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‘Efficient Generation of
Generic Entanglement’

By Entanglement we mean, unless otherwise stated, that taken between
two parties sharing a pure state.

By Generic Entanglement we mean the entanglement average over pure
states picked from the uniform (Haar) distribution.

[Hayden, Leung., Winter, Comm. Math.Phys. 2006]
By Generating, we mean that we have a random process yielding that
average.

By Efficiently we mean that the number of elementary(2-qubit) gates
necessary grows as poly(N) where N is number of qubits carrying the
state.
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‘Efficient Generation of
Generic Entanglement’

By Entanglement we mean, unless otherwise stated, that taken between
two parties sharing a pure state.

By Generic Entanglement we mean the entanglement average over pure
states picked from the uniform (Haar) distribution.

[Hayden. Leung, Winter, Comm. Math.Phys. 2006]

By Generating, we mean that we have a random process yielding that
average.

By Efficiently we mean that the number of elementary(2-qubit) gates
necessary grows as polfy(N) where N is number of qubits carrying the
state.
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Talk Structure

This talk aims to explain key points of two papers relating to:
Efficient Generation of Generic Entanglement.

e

[Oliveira, Dahlsten and Plenio, g-ph/06035126, Phys
[Dahlsten, Oliveira and Plenio, g-ph/0701125, J. Phys. A 200

« Introduction, aim of work
« Result 1 (Theorem) : Generic entanglement is generated efficiently

 Result 2 (Numerics): Generic entanglement is achieved at a
particular instant.

« Conclusion
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Motivation and Aim

» Restricting entanglement types to those that are typical/ generic could
give a simplified entanglement theory.

i

Hayden, Leung. Winter. Comm. Math.Phys. 2006]

« ‘Typical has been defined relative to a flat distribution on pure states,
the unitarily invariant measure, where Py )=P(Uy) .

« However exp(N=system size) two-qubit gates are necessary to get
that flat distribution on states, so it seems unphysical.

« Aim: to prove that in spite of this, the average entanglement
associated with the unitarily invariant measure is physical in that
It appears after poly(N) gates.
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The random process

Consider random two-party
Interactions modelled as two-
qubit gates:

1. Pick two single qubit unitaries,
U and V, uniformly from the
Bloch Sphere.

2. Choose a pair of qubits {c,d}
without bias.

3. ApplyUtocand Vtod.

4 Applya CNOT onc and d.
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Entanglement after infinite time

« After infinite time(steps), the
entanglement E is expected to be
nearly maximal.

2‘[‘N _NJ“]

(E(y))2min(N,.N, )

[Lubkin..J. Math. Phys.1978][LIoyd. Pagels, Ann. of
Phys. 1988][Page. PRL. 1993][Foong. Kanno PRL.
1994] [Hayden. Leung. Winter. Comm. Math.Phys.
2006][Emerson. Livine. Lloyd. PRA 2005]

- But this average is only physical if it
Is reached in poly(N) steps.
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Entanglement after infinite time

« After infinite time(steps), the
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nearly maximal.

2‘IN _NA|

(E(w))2min(N,.N,)

[Lubkin..J. Math. Phys.1978][Lloyd. Pagels. Ann. of
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Result 1

- Theorem: The average entanglement of the unitarily invariant
measure is reached to a fixed arbitrary accuracy ¢ within O(N?) steps.

Convergence of Average Entanglement

- o e

Average Entanglement

Average Entanglement

— — — - Asvmptotic (Haar) Average

;‘-‘ Steps
. .JR.Qther words the circuit is expected to make the input state
maximally entangled in a physical number of steps.
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Result 1, proper statement

Theorem:
Let some arbitrary € <7 be given.

Then for a number n of gates in the random circuit satisfying
n=9N(N — 1)[(4 In 2)N +In e ]/4

we have (E@,))>(min(N,.N,)-2"=" 4+ ¢)/n2

and, for |#) maximally entangled
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Result 1, proof outline

 The random circuit does a random walk on a massive state space.

Emax_ 1<E ::Emax

O<E<T1

State Space

« One could consider mapping the random walk onto an associated,
faster converging, random walk on the entanglement state space.

» Itis a bit more complicated though. In fact we map it onto a random
walk relating to the purity.

« We then use known Markov Chain methods to bound the rate of
convergence of this smaller walk.
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Result 2

* Numerical observation: can associate a specific time with
achievement of generic entanglement.

» This figure shows the total varnation, TV, distance to the asymptotic
entanglement probability distribution. It tends to a step function with

Increasing N.
lu—ﬂahqi - x
-

08t * N=6, N . =N73
*&% A
06} L
a 04t
02¢
0 5 10 15 2 25 0 £
steps, rescaled so curves meef at TV=0.5
=2 ogfp@ term this a vanation cut-off after a known effect in Markov Chaiass

[Draconis, Cutoff effect in Markov chains]
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Result 1

- Theorem: The average entanglement of the unitarily invariant
measure is reached to a fixed arbitrary accuracy ¢ within O(N?) steps.

Convergence of Average Entanglement

P
g
ot Average Entanglement
— — — - Asvmptotic (Haar) Average
” Steps
. JD.Qiher words the circuit is expected to make the input state page 61160

maximally entangled in a physical number of steps.
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Result 2 continued

For larger N we used tricks to
do the simulation efficiently

We used stabilizer states and
tools for efficient evaluation of

stabilizer state entanglement. oe
- 24 N=12.N =N4
The final entanglement -
distribution IS known, and . +— N=40, N =N/4
result 1 applies here too. 02k :
AL 01F N=3'U. NA.=}:4
We find a continued trend ° 5 10 15 20 25

towards a step function. T
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Result 2 continued

For larger N we used tricks to
do the simulation efficiently 0.9

We used stabilizer states and
tools for efficient evaluation of

stabilizer state entanglement. oe
—:—_ _altech PhD] [Audenaert Plenic ~ =

_ 24f N=12,N =N4
The final entanglement -

distribution is known, and | +— N=40,N,=N/4
result 1 applies here too. 2
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We find a continued trend : 10 s 20 25
Steps. rescaled so they meet at TV=05

+owakds a step function.
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Conclusion

 Result 1: Proof that generic entanglement is physical as it can be
generated using poly(N) two-qubit gates.

- Implication: arguments and protocols assuming generic
entanglement gain relevance.

 Result 2: Numerical observation that generic entanglement is
achieved at a particular instant.

» Question: how does this volume-scaling picture relate to area-
scaling?
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