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Abstract: In thistalk, | will describe recent work in string phenomenology from the perspective of computational algebraic geometry. | will begin by
reviewing some of the long-standing issues in heterotic model building and the goal of producing realistic particle physics from string theory. This
goa can be approached by creating a large class of heterotic models which can be algorithmically scanned for physical suitability. | will outline a
well-defined set of heterotic compactifications over complete intersection Calabi-Y au manifolds using the monad construction of vector bundles.

Further, I will describe how a combination of analytic methods and computer algebra can provide efficient techniques for proving stability and
calculating particle spectra.
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@ Heterotic Phenomenology
@ Why we're interested (and the problems)
@ The monad construction
@ The Calabi-Yau Spaces
@ Building vector bundles
@ Particle spectra and bundle stability
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@ Future directions - Svmmetrv breaking. vukawa couplings. fermion

masses.
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otivations

Challenge of String Phenomenology

@ [s string theory a model of the real world? Can it not only ‘inspire” new
phvsics but produce testable models as well?

@ the theorv must rrespond with what we alrea

@ “Occam’'s Razor” - A philosophy of parsimonyv, a model should involve the

minimal number of assumptions

@ How to produce the SUSY standard model (e.g. MSSM) from string
theoryv -the holv grail of string phenomenology”

@ Is there a string model that gives exactly the real world? We need gauge

unification. fermion masses. vukawa couplings. etc.
Page 6/79 @
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any Approaches

@ Major stringy approaches to realistic particle phvsics include
@ D-brane models. type 11
@ M-theorv on Go manifolds

9@ Heterotic model building
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@ Most approaches to phenomenology in string theorv have limitations. It's

easv to come close to the real world. but verv hard to get the details
exactly right.
@ special points in moduli-space = enhanced gauge groups
and spectra

— want generic points

@ Large numbers of exotic particles
1. particles with the wrong quantum numbers
2. vector-like pairs
= Heterotic string theorv produces the correct quantum numbers

@ Moduli stabilization?
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eterotic Model building

@ Despite being one of the oldest approaches to particle phenomenology in
string theorv. heterotic model building is still one of the more promising
avenues
Features include:

@ Gauge unification is automatic (GUTS)

@ Standard Model families originate from an underyling

spinor rep of a GUT group (Es, SO(10), SU(5))

@ However. heterotic model building is hard.

@ Inherent mathematical difficulty - Defining bundles and manifolds.

Algebraic geometry

ren oroeiy COmMputational difficulty - bundle cohomology and particle spectra | @



heterotic model

Ve begin with the Egz x Eg Heterotic string in 10-dimensions

@ Ome Eg gives rise to the ~Visible™ sector. the other to the “Hidden™ sector
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heterotic model

Ve begin with the Egz x Eg Heterotic string in 10-dimensions
@ One Eg gives rise to the ~Visible™ sector. the other to the “Hidden™ sector

@ Compactify on a Calabi-Yau 3-fold, X - leads to N’ =1 SUSY in 4D
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heterotic model

Ve begin with the Eg x Eg Heterotic string in 10-dimensions
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@ Also have a vector bundle V on X (with structure group G C Eg)

V' breaks Eg to Low Energy GUT group
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heterotic model

Ve begin with the Eg x Eg Heterotic string in 10-dimensions
@ Omne Eg gives rise to the “Visible™ sector. the other to the “Hidden” sector
@ Compactify on a Calabi-Yau 3-fold, X - leads to N’ =1 SUSY in 4D

@ Also have a vector bundle V on X (with structure group G C Eg)

V breaks Eg to Low Energy GUT group
@ The weaklv coupled theorv has been studied since the 80's

@ First attempt at string phenomenology - Candelas-Horowitz-Strominger-Witten 1936

@ Soon after discovery of Eg < E3 - found CYs that gave Eg GUTS
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heterotic model

Ve begin with the Egz x Eg Heterotic string in 10-dimensions
@ Ome Eg gives rise to the “Visible™ sector. the other to the “Hidden™ sector
@ Compactifv on a Calabi-Yau 3-fold, X - leads to ' =1 SUSY in 4D
@ Also have a vector bundle V on X (with structure group G C Eg)

V breaks Eg to Low Energy GUT group
@ The weaklyv coupled theorv has been studied since the 80s
@ First attempt at string phenomenology - Candelas-Horowitz-Strominger-Witten 1936
@ Soon after discovery of Eg < Eg - found CYs that gave Eg GUTS

@ The strongly coupled theoryv is dual to M-Theorv on a manifold with

boundarv - Hofava-Witten Theorv @
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ofava-Witten T heory
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he idea...

@ Finding the correct string vacuua to model realistic particle physics is a

difficult task. How to choose” How to design the right model?

Pirsa: 07090004 Page 16/79 @



he idea...

@ Finding the correct string vacuua to model realistic particle physics is a
difficult task. How to choose” How to design the right model?

@ A new approach:
Formulate an algorithmie and svstematic search for the correct vacuum

using computational algebraic geometry
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he idea...

@ Finding the correct string vacuua to model realistic particle phyvsics is a
difficult task. How to choose” How to design the right model?

@ A new approach:
Formulate an algorithmie and svstematiec search for the correct vacnum
using computational algebraic geometry

@ Produce a computer database of thousands of CY spaces and their

topological data
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he idea...

@ Finding the correct string vacuua to model realistic particle phyvsics is a

difficult task. How to choose?” How to design the right model?

@ A new approach:
Formulate an algorithmic and svstematic search for the correct vacuum
using computational algebraic geometry
@ Produce a computer database of thousands of CY spaces and their
topological data
@ Construct well-defined sets of vector bundles over them
& Scan through literally hundreds of billions of potential candidates in the

vast landscape of string vacuua for those that are phvsically relevant
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he idea...

@ Finding the correct string vacuua to model realistic particle phyvsics is a

difficult task. How to choose” How to design the right model?

@ A new approach:
Formulate an algorithmic and svstematic search for the correct vacuum
using computational algebraic geometry
& Produce a computer database of thousands of CY spaces and their
topological data
@ Construct well-defined sets of vector bundles over them
& Scan through literally hundreds of billions of potential candidates in the

vast landscape of string vacuua for those that are physically relevant

@ How manv are close to nature?” Studv these models.
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he “Standard” Embedding

9

<9

The first attempt at a heterotic model was the so-called “standard
embedding (CHSW, Greene. Ross. et all (1980's))

Take V = TX and G = SU(3) = hol(X)

Spin connection of X becomes the connection of the vector bundle and
must satisfv the Hermitian Yang-Mills equations

Fap = Fis = 8°°F5, =0

where F is the gauge field strength of the holomorphic bundle V
Generalization of Ricci-flatness

Obtain a N=1. Ec SUSY GUT in 4D

@ Particle spectra directly determined bv choice of Calabi-Yau @
Page 22/79
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[he resultant model is not phenomenologically favored
@ Non-minimal - Extra U(1)'s
@ 27 of B, 27 — (16 © 10 © 1), 105 1 exotic.
@ Number of generations Ng., = 3c3(7X) (hard to find good CYs)
@ Need 3 net families: |A1! — A%t =3
@ Extensive search for such CYs in the 80's found verv few:

0. we need something more...
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heneral Embedding

. more general choice of vector bundle can be made
@ Take G = SU(n). n = 3.4.5 low energy gauge group

@ 4D structure group, H =Commutant(G. Eg)

Es — G x H | Residual Group Structure
SU(3) x Es | 248 — (1.78) = (3,27) = (3.27) = (8.1)

SU(4) x SO(10) | 248 — (1.45) = (4.16) = (4.16) = (6.10) = (15,1)

SU(5) x SU(5) | 248 — (1.24) = (5,10) ¢ (5.10) < (10,5) = (10.5) = (24.1)

@ We expect “Two-step” Syvmmetry breaking
1. E; breaks to GUT group (E5.50(10). or SU(5))

2. Wilson lines break GUT symmetry

"YWilkson line = SU(3). x SU(2); x U(l)y x U(l)g_; svmmetry ™" @



he Elements of the construction

@ X: A Calabi-Yau 3—fold. X
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he Elements of the construction

@ X: A Calabi-Yau 3—fold. X

@ V: A holomorphic vector bundle. satisfving the Hermitian YM equations
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he Elements of the construction

@ X: A Calabi-Yau 3—fold, X
@ V: A holomorphic vector bundle. satisfving the Hermitian YM equations

@ G: The structure group of V (G C Eg)
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he Elements of the construction

@ X: A Calabi-Yau 3—fold, X
@ V: A holomorphie vector bundle. satisfving the Hermitian YM equations
@ G: The structure group of V (G C Eg)

@ H: The low energy 4D. N =1 GUT svmmetryv (H is the commutant of G

in Eg)
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he Elements of the construction

@ X: A Calabi-Yau 3—fold, X
@ V: A holomorphic vector bundle. satisfving the Hermitian YM equations
@ G: The structure group of V (G C Eg)

@ H: The low energy 4D. N =1 GUT svmmetrv (H is the commutant of G

in Eg)

@ V + Wilson line leads to symmetryv containing MSSM
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he Elements of the construction

@ X: A Calabi-Yau 3—fold, X
@ V: A holomorphic vector bundle. satisfving the Hermitian YM equations
@ G: The structure group of V (G C Eg)

@ H: The low energy 4D. N =1 GUT svmmetry (H is the commutant of G
in Eg)

@ V + Wilson line leads to symmetryv containing MSSM

@ Heterotic vacuua contain M5-branes which can wrap a holomorphiec
effective 2-cycle. W (€ Hy(X,Z)). of X. Leads to anomaly cancellation
condition

C?_(X) i CE(V) = WMS Page 30/79 @
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vtability

#

9

Pl

Hermitian YM equations are a set of wickedly complicated PDE's

Fab = FEE == gEEFEa —

We are saved by the Donaldson-Uhlenbeck-Yau Theorem:

On each stable. holomorphic vector bundle V. there exists a Hermitian
YM connection satisfving HY M.

The slope, u( V). of a vector bundle is

p(V) = —l‘k{l\.f’} JX a(V) A o

where J is a Kkahler form on X
V is Stable if for every sub-sheaf. . of V, u(F) < u(V)

Semi-stability (u(F) < p(V)) is sufficient for SUSY, but full stability is

Praeppitputationally useful FEPRIE @



he Elements of the construction

@ X: A Calabi-Yau 3—fold, X
@ V: A holomorphiec vector bundle. satisfving the Hermitian YM equations
@ G: The structure group of V (G C Eg)

@ H: The low energy 4D. N =1 GUT svmmetry (H is the commutant of G
in Eg)

@ V + Wilson line leads to symmetrv containing MSSM

@ Heterotic vacuua contain M5-branes which can wrap a holomorphiec
effective 2-cycle. W (€ Hy(X,Z)). of X. Leads to anomaly cancellation
condition

CQ(X) o CE(V) — WMS Page 32/79 @
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vtability

9

Hermitian YM equations are a set of wickedly complicated PDE's
B = e
ba—E .
We are saved byv the Donaldson-Uhlenbeck-Yau Theorem:
On each stable. holomorphic vector bundle V. there exists a Hermitian

YM connection satisfving HY M.

The slope. p( V), of a vector bundle is
u(V) = s fie aa(V) A g

where J is a Kahler form on X
V is Stable if for every sub-sheaf. F. of V. u(F) < u(V)

Semi-stability (u(F) < p(V)) is sufficient for SUSY, but full stability is

Preeppitputationally useful FEPEIE @



@ For stable bundles on a CY 3-fold. X, stability implies that

HO(X. V) = Ho(X. V*) =0

@ In general: V with SU(n)

: INDEX THEORENM and particle generations:

3

@ 111-:[&3{-:?_3("; = ‘:ﬁf—l}"'_h"-(x. V) = -XI.'I.":-{X} = % % Ca[:'l.—"':.

@ Serre Duality: A (X, V) = P~(X.V* 2Kx)

a . T3

=i

lies: 3 = —hY(X, V) + BY{(X, V*)

@ Unfortunately. “conservation of miserv’ = stability still verv hard to

show!

Pirsa: 07090004
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pectra and Cohomology

n heterotic models. 4D particle spectra is determined bv bundle cohomology

@ LE particles ~ massless modes of V-twisted Dirac Operator: YxW¥ = 0

=

@ massless modes of ¥V x V-valued cohomology groups

Decomposition | Cohomologies

SU(3) x Esg oy = V), = BH(V*) = (V). m = i (V @ V*)

SU(4) x SO(10) | me = h*(V), g = WP (V), no = W (A2V).my = (V@ V*)

SU(5) x SU(5) mo = W (V*), g = B (V), s = B(A* V), i== B(A*V7)
m = h(V 2 V")
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he Plan...

@ We need a large class of C'Y manifolds and a svstematic way to construct
bundles over them

— 7890 CICYs + Monad construction
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he Plan...

@ We need a large class of C'Y manifolds and a svstematic way to construct
bundles over them
= 7890 CICYs + Monad construction

@ We require an explicit construction compatible with “Two-step”
symmetrv breaking, Wilson lines. ete.

— CICYs are the simplest and most explict form of CY construction. Relatively easy to

find discrete svmmmetries. Wilson lines. ete.
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he Plan...

@ We need a large class of C'Y manifolds and a svstematic way to construct
bundles over them
— 7890 CICYs + Monad construction

@ We require an explicit construction compatible with “Two-step”
symmetrv breaking. Wilson lines. ete.
= CICYs are the simplest and most explict form of CY construction. Relatively easy to
find discrete symmetries, Wilson lines, ete.

@ Computerizability. Millions of models cannot be analvzed by hand. need
an algorithmic approach that makes good use of existing technology in

computational algebraic geometrv.
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@ Need to be able to compute bundle cohomology (Koszul and Leray sequences)
@ Need to be able to check bundle stability (Hoppe's Criterion and generalization )

@ Scan millions of bundles for phvsical suitability!

@ How manyv bundles are there? What distributions? What properties?...
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omplete Intersection CYs

@ Begin with an ambient space composed as a product of projective space
P . x P

@ Next. add K defining polynomials {p/—;1_ k|-

@ The projective coordinates of the P™ factor are [x} 1 xi - ...: x”] — each
polvnomial constraint specified bv its (homogeneous) degree in the
variables x'.

@ A convenient way to encode this information is by a configuration matrix (columns —
constraints)

™ |gql ¢ .- &

5 2
=lg & — o
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@ Favorable CICYs: Those for which A*! = of embedding P"’s (4515
manifolds)
= The Kahler forms J on the CY descend from those on the ambient
space. Computationally useful!

@ Classic Example: The Quintic 3-manifold (A quintic hypersurface in P*4).
Written

[415] —200

The Quintic is “Cyelic”, (ie. Pic(X)=Z) hi*' =1, ¥ =101

e o
' ::-' ..;:.;:= .-- — %
irsa: 07090004 Page 41/79 @



ine Bundles

@ Line Bundles on P”

@ Written as O(k) (the kth power of the vlane bundle O(1))

@ By definition, O(k) is the line bundle who's first chern class is (O(k)) = k
@ Similarly, on a product space P7 x PJ x .. . P} : O(ky, ko, ... kpm)
@ On a “favorable” CY we have Ox(k1, ka. ... k)

@ Kodaira vanishing theorem
For a positive line bundle, P, H(X. P x Kx) =0vg > 0

@ Note: If k; > 0 i then Ox(k;, ko. ..., k) is a positive bundle.
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hat is a Monad?

@ For this work. we consider monads defined bv a short exact sequence of
vector bundles (sheaves)

0—-V

£

B 5. .4

where short exact implies that ker(g) = im(f).
@ The vector bundle V is defined as
V = ker(g) with rk(V) = rk(B) — rk(C)

@ Where B and C are taken to be direct sums of line bundles
rg : | :
S F i I = i
B=dopi), C=o(d)
—13 —1
@ The map g can be written as a matrix of polvnomials. (e.g. on P” the ij-th

entry is a homogeneous polynomial of degree ¢ — b; )
@ The monad construction is a powerful and general wav of definining TE‘ETU@
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’hysical Constraints

@ SU(n) bundles - (Structure group SU(n). ¢ (V) =0)
@ Anomaly cancellation condition
@ Ind(V)=3kfork<cZ
k > 1 = need Wilson lines and discrete svmmetries
@ Stable bundles

@ Monads must define bundles (i.e. defining exact sequences should produce

bundles rather than just sheaves)

Page 44/79 @
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hat is a Monad?

@ For this work. we consider monads defined by a short exact sequence of
vector bundles (sheaves)

0 -V

P

s 4

where short exact implies that ker(g) = im(f).
@ The vector bundle V is defined as
V = ker(g) with rk(V) = rk(B) — rk(C)

@ Where B and C are taken to be direct sums of line bundles
rg ) Fc X
- ra 1 = ¥
B=dopi), C=o(d)
i—1 =3
@ The map g can be written as a matrix of polvnomials. (e.g. on P” the ij-th

entry is a homogeneous polynomial of degree ¢ — b; )
@ The monad construction is a powerful and general wayv of definining Tecto@
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Physical Constraints

@ SU(n) bundles - (Structure group SU(n), (V) =0)
@ Anomaly cancellation condition
@ Ind(V) =3k for k = Z
k > 1 = need Wilson lines and discrete svmmetries
@ Stable bundles

@ Monads must define bundles (i.e. defining exact sequences should produce

bundles rather than just sheaves)
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hat is a Monad?

@ For this work. we consider monads defined by a short exact sequence of
vector bundles (sheaves)

D>V

£

B %5.¢ .o

where short exact implies that ker(g) = im(f).
@ The vector bundle V is defined as
V = ker(g) with rk(V) = rk(B) — rk(C)

@ Where B and C are taken to be direct sums of line bundles
rg : e 3
. -3 J' ey Fi
B=@opi), C=o(d)
i—1 =3
@ The map g can be written as a matrix of polvnomials. (e.g. on P” the jj-th

entry is a homogeneous polynomial of degree ¢ — b; )
@ The monad construction is a powerful and general wayv of definining TE'ETD@
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’hysical Constraints

@ SU(n) bundles - (Structure group SU(n). ¢ (V) =0)
@ Anomaly cancellation condition
@ Ind(V) =3k for k = Z
k > 1 = need Wilson lines and discrete svmmetries
@ Stable bundles

@ Monads must define bundles (i.e. defining exact sequences should produce

bundles rather than just sheaves)
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lassification

‘he physical and Mathematical constraints can be written as constraints on
he integers defining the line bundles of the monad
= ; Fe :
— ¥ I _ Tl
B=g@O(b). C=O(q)
i—1 =

vhere

0— V B-%5.cC—-o0

@ Is this a finite class? What are the properties of the bundles defined bv

these constraints?
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’hysical Constraints

@ SU(n) bundles - (Structure group SU(n), (V) =0)
@ Anomaly cancellation condition
@ Ind(V) =3k for k = Z
k > 1 = need Wilson lines and discrete svmmetries
@ Stable bundles

@ Monads must define bundles (i.e. defining exact sequences should produce

bundles rather than just sheaves)

Pirsa: 07090004 Page 50/79 @



lassification

‘he physical and Mathematical constraints can be written as constraints on

he integers defining the line bundles of the monad

B=@O(). C=o(d)
i—1 —1
vhere

0— V B-%.¢c .q

@ Is this a finite class? What are the properties of the bundles defined by

these constraints?’
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onstraints

@ bl < forall i.j,s = ker(g) defines a bundle.

@ The map g can be taken to be generic so long as exaciness of the sequence
is maintained.

) CI(V) — U‘ =
rf:

r —
Z b J,r S D
= 1
2 Anomaljr cancellation <

&(TX) — &(V) = e&x(TX) — %(Z bibi — 3 cet)JsJt > 0
] —3
@ 3 Generations <
(V) =13 bbb — 3 cicicd) I F Ut
= =

is divisible bv 3.

#=9rability places constraints on the signs of b, and < R @



hat is a Monad?

@ For this work. we consider monads defined bv a short exact sequence of
vector bundles (sheaves)

e

B¢ .8

where short exact implies that ker(g) = im(f).
@ The vector bundle V is defined as
V = ker(g) with rk(V) = rk(B) — rk(C)

@ Where B and C are taken to be direct sums of line bundles
re : L .
B=@opi), C=o(d)
i—1 =1
@ The map g can be written as a matrix of polvnomials. (e.g. on P” the jj-th

entry is a homogeneous polynomial of degree ¢ — b; )
@ The monad construction is a powerful and general wayv of definining vecto@
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lassification

‘he physical and Mathematical constraints can be written as constraints on
he integers defining the line bundles of the monad
'8 : ot :
.y ¥ ! = Fa
B=o®r). Cc=do(d)
i—1 =
vhere

G~V B 5. C-i

@ Is this a finite class? What are the 1'}1'-:_'r1'1:-+_-'LTli—_'-r- of the bundles defined bv

these constraints?
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onstraints

@ bl < c foralli.j.s < ker(g) defines a bundle.

@ The map g can be taken to be generic so long as exactness of the sequence
is maintained.

=Y cl(V) — 0 =
Z bf — — |

JZI

2 Anomal}' cancellation <

ATRY— M) — TN — %(7 bibi — 3 cict) S Ut > 0
@ 3 Generations < .

(V) = %(fj b Bt Z cledcd)Jr Ut

is divisible fI;al' 3. =

#=9rability places constraints on the signs of b, and < Page 55179 @



oppe’'s Criterion

Jver a projective manifold X with Picard group Pic(X) ~ Z, let V be a vector

wndle. If H2(X, [A” V]porm) =0 for all p=1.2..... (V) —1. then V is stable.
@ Those manifolds where Pic(X) ~ Z are called cyclic

@ Where [V]sorm = V(i) == V @ Ox(i) for a unique i such that
al(V(i) e[ k(V) +1,..., —1.0]

@ normalize V so that the slope p(V) is between —1 and 0.

@ Hoppe's criterion applies directly to the 5 evelic CYs

@ Generalization to arbitrary CICYs?...

@ We will begin with this criterion and the cvelic manifolds...
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onstraints

@ bl < cforalli.j.s & ker(g) defines a bundle.

@ The map g can be taken to be generic so long as exaciness of the sequence
is maintained.

) CI(V) = 0 =
e e
)2 M A
— —1
@ Anomaly cancellation <
F’(_‘
CE(TX)—CQ(V):cg(TX)—%(Y bibl — 3 cef)ssJt >0
] ;—l
@ 3 Generations <
B - : : rc : = =
a(V) = %(Z bbby — Y cdcic/)\FFTI
—1 =
is divisible bv 3.

#=9rability places constraints on the signs of b, and < Page 57179 @



oppe’'s Criterion

Jver a projective manifold X with Picard group Pic(X) ~ Z, let V be a vector

mmdle. HY (X N V) —0forallp—12 ___ (V) —1. then V is stable.
@ Those manifolds where Pic(X) ~ Z are called cyclic

@ Where [V]sorm = V(i) := V @ Ox(i) for a unique / such that
alVii) el V) 1., —

@ normalize V so that the slope p(V) is between —1 and 0.

@ Hoppe's criterion applies directly to the 5 cvelic CYs

@ Generalization to arbitrary CICYs?”...

@ We will begin with this criterion and the cvelic manifolds...
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arming Up... The cyclic CICYs

[he mathematical technologyv of producing bundles and computing their
pectra is difficult, so we begin with the most straightforward possible cases...
@ There are 5 cyelie (Pic(X) =Z) CICYs
[4|5]. [5]2 4]. [5]3 3], [6/3 2 2], [7]2 2 2 2]
@ These are the simplest known CYs.
@ We can find a complete classification of all physical monad bundles on
these spaces.
@ Demanding SU(n) and anomaly-free bundles is sufficient to bound the

problem

@ A finite class - We find T es over these 5 spaces
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yclic CICYs

@ For the cvelic CYs. we find only positive monads to be phyvsical (e.g.
those for which b;. ¢; > 0)

@ bi. g < 0 & unstable

@ Can compute the full spectra of these bundles using exact and spectral

sequences (and results can be checked using Macaulay, Singular)

@ No anti-generations (limits exotics

@ The Higgs content is dependent on the choice of map (where we are in
moduli space)

@ Using Hoppe. we find that all positive monads on CICYs are stable!
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onads on CICYS: An example

@ For example consider the monad

0— V — O@) O3)+ O(2)* —0

o
=

@ this is a rank 4 bundle on [4/|5]

@ SU(4) bundle, stable. anomaly-free

@ 3 — —30 = Zs x Zs svmmetry for Wilson lines

@ Cohomology calculation gives us mg = 30. n; = 112

@ Number of Higgs depends on choice of map
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Rank {b;:} {ci} e (V)/J? | ind(V)
3 (1, 1.1, 1) (4) 6 90
3 (1.1, 1, 1. 1) (3. 2) 1 45
3 (2.1, 1.1, 1) (3. 3) 5 63
3 (1,1,1,1,1. 1) (2, 2. 2) 3 97
3 (2.2.2.1. 1. 1) (3. 3. 3) 6 81
1 G2 LT 8 (3. 3) 6 72
4 ARG SN (3. 2. 2) 5 _54
4 L (2. 2. 2. 2) 1 36
5 (1.1.1.1.1.1.1.1.1) | (3.2 2.2) 6 63
5 laarrrriiriin|@z229 5 45

Table: Positive monad bundles on [5|3 3].
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Rank {bi} {ci} (V)/J? | ind(V)
3 (2.2 1. 1 1) (4. 3) 7 -60
3 (2.2,2.1, 1) 3) 10 105
3 (3.2.1. 1. 1) (4. 4) S 75
3 T N W 0 (2.2, 2) 3 -15
3 (27 1 11 (33 6 45
3 (2. 3.3 L E 1) (4, 4. 4) 9 -90
3 (2.2,.2.2.2 2 2 2 43333 10 90
3 (22222222 2 323333 9 -75
4 (2.2.1.1. 1. 1) (4. 4) 10 -90
4 L. 1 b h 1) (3,2 2) 5 -30
4 (2.2.2.1,1, 1, 1) (4. 3, 3) 9 75
14 (22221 8 1 5 (X %3 8 -60

o LB N ) (3. 3. 2) 7
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inding a Higgs doublet

@ Higgs at special points - The “Jumping phenomena™.
@ Example: Specifically, let is consider the following SU(4) bundle on [4/|5]:
0 — V — 07%(2) = O (1) = 05%(4) — 0

with (x4 are the homogeneous coordinates on P*)
e, 2 > - :
43 Sc-tx 8 2x 4x; 9x;
@ O — o= =
= 3 3 P ;
x5 +10x3 >~ O Tx3 95 +x x5 +71x;

@ We can calculate that
e — hl{X V) — 90, mg = hl(X ‘ZV) —33
my — 21
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ositive Monads on favorable CICYs

@ For the monads with strictly positive entries (b'. ¢ > 0) the SU(n) and
anomaly conditions are sufficient to bound the problem. The class is

finite and all phvsical bundles can be classified.
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inding a Higgs doublet

@ Higgs at special points - The “Jumping phenomena™.

@ Example: Specifically, let is consider the following SU(4) bundle on [4]|5]:

0 — V — 07%(2) = O (1) = 05*(4) — 0

with (xp___4 are the homogeneous coordinates on P*)
2 ot o :
4x3 2t xZ2 8 2 43 03
@ T =
= > ¥ 3 :
GH10¢ o 0F T4 OG-+

@ We can calculate that
e — hl{X V) — 90, mg = hl(X :V) —1
my — 211
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ositive Monads on favorable CICYs

@ For the monads with strictly positive entries (b'. ¢ > 0) the SU(n) and
anomaly conditions are sufficient to bound the problem. The class is

finite and all physical bundles can be classified.

Pirsa: 07090004 Page 67/79 @



ositive Monads on favorable CICYs

= ™

@ For the monads with strictly positive entries (b'. ¢ > 0) the SU(n) and
anomaly conditions are sufficient to bound the problem. The class is
finite and all I.-‘JiJ__T."-'i*:'E.d bundles can be classified.

@ Over the CICYs we find thousands of bundles and their spectra

@ No anti-generations!

@ Unfortunatelv. we are limited bv Wilson Lines and discrete svmmetries of
the Calabi-Yau

Number of generations c3 = 3n. n< Z
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@ In order to produce exactly 3 generations. need to divide the CY by a
discrete symmetrv of size n

@ If 3 too large. no symmetries of the right order exist on the CY

@ The 37 monads on the cvelic CYs have the smallest c3 < most plausible
models for Wilson line svmmetry breaking.

Pirsa: 07090004
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ositive monads and 3-generations

-200 -158 -100 50
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xtending the search...

iince the positive bundles on CICYs are highly restricted. in order to produce

. large class for an algorithmic scan. we must extend our search...
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‘'ero-Entry Monads

‘or those with entries greater than or equal to zero (b'. ¢ > 0) the
onstruction is much bigger (and more interesting!)
@ Clearly not constrained as before. can produce unbounded sets of bundles

Example: B = O(1.0)> < O(t —3.0) and C = O(t.0)

. - - - 0
is an anomalv-free bundle for each integer t > 1 on | °©

Pt | 1

=

@ Much more physically suitable
@ smaller (V)
@ Generically have a Higgs
@ Much harder to work with. Cohomology more difficult to compute in
general
@ Can do checks of stability (scan for H%3(X, V) = 0)

= Cfferalization of Hoppe (in progress...) Page 72179 @



'ero-entry distributions

—200 —E58 —100 —50 0
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n algorithmic approach...

@ We have successfully constructed a LARGE class of vector bundles

Pirsa: 07090004 Page 74/79 @



algorithmic approach...

@ We have successfully constructed a LARGE class of vector bundles

@ Previous attempts have been made to create classes of stable bundles (e.g.
Friedman-Morgan-Witten). However, this is the first effort to create an
extensive class of stable. phvsically relevant bundles suitable for

algorithmic scans.
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n algorithmic approach...

@ We have successfully constructed a LARGE class of vector bundles

@ Previous attempts have been made to create classes of stable bundles (e.g.
Friedman-Morgan-Witten). However, this is the first effort to create an
extensive class of stable. phvsically relevant bundles suitable for
algorithmic scans.

@ So. far we have scanned for “higher-level” phvsical constraints - i.e.

particle spectra
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algorithmic approach...

@ We have successfully constructed a LARGE class of vector bundles

@ Previous attempts have been made to create classes of stable bundles (e.g.
Friedman-Morgan-Witten). However, this is the first effort to create an
extensive class of stable. phvsically relevant bundles suitable for
algorithmic scans.

@ So. far we have scanned for “higher-level” phvsical constraints - i.e.
particle spectra

@ We can verify low-energy SUSY (i.e. bundle stability) for a sub-class
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n algorithmic approach...

@ We have successfully constructed a LARGE class of vector bundles

@ Previous attempts have been made to create classes of stable bundles (e.g.
Friedman-Morgan-Witten). However, this is the first effort to create an
extensive class of stable. phvsically relevant bundles suitable for
algorithmic scans.

@ So. far we have scanned for “higher-level” phyvsical constraints - i.e.
particle spectra

@ We can verify low-energv SUSY (i.e. bundle stability) for a sub-class

@ We are now readyv to impose more detailed phvsical constraints - Wilson

lines. discrete svmmetries. etc.

Pirsa: 07090004 Page 78/79 @



uture work

@ Extend techniques to the 473.800. 776 toric CY manifolds (in progress)

@ Develop computational analvsis of monad bundles (Mathemastica,
Macaulav2 - CICYs)

@ Add Wilson lines. explore realistic 4D models (in progress)

@ Compute vukawa couplings? Fermion masses?
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