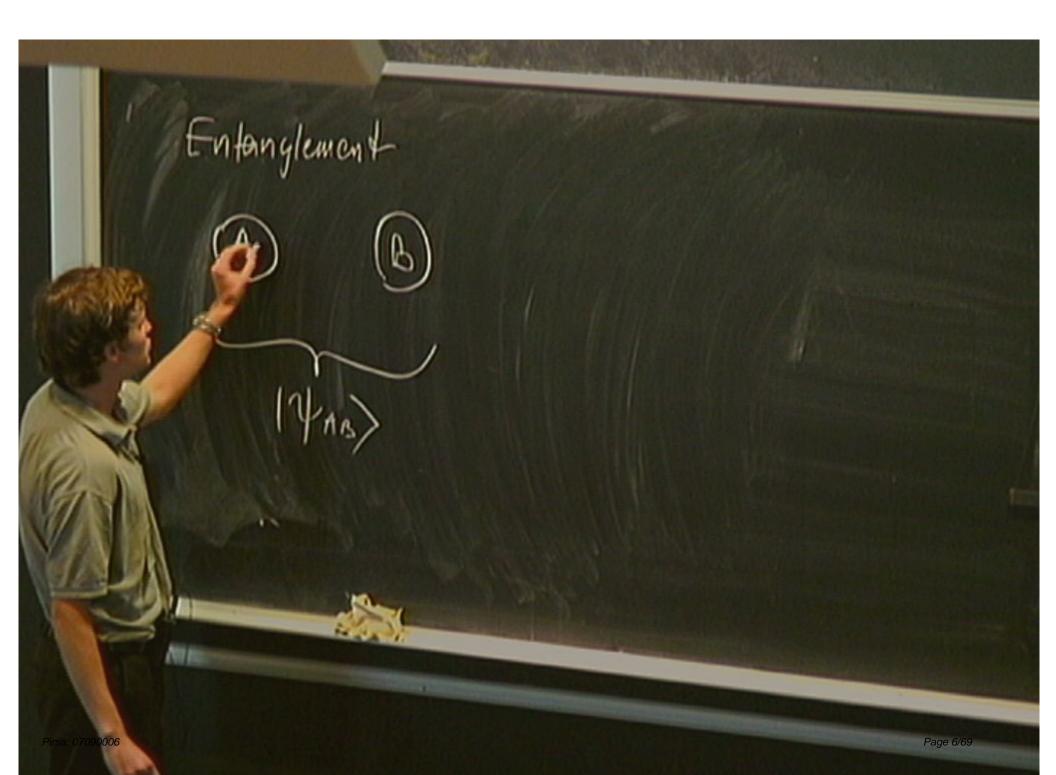
- By Entanglement we mean, unless otherwise stated, that taken between two parties sharing a pure state.
- By Generic Entanglement we mean the entanglement average over pure states picked from the uniform (Haar) distribution.

[Hayden, Leung, Winter, Comm. Math.Phys. 2006]

- By Generating, we mean that we have a random process yielding that average.
- By Efficiently we mean that the number of elementary(2-qubit) gates necessary grows as poly(N) where N is number of qubits carrying the state.

Pirsa: 07090006 Page 4/69





Entanglement

Entanglement

And Mas

Entanglement

S(PA) = - Tr Pallag PA

PA = + rs PAB

Simplest example of entanglement

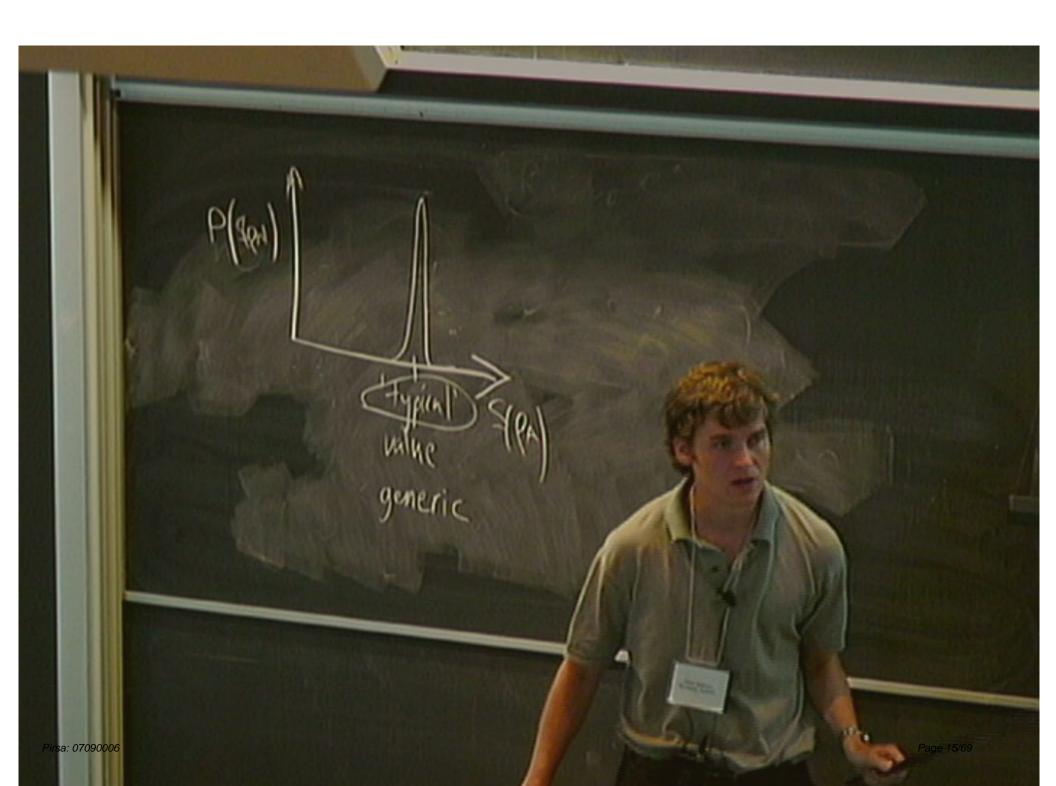
Simplest example of entanglement 1400 = 100 + 111) Simplest example of entanglement

PA = 20 | PAB

Dimplest example of entanglement 14nD=100+111) 107,1076 PA=20/PAB/072+21/PAB/17B

Simplest example of entanglement 14mb)=100+111) PA = <0 | PAB | 07, + <1 | PAB | 17B





Waterloo, 7 Sep 2007

'Efficient Generation of Generic Entanglement'

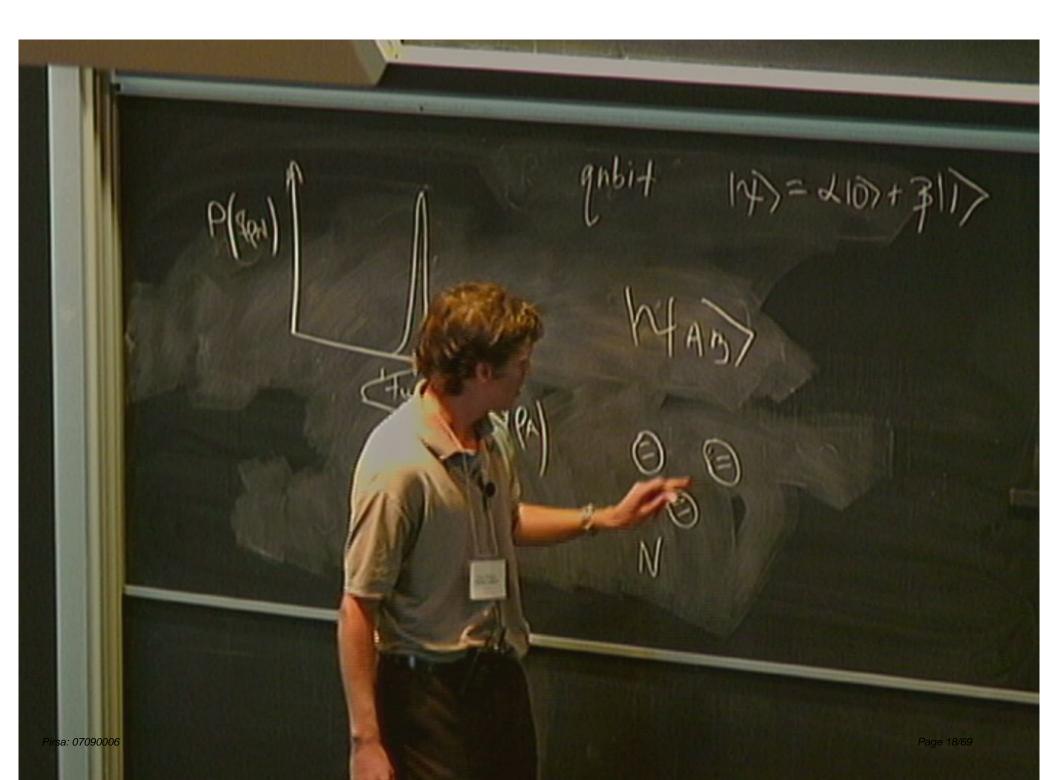
- By Entanglement we mean, unless otherwise stated, that taken between two parties sharing a pure state.
- By Generic Entanglement we mean the entanglement average over pure states picked from the uniform (Haar) distribution.

[Hayden, Leung, Winter, Comm. Math.Phys. 2006]

- By Generating, we mean that we have a random process yielding that average.
- By Efficiently we mean that the number of elementary(2-qubit) gates necessary grows as poly(N) where N is number of qubits carrying the state.

gnbi+ 14)= 210)+311> unline generic

rsa: 07090006



gnbi+ 14)= 2107+311> MADY # interactions sa: 07090<mark>006</mark>

Talk Structure

This talk aims to explain key points of two papers relating to: Efficient Generation of Generic Entanglement.

[Oliveira, Dahlsten and Plenio, q-ph/0605126, Phys. Rev. Lett. 2007] [Dahlsten, Oliveira and Plenio, q-ph/0701125, J. Phys. A 2007]

- Introduction, aim of work
- Result 1 (Theorem): Generic entanglement is generated efficiently
- Result 2 (Numerics): Generic entanglement is achieved at a particular instant.
- Conclusion

Pirsa: 07090006 Page 20/69

Motivation and Aim

 Restricting entanglement types to those that are typical/ generic could give a simplified entanglement theory.

[Hayden, Leung, Winter, Comm. Math.Phys. 2006]

- 'Typical' has been defined relative to a flat distribution on pure states, the unitarily invariant measure, where $P(\psi) = P(U\psi)$.
- However exp(N=system size) two-qubit gates are necessary to get that flat distribution on states, so it seems unphysical.
- Aim: to prove that in spite of this, the average entanglement
 associated with the unitarily invariant measure is physical in that
 it appears after poly(N) gates.

Motivation and Aim

 Restricting entanglement types to those that are typical/ generic could give a simplified entanglement theory.

[Hayden, Leung, Winter, Comm. Math.Phys. 2006]

- 'Typical' has been defined relative to a flat distribution on pure states, the unitarily invariant measure, where $P(\psi) = P(U\psi)$.
- However exp(N=system size) two-qubit gates are necessary to get that flat distribution on states, so it seems unphysical.
- Aim: to prove that in spite of this, the average entanglement associated with the unitarily invariant measure is physical in that it appears after poly(N) gates.

Pirsa: 07090006 Page 22/69

gnbit 14)= 410)+311> # interactions a: 07090006

Motivation and Aim

 Restricting entanglement types to those that are typical/ generic could give a simplified entanglement theory.

[Hayden, Leung, Winter, Comm. Math.Phys. 2006]

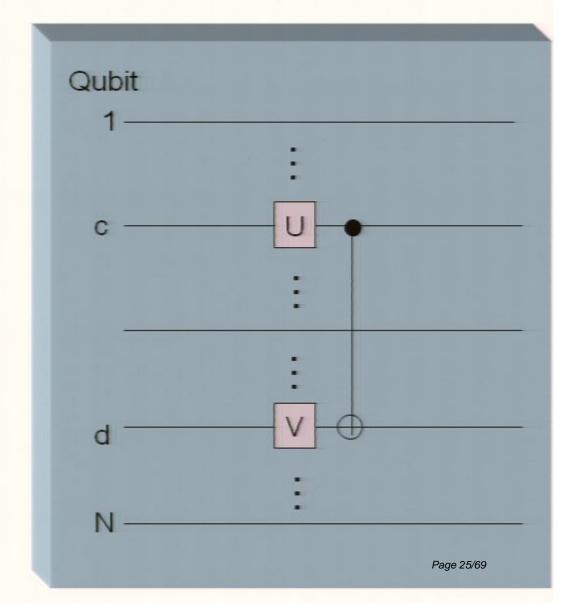
- 'Typical' has been defined relative to a flat distribution on pure states, the unitarily invariant measure, where $P(\psi) = P(U\psi)$.
- However exp(N=system size) two-qubit gates are necessary to get that flat distribution on states, so it seems unphysical.
- Aim: to prove that in spite of this, the average entanglement associated with the unitarily invariant measure is physical in that it appears after poly(N) gates.

Pirsa: 07090006 Page 24/69

The random process

Consider random two-party interactions modelled as twoqubit gates:

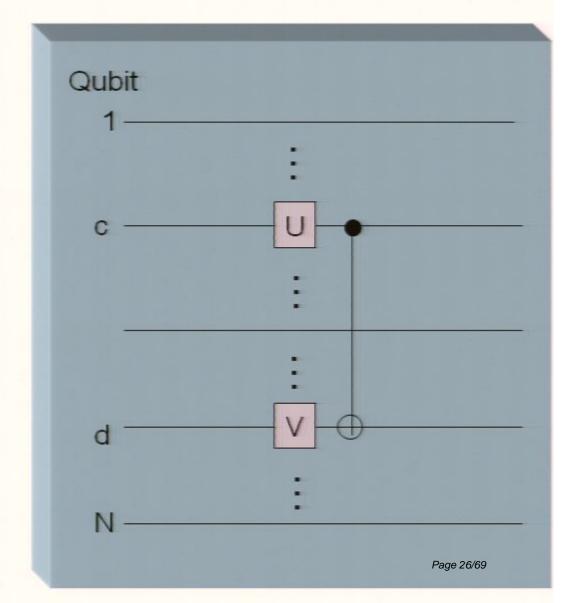
- Pick two single qubit unitaries, U and V, uniformly from the Bloch Sphere.
- Choose a pair of qubits {c,d} without bias.
- 3. Apply U to c and V to d.
- Apply a CNOT on c and d.

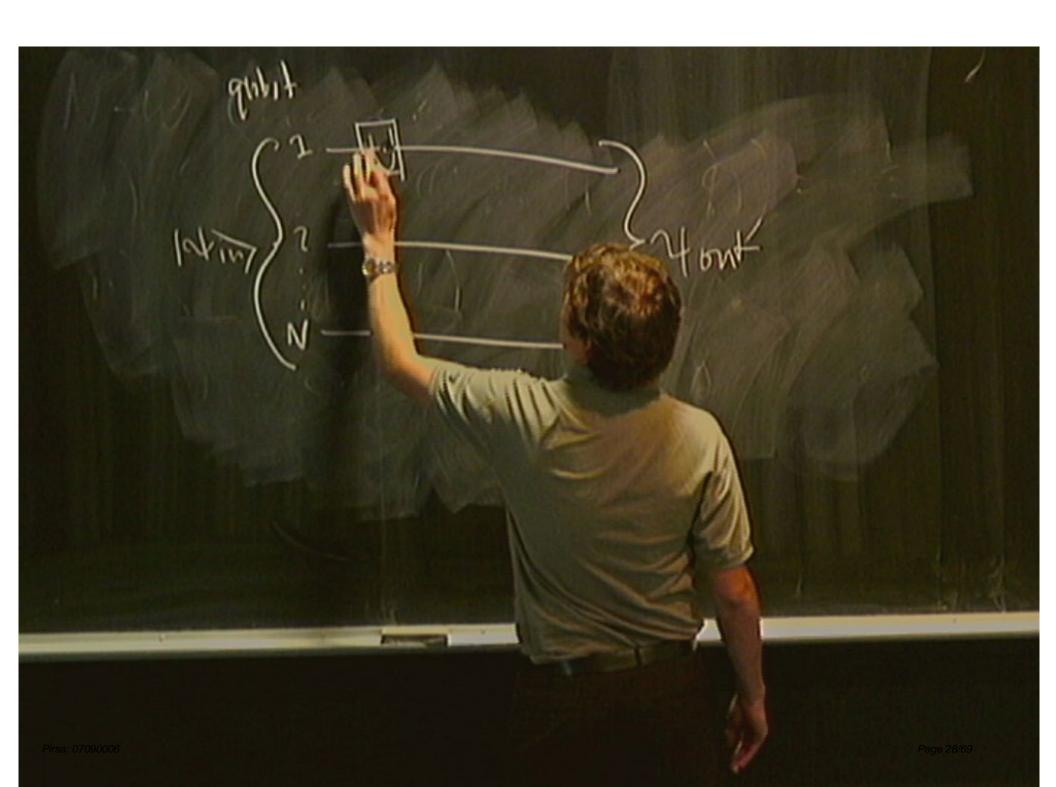


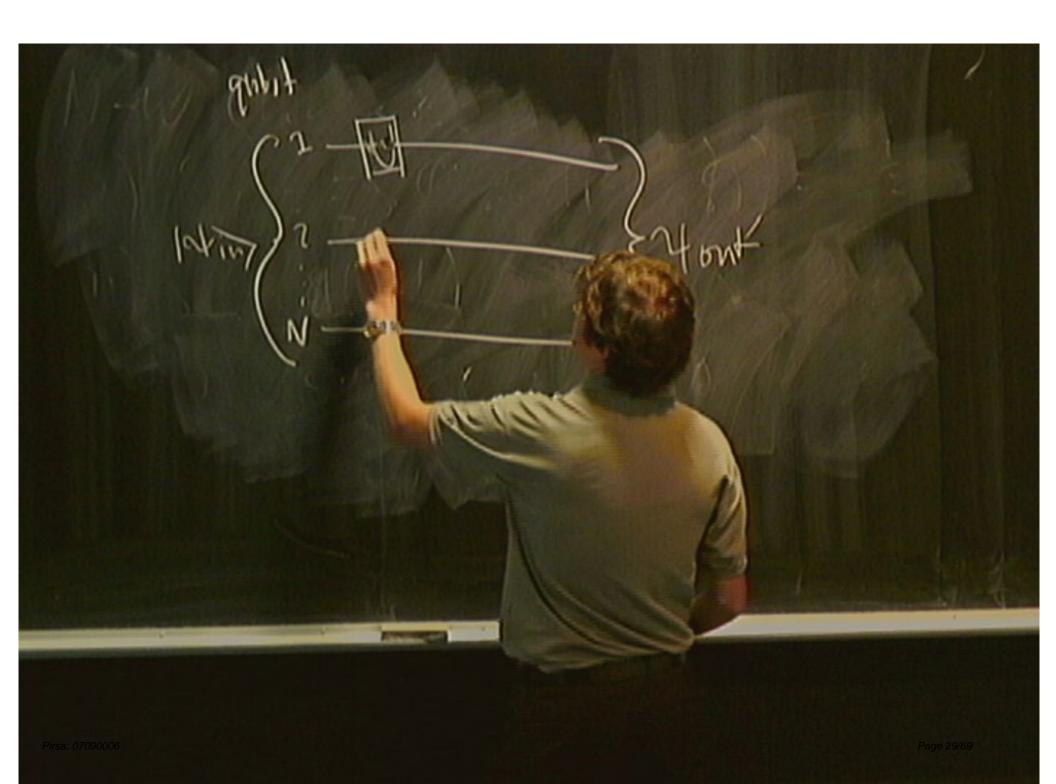
The random process

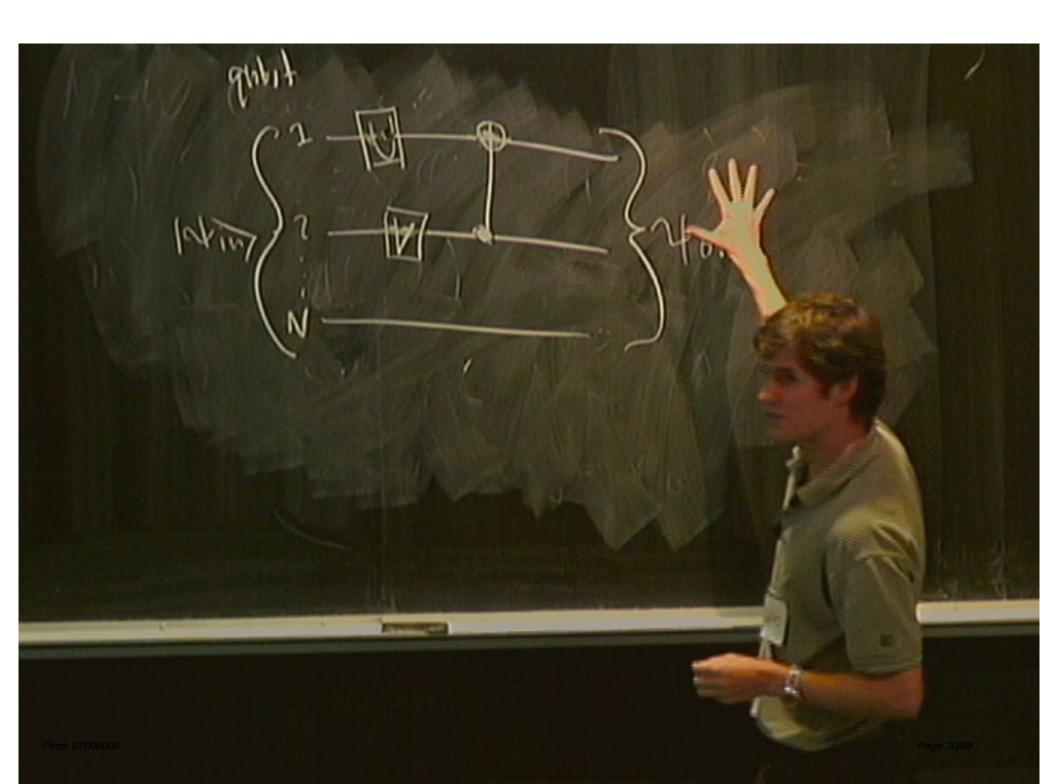
Consider random two-party interactions modelled as twoqubit gates:

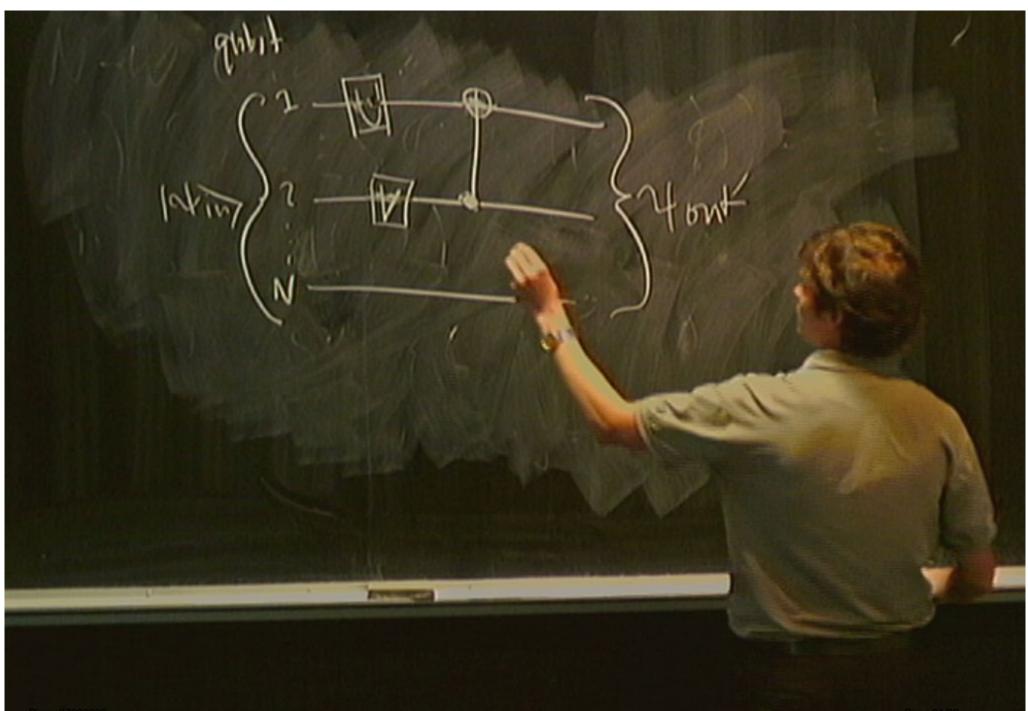
- Pick two single qubit unitaries, U and V, uniformly from the Bloch Sphere.
- Choose a pair of qubits {c,d} without bias.
- 3. Apply U to c and V to d.
- Apply a CNOT on c and d.

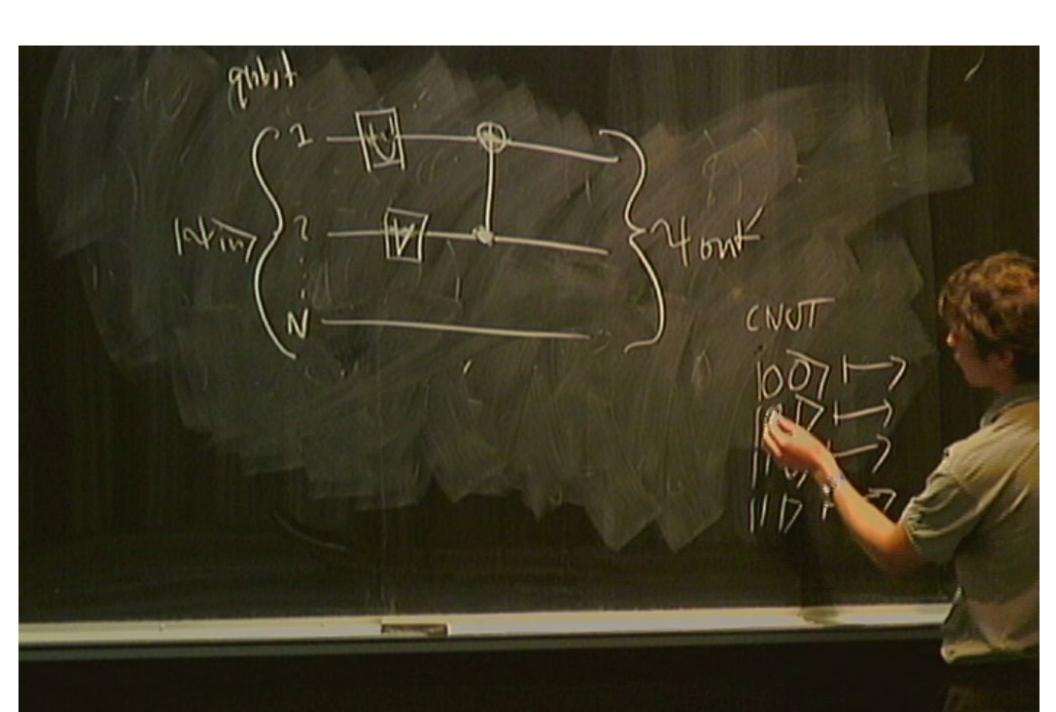






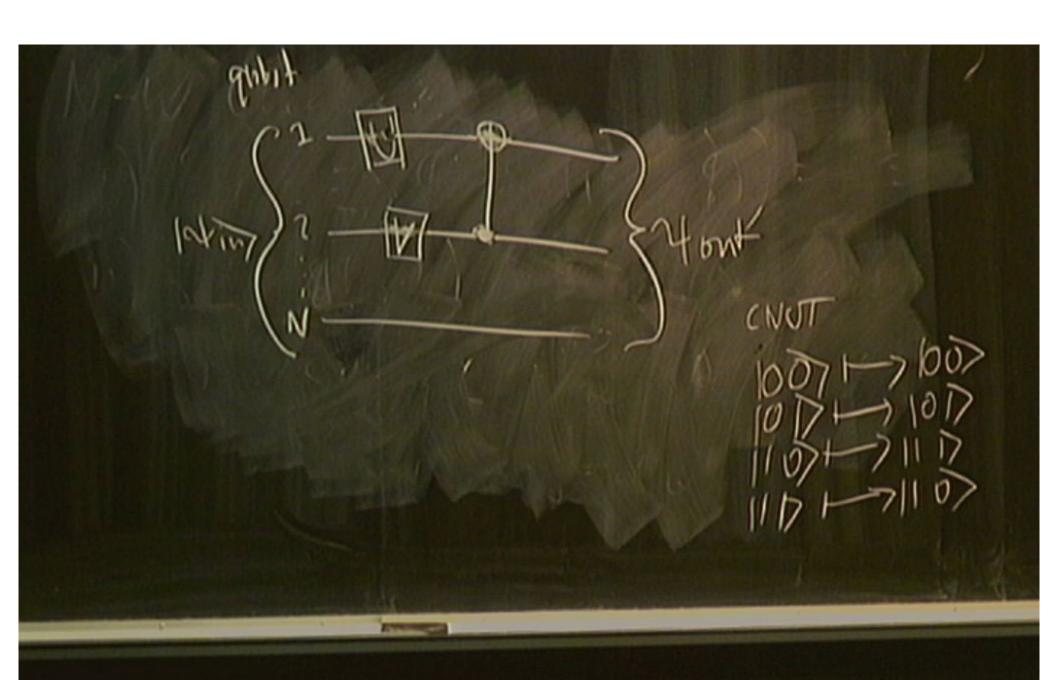






Pirsa: 07090006

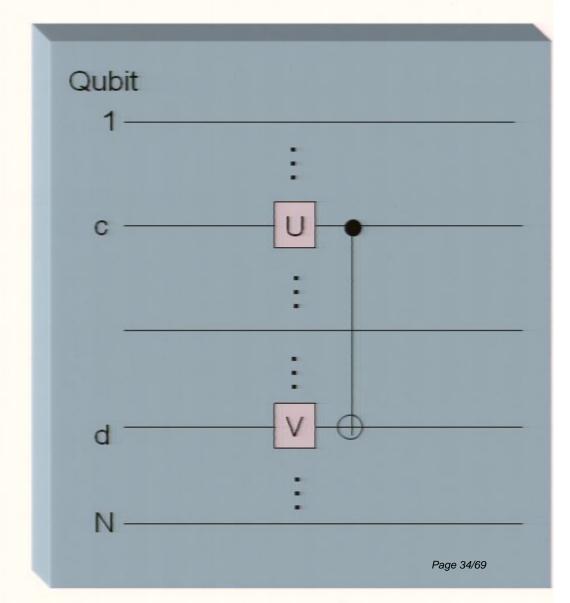
Page 32/6



The random process

Consider random two-party interactions modelled as twoqubit gates:

- Pick two single qubit unitaries, U and V, uniformly from the Bloch Sphere.
- Choose a pair of qubits {c,d} without bias.
- 3. Apply U to c and V to d.
- Apply a CNOT on c and d.



CNUT

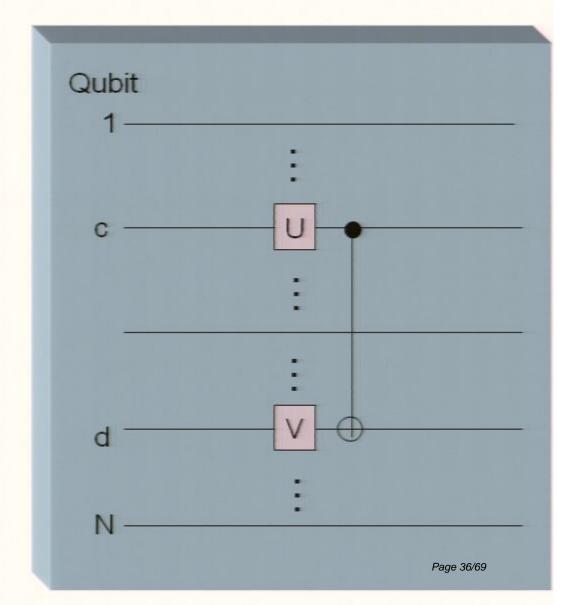
Pirsa: 07090006

Page 35/69

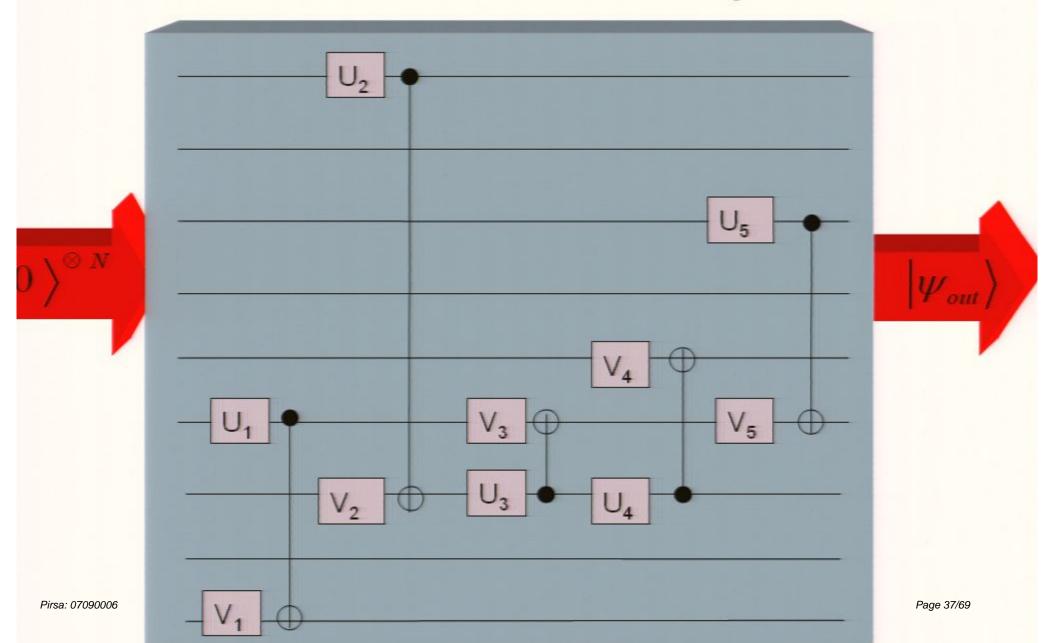
The random process

Consider random two-party interactions modelled as twoqubit gates:

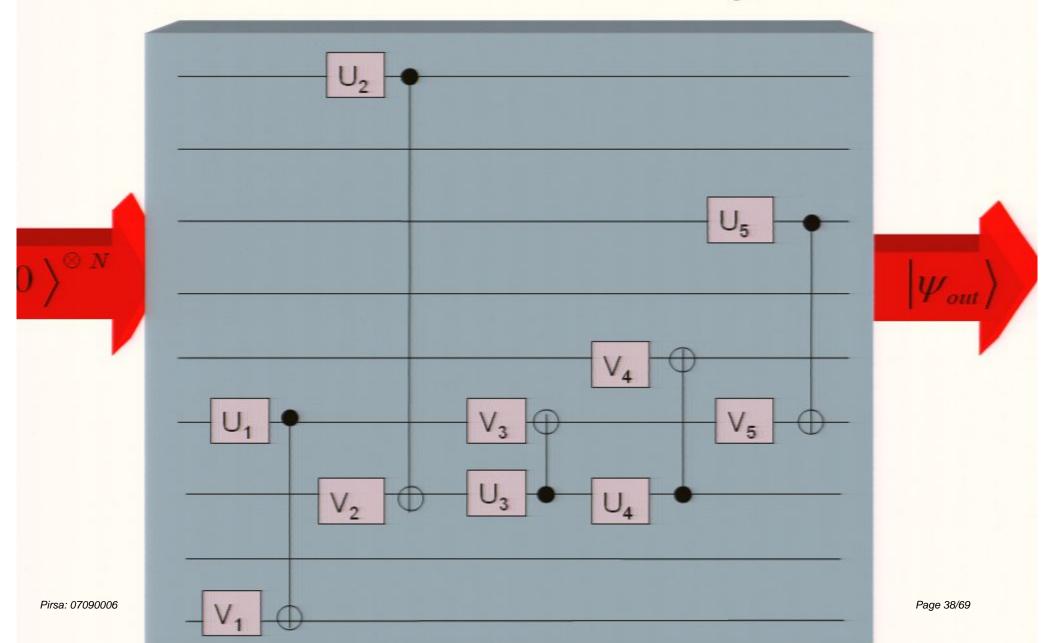
- Pick two single qubit unitaries, U and V, uniformly from the Bloch Sphere.
- Choose a pair of qubits {c,d} without bias.
- 3. Apply U to c and V to d.
- Apply a CNOT on c and d.



Random circuit example



Random circuit example



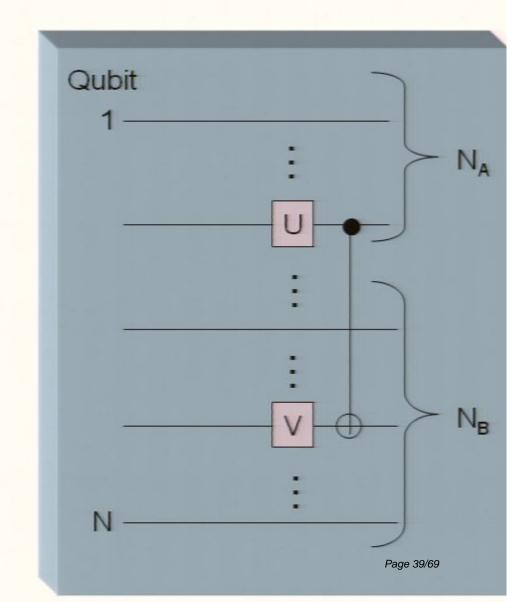
Entanglement after infinite time

 After infinite time(steps), the entanglement E is expected to be nearly maximal.

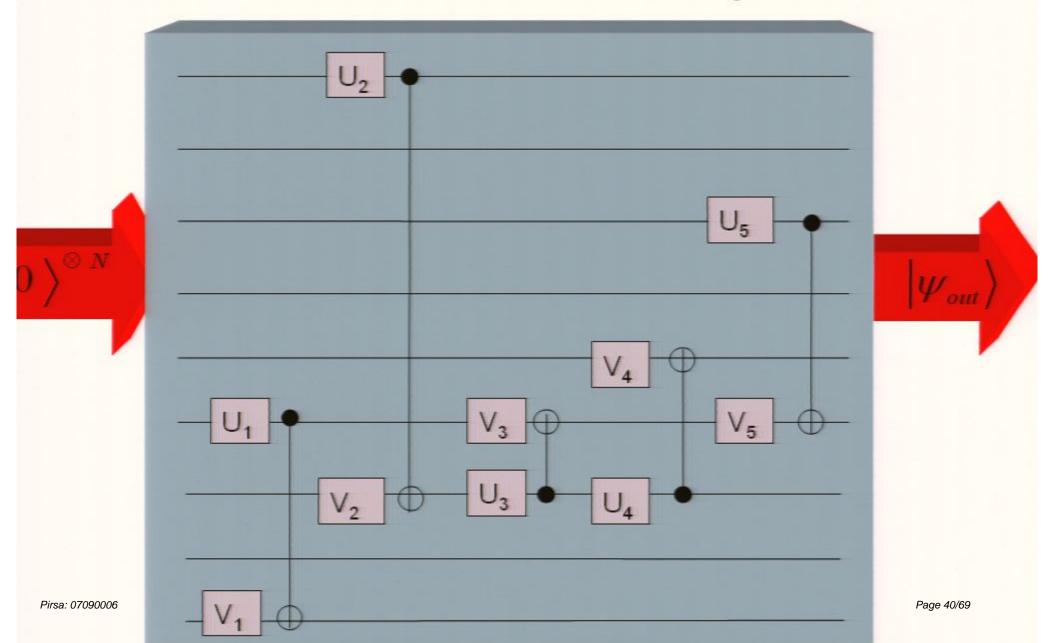
$$\langle E(\psi) \rangle \ge \min(N_A, N_B) - \frac{2^{-|N_B - N_A|}}{\ln 2}$$

[Lubkin, J. Math. Phys. 1978][Lloyd, Pagels, Ann. of Phys. 1988][Page, PRL, 1993][Foong, Kanno PRL, 1994] [Hayden, Leung, Winter, Comm. Math. Phys. 2006][Emerson, Livine, Lloyd, PRA 2005]

 But this average is only physical if it is reached in poly(N) steps.



Random circuit example



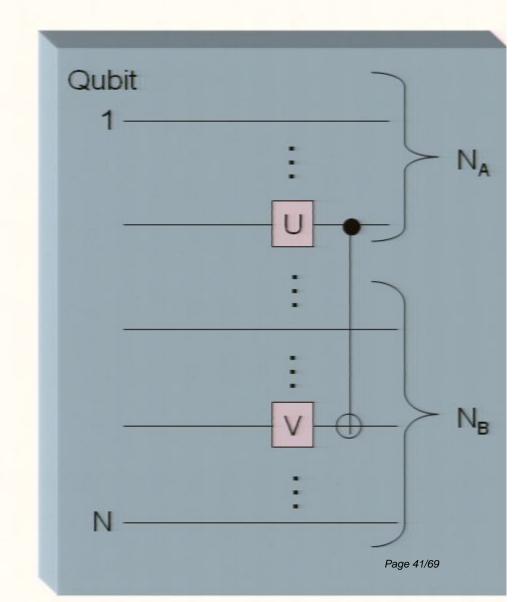
Entanglement after infinite time

 After infinite time(steps), the entanglement E is expected to be nearly maximal.

$$\langle E(\psi) \rangle \ge \min(N_A, N_B) - \frac{2^{-|N_B - N_A|}}{\ln 2}$$

[Lubkin,, J. Math. Phys. 1978][Lloyd, Pagels, Ann. of Phys. 1988][Page, PRL, 1993][Foong, Kanno PRL, 1994] [Hayden, Leung, Winter, Comm. Math. Phys. 2006][Emerson, Livine, Lloyd, PRA 2005]

 But this average is only physical if it is reached in poly(N) steps.



Pirsa: 07090006 Page 42/69

Simplest example of entanglement 1400=100+111> NAKNB Nad NB PA = 20/ PAB/ 07, + <1/ PAB/1

Simplest example of entanglement NAKNB Nad NB PA = 20/8/20/2 + 21/8/20

Simplest example of entanglement PA = 20/ PAB | 07, + <1/ PAB 17B = = = | 10/0/ + = 1/1/1/

NAKNB NAKNB NAKNB NAFNB NATOO

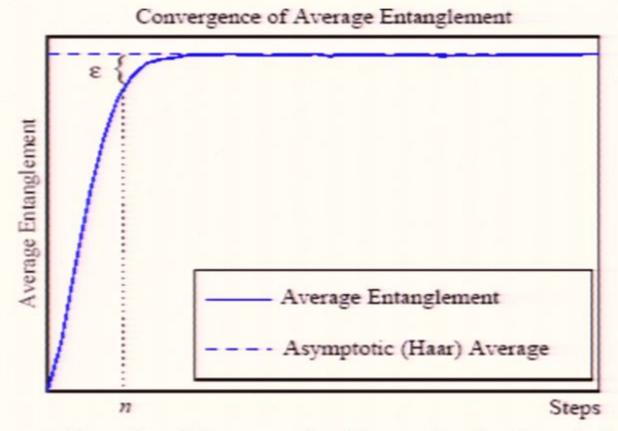
Simplest example of entanglement NAKNB PA = 20/ PAB/ 07, +2 mn Wills) Entanglement Entanglement S(PA) = - Tr Palag PA PA = +rs PAB N-2, NA=1, Nn=100 ~0,44

Page 47/69

Entanglement E stanglement S(PA) = - Tr Palag PA PA= tro PAB N-2, NA=1, Nn= 100 ~0.44 NI

Result 1

 Theorem: The average entanglement of the unitarily invariant measure is reached to a fixed arbitrary accuracy ε within O(N³) steps.



 Pirsa! In other words the circuit is expected to make the input state maximally entangled in a physical number of steps.

Result 1, proper statement

Theorem:

Let some arbitrary ε <1 be given.

Then for a number n of gates in the random circuit satisfying

$$n \ge 9N(N-1)[(4 \ln 2)N + \ln \varepsilon^{-1}]/4$$

we have
$$\langle E(\psi_n) \rangle \ge (\min(N_A, N_B) - 2^{-|N_B - N_A|} + \varepsilon)/\ln 2$$
 and, for $|\phi\rangle$ maximally entangled

$$\left\langle \max_{|\phi\rangle} \left| \left\langle \psi_n \left| \phi \right\rangle \right| \right\rangle \ge 1 - \sqrt{\frac{2^{-(N_B - N_A)} + \varepsilon}{2 \ln 2}}$$

Result 1, proper statement

Theorem:

Let some arbitrary ε <1 be given.

Then for a number n of gates in the random circuit satisfying

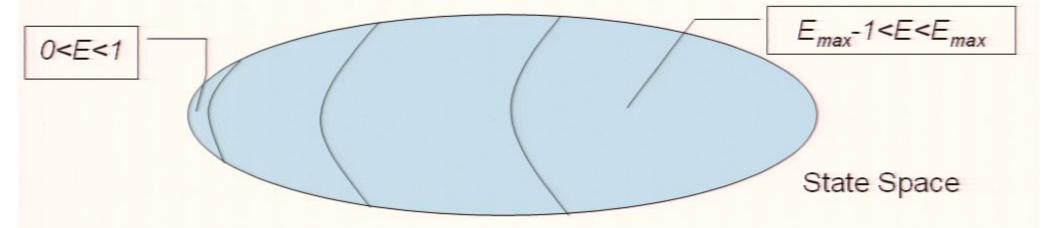
$$n \ge 9N(N-1)[(4 \ln 2)N + \ln \varepsilon^{-1}]/4$$

we have
$$\langle E(\psi_n) \rangle \ge (\min(N_A, N_B) - 2^{-|N_B - N_A|} + \varepsilon)/\ln 2$$
 and, for $|\phi\rangle$ maximally entangled

$$\left\langle \max_{|\phi\rangle} \left| \left\langle \psi_n \left| \phi \right\rangle \right| \right\rangle \ge 1 - \sqrt{\frac{2^{-(N_B - N_A)} + \varepsilon}{2 \ln 2}}$$

Result 1, proof outline

The random circuit does a random walk on a massive state space.



- One could consider mapping the random walk onto an associated, faster converging, random walk on the entanglement state space.
- It is a bit more complicated though. In fact we map it onto a random walk relating to the purity.
- We then use known Markov Chain methods to bound the rate of convergence of this smaller walk.

Pirsa: 07090006

Pirsa: 07090006 Page 53/69

NAKNB PA = <0/8/20/0/3 + <1/8/20/18 Wad NB N=Nx+NB mn (N+1N3)

NAKNB PA = <0 | PAB | 07, + <1 | PAB | 17B Nax NB E = SIPA Z MINNAING) N-700 N=Nx+NB mn (V+1N3)

Page 55/69

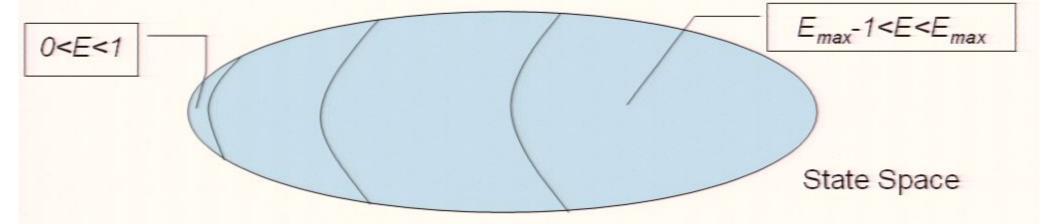
NAKNB PA = (0| PAB | 0), + <1 | PAB | VB Max NB E = SIPA Z Min(NAINg) N-700 N=Nx+NB mn (V+1NB)

Pirsa: 07090006

Page 56/69

Result 1, proof outline

The random circuit does a random walk on a massive state space.



- One could consider mapping the random walk onto an associated, faster converging, random walk on the entanglement state space.
- It is a bit more complicated though. In fact we map it onto a random walk relating to the purity.
- We then use known Markov Chain methods to bound the rate of convergence of this smaller walk.

Pirsa: 07090006

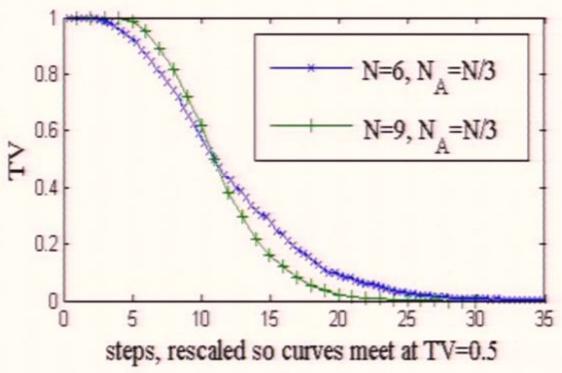
I VItanyicanin +

Purity Tr(Pn2)

Entanglement S(PA) = - Tr Palag PA PA= +rB PAB N-2, N/=1, N/= 100

Result 2

- Numerical observation: can associate a specific time with achievement of generic entanglement.
- This figure shows the total variation, TV, distance to the asymptotic entanglement probability distribution. It tends to a step function with increasing N.



Pirsa: Whome term this a variation cut-off after a known effect in Markov Chains [Diaconis, Cut-off effect in Markov chains]

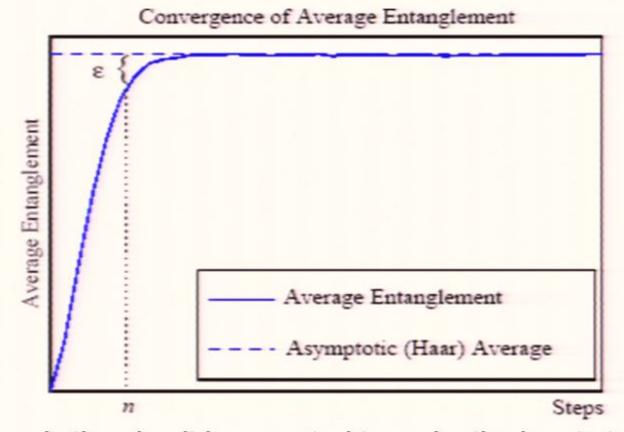
Romdon circuit shuffler states.

Pirsa: 07090006

Page 60/69

Result 1

 Theorem: The average entanglement of the unitarily invariant measure is reached to a fixed arbitrary accuracy ε within O(N³) steps.



 Pirsa! In other words the circuit is expected to make the input state maximally entangled in a physical number of steps.

Result 2 continued

For larger N we used tricks to do the simulation efficiently

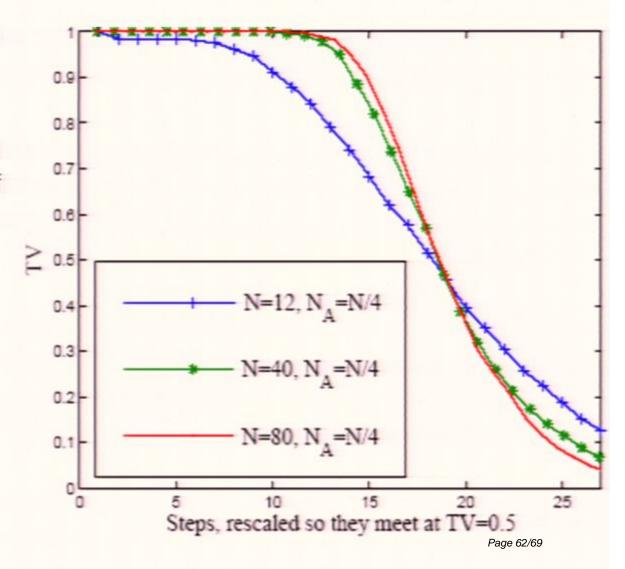
We used stabilizer states and tools for efficient evaluation of stabilizer state entanglement.

[Gottesmann, Caltech PhD] [Audenaert, Plenio, NJP 2005]

The final entanglement distribution is known, and result 1 applies here too.

[Dahlsten, Plenio, QIC 2006][in preparation by authors]

We find a continued trend towards a step function.



Result 2 continued

For larger N we used tricks to do the simulation efficiently

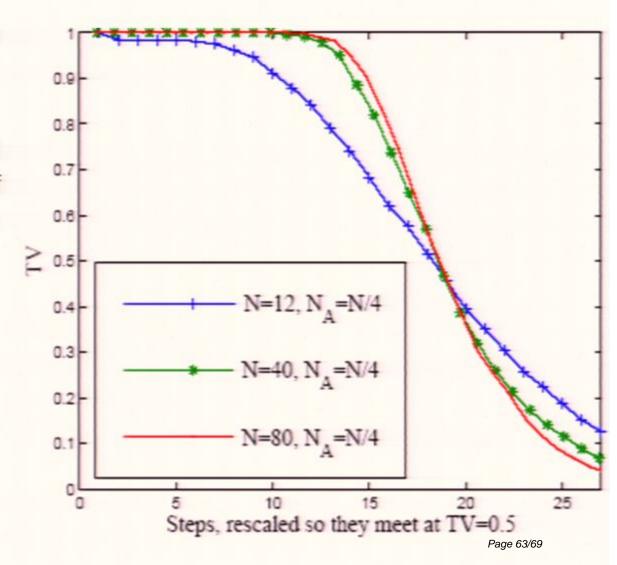
We used stabilizer states and tools for efficient evaluation of stabilizer state entanglement.

[Gottesmann, Caltech PhD] [Audenaert, Plenio, NJP 2005]

The final entanglement distribution is known, and result 1 applies here too.

[Dahlsten, Plenio, QIC 2006][in preparation by authors]

We find a continued trend towards a step function.



Conclusion

- Result 1: Proof that generic entanglement is physical as it can be generated using poly(N) two-qubit gates.
- Implication: arguments and protocols assuming generic entanglement gain relevance.

[Abeyesinghe, Hayden, Smith, Winter, quant-ph/0407061][Harrow, Hayden, Leung, PRL 2004]

- Result 2: Numerical observation that generic entanglement is achieved at a particular instant.
- Question: how does this volume-scaling picture relate to areascaling?

Acknowledgements.

- Discussions with J. Oppenheim as well as T.Rudolph, G.Smith and J.Smolin
- PirsaFridanding by The Leverhulme Trust, EPSRC QIP-IRC, EU Integrated 90 64/69

 Project QAP, the Royal Society, the NSA and the ARDA

Result 1, proper statement

Theorem:

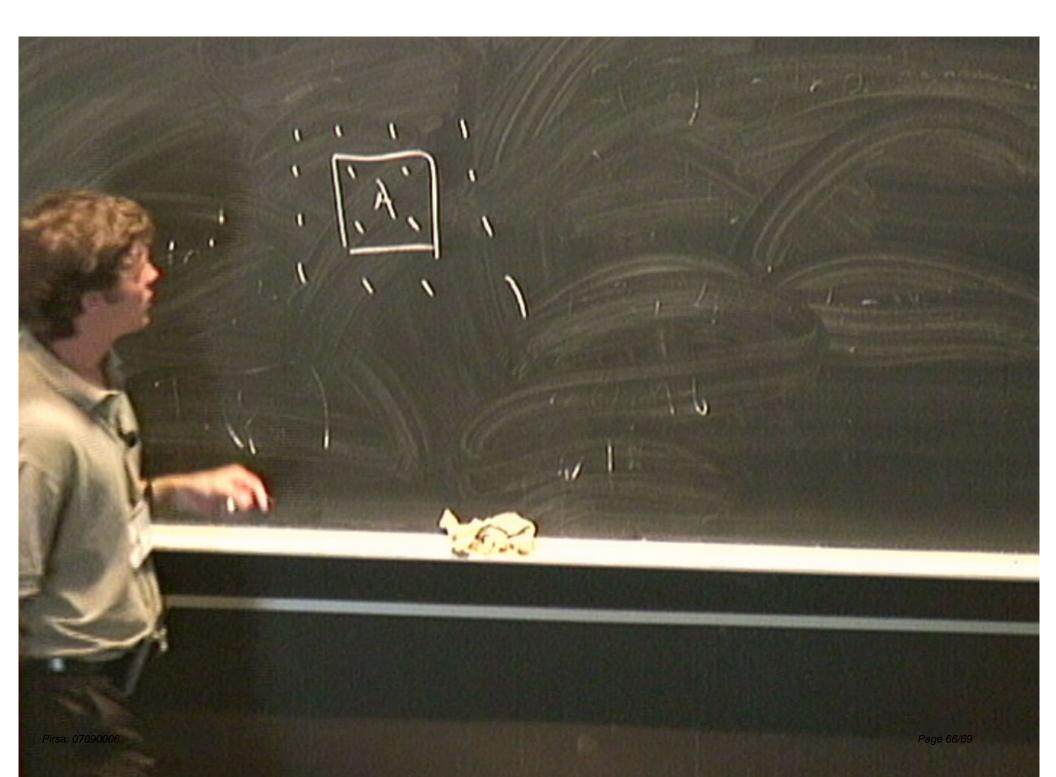
Let some arbitrary ε <1 be given.

Then for a number n of gates in the random circuit satisfying

$$n \ge 9N(N-1)[(4 \ln 2)N + \ln \varepsilon^{-1}]/4$$

we have
$$\langle E(\psi_n) \rangle \ge (\min(N_A, N_B) - 2^{-|N_B - N_A|} + \varepsilon)/\ln 2$$
 and, for $|\phi\rangle$ maximally entangled

$$\left\langle \max_{|\phi\rangle} \left| \left\langle \psi_n \left| \phi \right\rangle \right| \right\rangle \ge 1 - \sqrt{\frac{2^{-(N_B - N_A)} + \varepsilon}{2 \ln 2}}$$





Result 1, proper statement

Theorem:

Let some arbitrary ε <1 be given.

Then for a number n of gates in the random circuit satisfying

$$n \ge 9N(N-1)[(4 \ln 2)N + \ln \varepsilon^{-1}]/4$$

we have
$$\langle E(\psi_n) \rangle \ge (\min(N_A, N_B) - 2^{-|N_B - N_A|} + \varepsilon)/\ln 2$$
 and, for $|\phi\rangle$ maximally entangled

$$\left\langle \max_{|\phi\rangle} \left| \left\langle \psi_n \left| \phi \right\rangle \right| \right\rangle \ge 1 - \sqrt{\frac{2^{-(N_B - N_A)} + \varepsilon}{2 \ln 2}}$$

