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Plan of the Lectures

LECTURE 1

 Decoherence 101; the
basic idea, and why it is
not basic enough for
“foundations”

* Origin of quantum jumps
(orthogonality & collapse)

» Derivation of probability in
quantum theorg -- Born's
rule (Pk e W"kl )
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LECTURE 2

Decoherence & einselection
(environment - induced
superselection) of preferred
“‘pointer states”

Redundancy and quantum
Darwinism (“environment as
a witness”)

Existential interpretation
(Relative states + existence)



EINSELECTION", POINTER BASIS,
AND DECOHERENCE

Y
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EINSELECTION", POINTER BASIS,
AND DECOHERENCE

s g

>5£(o)>=m)®|su>=(2af|of>)®|sﬂ> == Jalo)8ls)-l0()

[EDUCED DENSITY MATRIX p(1) = Tg|@,, ()@ (1) = ¥ || lo Xo.
EINSELECTION* leads to POINTER STATES "

(same states appear on the diagonal of ps( t) for times long compared
to the decoherence time; pointer states are effectively classical!)
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DECOHERENCE AND EINSELECTION

‘hesis: Quantum theory can explain emergence of the classical
Principle of superposition loses its validity in “open™ systems, that is,
)ecoherence restricts stable states (states that can persist, and, therefore,
“exist”) to the exceptional...

ointer states that exist or evolve predictably in spite of the immersion
of the system in the environment.

redictability sieve can be used to ‘sift’ through the Hilbert space

of any open quantum system in search of these pointer states.
INSELECTION (or Environment [Nduced superSELECTION) is

the process of selection of these preferred pointer states.

or macroscopic systems, decoherence and einselection can be very effective,

enforcing ban on Schroedinger cats.

inselection enforces an effective border that divides quantum from classical, making

a point of view similar to Bohr’s Copenhagen Interpretation possible, although starting
freswaorather different standpoint (i. e., no @b initio classical domain of thersmiverse).

eh, Joos, Paz, Caldeira, [ eggett, Kiefer, Gell-Mann, Hartle, Omnes, Dalvit, Dziarmaga  Cucchietti ...
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States that can survive “being found
out” intact must be orthogonal.
Consider two states that can be “found out”:
u)Ag) =>|u)A,)
v)|4)=|v)|A,)
—onsider an initial superposition of these two states:
(alu) + Bv)) A) = alu) A,) + Blv)|A,)

lorm must be preserved. Hence: Re(a B(u|v)) =Re(a Blulv)(A, A,)
'hases of the coefficients can be adjusted at will. So:

(u|v) = (u|v)(A,|A,)
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out” intact must be orthogonal.
Consider two states that can be “found out”:

u)|Ay) = |u)A,)

v)|4) =>|v)[A,)
—onsider an initial superposition of these two states:
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or (u|v)=0 QED!!!
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States that can survive “being found

out” intact must be orthogonal.
Consider two states that can be “found out”:

Ay)=>|u)A,)
A,)=v)A,)
~onsider an initial superposition of these two states:
(alu) + Bv)) A)) = alu) A,) + Blv)|A,)
lorm must be preserved. Hence: Re(a B(u|v)) =Re(a Blu/v)(A, A,)
'hases of the coefficients can be adjusted at will. So:
(ulv) = (u|v)A,|A,)

So either (A, A, ) =1(measurement was not successful)

or (ulv)=0 QEDI!  we.qiiapse”
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Consequences and extensions

Derivation of the key to Collapse Postulate from Axioms 1-3:
explains why in general one cannot “find out” preexisting states.

Implies that observables are Hermitean (given an exira
assumption that eigenvalues are real).

Proof similar to “no cloning theorem” - information about
preexisting states cannot be found out - passed on. (Cloning
means making a “perfect copy”. Here the copy need not be
perfect; “information - disturbance”)

Proof can be extended to the case when apparatus (or
environment) is initially in a mixed state.
Axiom 3 -- predictability -- is the key to the proof!

Information transfer need not be due to a deliberate
measurement: any information transfer that does not

perturb outcome states will have to abide by this rule:
Pointer states, predictability sieve, and DECOHERENCE.
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Summary: Observables are Hermitean

Theorem: Outcomes of a measurement that satisfy postulates
1-3 must be orthogonal.
roof (another version): measurement is an information transfer
rom a quantumsystem S to a quantum apparatus A. So, for any
wo possible repeatable (predictable) (Axiom 3) outcome states
)f the same measurement it must be true that:

u)
)

Ay) =
Ay) =

u)A,)

v)|A,)

By unitarity (Axiom 2) scalar product of the total (S+A) state
before and after must be the same. So:

(u|v)(Ag|A,) = (u|v)(A,]|A, )

But (A;|A))=1. So either (4,|A,) = 1 (measurement was not
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Summary: Observables are Hermitean

Theorem: Outcomes of a measurement that satisfy postulates
1-3 must be orthogonal.
roof (another version). measurement is an information transfer
rom a quantumsystem S to a quantum apparatus A. So, for any
wo possible repeatable (predictable) (Axiom 3) outcome states
)f the same measurement it must be true that:

Al e —
v)|A,)=>|v)|A,) INVOKE BORN’S RULE!"

By unitarity (Axiom 2) scalar product of the total (S+A) state
before and after must be the same. So: ‘
‘Information gain
(u|v)(Ag|Ay) = (u|v)(A,|A,) implies disurbance”
But (4,/4,) =1. So either (4,4, ) =1 (measurement was not
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ENVARIANCE

(Entanglement-Assisted Invariance)

DEFINITION:

Consider a composite quantum object consisting of system S and
environment £ When the combined state tp < is transformed by:

Us=u, ®1;
but can be “untransformed” by acting solely on £, that is, if
there exists:

Ug=1; ®u,

then 1,055 is ENVARIANT with respect to u_.

U (Ug ‘wss)) =U |‘pss)= ‘wss)

Envariance is a property of U and the joint state ’l[} ggoftwo

0000000000000
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ENTANGLED STATE AS AN EXAMPLE
OF ENVARIANCE:

Schmidt decompeosition:

‘ws.s) iak‘s )

Above Schmidt states |s, ), |e,) ate orthonormal and ¢, complex.

cmma 1: Unitary transformations with Schmidt eigenstates:

us(s) = Y, exp(ip,)|s, Xs;|

leave Y., envariant.

roof: Uc(S W)= zak exp(ig,)s Je.) w.(e)= Eexp{:(-qbk +2x 1)} e Xe, |
E(Ek){"s(sk)‘wsﬁ )} Ea; exp{l(¢k -¢k +2rl )‘ Sk IEI: )= Zak exp(r.q;k)lsk ) Ek ;3 = wSE r
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ENTANGLED STATE AS AN EXAMPLE
OF ENVARIANCE:

Schmidt decomposition:

sts> ﬁak‘s \8::)

Above Schmidt states |s, ), |e,) are orthonormal and ¢, complex.
cmma 1: Unitary transformations with Schmidt eigenstates:

us(s,) = 2 exp(i‘pk)lsk )(Sk I
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ENTANGLED STATE AS AN EXAMPLE
OF ENVARIANCE:

Schmidt decompeosition:

st:s) iak‘sk)lgk)

Above Schmidt states |s, ), |e,) are orthonormal and ¢, complex.

cmma 1: Unitary transformations with Schmidt eigenstates:

us(s,) = E exp(i‘pk)lsk )(Sk l

leave Y., envariant.

roof: U (Sk)h"ss) 20;‘ exp(ig,)|s J&. )} wu(e) = zexp{:(-¢k+2mk)} & e, |
E(Ek){us(st)‘wsg r= Eak CXP{I(¢k _¢k +2rl )‘ 8./ |£k ) = za* exp(l¢k)lsk )&, Ve ;
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ENVARIANCE -- SOME PROPERTIES
U (U, |wss )) =U, ‘pss) i )exp( i¢*1153)

» Envariant wss IS an eigenstate of two unitary transformations
with a unit (or Fm'mmmar]) eigenvalue.

» Envariance can be defined for density matrices of £, but this
will not be necessary, as one can instead purify the state of s2
in the usual way, by introducin , S0 the density matrix of S
isgivenby: p__ =Tr, |‘F ‘P

* A product of envariant trangf'gnnatlons of Y. is an envariant
transformation oftp

« All envanant transformations have Schmidt eigenstates.

 There may be many environments that undo an effect of the
same unitary transformation on the system

For additional discussion, see WHZ, quant-ph/0211037, PRL, 90, 120404 (2003);
amnoam, m. ‘d & m m 4 & M RMP sPage 71/112
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PHASE ENVARIANCE THEOREM

Fact 1: Unitary transformations must act on the system to alter its state (if
they act only somewhere else, system is not effected).

Fact 2: The state of the system is all that is necessary/available to predict
measurement outcomes (including their probabilities).

Fact 3: A state of the composite system is all that is needed/available to
determine the state of the system.

Moreover, “entanglement happens™:

sts) - iaklskxgk)

'HEOREM 1: State (and probabilitike;; of S alone can depend only on
1e absolute values of Schmidt coefficients }a .- and not on their phases.
Proof: Phases of ¢, can be changed by acting on S alone. But the
state of the whole can be restored by acting only on £. So change
of phases of Schmidt coefficients could not have affected S! QED.
.". By phase envanance, {|g |, |5, )} must provide a complete local

- oaescription of the system alone.
SCama infn ac radnnecad doancity mmatrmw !




Envariance of entangled states:
the case of equal coefficients

hpss) b Eexp( i¢k)lsk>|£k>

In this case ANY orthonormal basis i1s Schmidt. In particular, in the
Hilbert subspace spanned by any two {|5k>’ IS;)} one can define a

Hadamard basis; Ii) — (‘ Sk>i IS! ))/\/2_

This can be used to generate ‘new kind’ of envariant transformations:

ASWAP: u_(k<=10)= exp(i(pﬂ)l sts, |+ hc.
Can be ‘undone’ by the COUNTERSWAP:
ug(k <= 1) = exp{i(—@,, — @ + @D}He Xei |+ hc.
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Envariance of entangled states:
the case of equal coefficients

I'Vss> . zexp( ip sl

In this case ANY orthonormal basis i1s Schmidt. In particular, in the
Hilbert subspace spanned by any two {lsk), |S;>} one can define a

Hadamard basis; ‘:) _ (l Sk>i IS! ))/\/2_

This can be used to generate ‘new kind’ of envariant transformations:
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Can be ‘undone’ by the COUNTERSWAP:
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“Probability from certainty”

Probabilities of Schmidt partners are the same
(detecting 0 in S implies 0 in E, etc.).

|0>|0> + [1>|1> (initial state — equal abs. values of coeff's)
SWAP on S

|1>|0> + |0>|1> (prob’s in S must have swapped, so that
after swap they are equal to the prob’s
of state in E that were not affected)

COUNTERSWAP on E

|1>|1> + |0>|0> (p’'s in S must be the same as they
were to begin with -- global state is
back to the “original”™)

Probabilities can “stay the same” and also “get exchanged”

aniy*when they are equal!!! (p(0)=p(1 Page 761112
" y - (p(0)=p(1)) (Schlosshauer & Fine. Bamum. WHZ)



Probability of envariantly swappable states

bz ) < Y explig)|s. e, )

By the Phase Envariance Theorem the set of pairskxkl, Isk)
provides a complete description of S. But all [, | are equal.

Vith additional assumption about probabilities, can prove

HEOREM 2: Probabilities of envariantly swappable states are equal.
1) “Pedantic assumption”; when states get swapped, so do probabilitites:
) When the state of the system does not change under any unitary in

part of its Hilbert space, probabilities of any set of basis states are equal
>) Because there is one-to-one correlation between | s, ).|&, )

Therefore, by normalization: 1
P F’ V.

Pirsa: 07080044 Page 77/112
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Probability of envariantly swappable states

hpos ) < Y explig)|s. Ve, )

By the Phase Envariance Theorem the set ofpairskxkl, Isk)
provides a complete description of S. But all |z, | are equal.

Vith additional assumption about probabilities, can prove

HEOREM 2: Probabilities of envariantly swappable states are equal.
1) “Pedantic assumption”; when states get swapped, so do probabilitites:
) When the state of the system does not change under any unitary in

part of its Hilbert space, probabilities of any set of basis states are equal
>) Because there is one-to-one correlation between | s, )., )

Therefore, by normalization: 1
P F V.
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Symmetries
can reflect
ignorance

robabilities from envariance
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Symmetries
‘-w can reflect
| ignorance

robabilities from envariance

(Environment-assisted iNVARIANCE)

\ swap 1§ swap mn E \ 1\ \
,SII;' OE. + ‘15 1E ,lsf' ‘OEII + OS:I.' ‘IE,-'II )15!; IEI{ + OSHI Ol

Pirsa: 07080044



Symmetries

.r' can reflect

ignorance

4

robabilities from envariance

(Environment-assisted iNVARIANCE)

I [0;) Tl )| —==2l) (05) +0g) 1) —==2551L5) [L;) +{05) [0,
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Symmetries
can reflect
ignorance

robabilities from envariance

(Environment-assisted iNVARIANCE)

1e1[0;) HETLE ) |—===plls) W0e) O ity —=22{Ls) [1;) +(05) 0,
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. Symmetries
g ' can reflect
ignorance

robabilities from envariance

(Environment-assisted iNVARIANCE)
— (=
1) 0) i L) == ;) ._EUO m =EE0,) (1) +05) 0,

e |"IJ\2 follows!
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Symmetries
!? can reflect
- ignorance

robabilities from envariance

(Environment-assisted iNVARIANCE)

\/7 swapin$ | |1 | .—E—L T\7swa;:mu£ SABE Ll
Q;OE; 1577 1’”13;9..\ - Osﬂigf‘ AL 1) +0g) 0,
S =

2
La— WJ\ follows!
ote: Swaps do change unentangled states ! Phases matter!
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Symmetries

ﬁ' can reflect

ignorance

robabilities from envariance

(Environment-assisted iNVARIANCE)

)J/0 }1/1 =285 51 110,04 0 %‘imf a) (1) +(0;) 0
v, El |5 ) E ik L/’\ SAVE | S/ I'E/ $/ 171
\_// \3/

2
= |’¢IJ\ follows!
ote: Swaps do change uneniangled siates ! Phases matier!

Pirsa: 07080044
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Special case with unequal coefficients
‘onsider system S with two states {o).|2)}

[he environment £ has three states {jo),|1), iﬂd [+)=(jo) + [1))/v2

ss l0\+,f 12)/2)

An auxilliary environment £ interacts with £ so that:

ss)|go>=(\E|0)l+) + ,EP)IZ)]IO)#EIO)(|0)|0)+|1)|1))1J5 + E}z)p)p):
= (j0)lo)o)+ [ou)j1)+[2)|2)2)) /3

States [0)0), [0)1), [2)2) have equal coefficients. Therefore,
Each of them has probability of 1/3. Consequently:
p(0) =p(0,0)+p(0,1) =2/3, and p(2)=1/3.

BORN’s RULE!!
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Special case with unequal coefficients
‘onsider system S with two states {jo),|2)}

[he environment £ has three states {|o),|1), imd [+)=(o) + [)/v2

ss | lO\h

An auxilliary environment £ interacts with £ so that:

ss)|50>=(\E O)}+) + JL;IZ)IZ)]IG)#ElO)(IO)IOHl)u))/JE + ‘E;z)p)p):
= (j0)|o)o)+ [ou)j1) + [2)[2)2)) /3

States [0)0), [0)1), [2)2) have equal coefficients. Therefore,
Each of them has probability of 1/3. Consequently:
p(0) =p(0,0)+p(0,1)=2/3, and p(2)=1/3.

BORN’s RULE!! " omsume

additivity! (p(0)=1-p(2))!




Probabilities from Envariance

The case of commensurate probabilities: stg E‘J jrﬂ/ ‘S k»k

Attach the auxlha{y ‘counter” enr}rlronmcnt 8‘\

.

| i l II"\ ‘ I".I
v oo ) = SN [ )| e Wl feo) =
‘ SE/ "0/ HV /;M kr j._=w"mk Je/ |10/

—

- \ )

\

L )s e ¥e )
k(D) JllJ

'HEOREM 3: The case with commensurate probabilities can be
>duced to the case with equal probabi]ities BORN’s RULE follows:

1
pj:ﬁ’ Pk=2pﬂc T hkr

-h( =] Page 99/112
Yanaral craceae . v coaontitminity CYET
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Why the proof works

* Need to know how to relate quantum states
and “events”. ("Symmetry breaking” induced
by information transfer.)

* Need to prove that phases of the coefficients
do not matter (otherwise swapping alters state
even when absolute values of coeff's equal).
(“Decoherence without decoherence”)

Pirsa: 07080044 o Page 100/112



ENVARIANCE* -- SUMMARY

1. New symmetry - ENVARIANCE - of joint states of quantum
systems. It 1s related to causality.

2. In quantum physics perfect knowledge of the whole may imply
complete 1gnorance of a part.

3. BORN’s RULE follows as a consequence of envariance.

4. Relative frequency interpretation of probabilities naturally
follows.

5. Envariance supplies a new foundation for environment - induced
superselection, decoherence, quantum statistical physics, etc., by
justifying the form and interpretation of reduced density matrices.

WHZTPRL 90, 120404; RMP 75, 715 (2003); PRA 71, 052105 (2005)
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ENVARIANCE* -- SUMMARY

1. New symmetry - ENVARIANCE - of joint states of quantum
systems. It 1s related to causality.

2. In quantum physics perfect knowledge of the whole may imply
complete 1gnorance of a part.

3. BORN’s RULE follows as a consequence of envariance.

4. Relative frequency interpretation of probabilities naturally
follows.

5. Envariance supplies a new foundation for environment - induced
superselection, decoherence, quantum statistical physics, etc., by
justifying the form and interpretation of reduced density matrices.

WHZPRL 90, 120404; RMP 75, 715 (2003); PRA 71, 052103 2005)
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PHASE ENVARIANCE THEOREM

Fact 1: Unitary transformations must act on the system to alter its state (if
they act only somewhere else, system is not effected).

Fact 2: The state of the system is all that is necessary/available to predict
measurement outcomes (including their probabilities).

Fact 3: A state of the composite system is all that is needed/available to
determine the state of the system.

Moreover, “entanglement happens™:

hpss) a iaklskx8k>

'HEOREM 1: State (and probabilitike-si of S alone can depend only on
1e absolute values of Schmidt coefficients ‘a 41 and not on their phases.
Proof: Phases of ¢, can be changed by acting on S alone. But the
state of the whole can be restored by acting only on £. So change
of phases of Schmidt coefficients could not have affected S! QED.
.". By phase envanance, {|a |, |5, )} must provide a complete local

- aescription of the system alone.
Sama infn ac roadnnecad doncity mmatmwe !




