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Qutline

Problems with the standard postulates of quantum theory and two
strategies to deal with them

Realism and the traditional notion of a noncontextual hidden
variable model of quantum theory

Operational quantum mechanics and operationalism in general

An operational definition of noncontextuality
-- comparison with the traditional notion

-- new no-go theorems

-- what contextuality is useful for

Do quantum states describe reality or our knowledge of reality?
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“Orthodox” postulates of quantum theory

The rays of Hilbert space > correspond one-to-one with the
physical states of the system.

Measurements are associated with Hermitian operators

A=Y_a, P_. Outcomes are indeterministic; a, occurs with
probability (P .

The physical state of an isolated system evolves unitarily, i.e.
deterministically and continuously

If a measurement associated with A="", a, P, yields outcome a,,
the physical state of the system changes discontinuously as:

) — Pyl
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Inconsistencies of the orthodox interpretation

By unitary evolution postulate

By the collapse postulate (applied to isolated system that
(applied to the system) includes the apparatus)

Indeterministic and Deterministic and

discontinuous evolution continuous evolution

Determinate properties Indeterminate properties
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Operationalism vs. Realism

More generally, the term "measurement” is not defined in terms
of the more primitive “physical states of systems”. Isn't a
measurement just another kind of physical interaction?

Two strategies:

(1)Realist strategy: Eliminate measurement as a primitive
concept
Elements of the formalism represent reality or our knowledge
of reality

(2) Operational strategy: Eliminate “the physical state of a
system” as a primitive concept
Elements of the formalism represent lists of instructions of
e oromcoss WAt t0 do In the lab e 673



~It would seem that the theorv 1s exclusively concerned
about "results of measurement”. and has nothing to sav
about anvthing else. What exactlv qualifies some phyvsical
systems to play the role of "measurer”?

- John Bell

~In a strict sense. quantum theorv 1s a set of rules allowing
the computation of probabilities for the outcomes of tests
which follow specitied preparations.™

- Asher Peres
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A realist strategy:
Hidden variable models
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The idea of a deterministic hidden variable model
of quantum mechanics

In a classical theory, properties are associated with regions
of the state space
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Consider «a(z.p) a3 iFf =< x3,

az if 1 < z < =),

ag if T > xo.
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Consider «a(z.p) a Fx<x,

az if 1 < z < z),

|

— oy W= > 2

Equivalently, a(z,p) = Xk apxr(z,p)

P
where
xi(z.p) = lifz<z
= (0 otherwise,
x2(xz,p) = 1ifz; <zx<=z
= (Q otherwise,
x3(z,p) = 1ifz>zp

0 otherwise,
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ay iF =< =3, p(z, p)

Consider a(z.p)

az if z; <z < zo,

ag If T > z». A

Equivalently, a(z,p) = Xk apxe(z, p)

where
xi{=p) — EifFz<x;
= (0 otherwise,
x2(z,p) = 1ifz; <z<z
= (0 otherwise,
x3(z,p) = 1ifz>z

0 otherwise,

Can still have probabilistic outcomes if x,p is unknown
= Prob(k) = [ dz dp p(z, p) xx(z, p)
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In quantum theory, we have

A=) rapP;
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In quantum theory, we have

A= rarPy
p(A = ai||v)) = (V| P|v)

irsa: 07080040 Page 14/73



In quantum theory, we have
A =3 garFg
p(A = ai||¥)) = (V| Plv)
The idea of a deterministic hidden variable theory is that

[¥) < p(A)
A — a())
{Pi} < {xx(N)}
Such that

(V| Plv) = [ dAp(X)xi(N)
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p(A)

x1(A)

% L

x3(A)

(wlxe) 2 = [ dap(N)xe(X)



pA) _— (A

x1(A)

x2(A)

xa(V) ,. K N,
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A given projector may appear in many different
measurements

lp,
\ lw,

lw,
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A given projector may appear in many different
measurements

= v x1 (V) .
™ <:> x2(A) o

X3(’\) A

: z x1(A) | e

X%(A) -\

(
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) x5(\) -y

The traditional notion of noncontextuality:
Every P is associated with the same x ()
regardless of how it is measured
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Alternatively, for a given A

Xw(A) —Q0 or 1
Yk Xy (A) =1

I g,

I '-pg /
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It was shown by Bell (1966) and Kochen and Specker (1967)
that a noncontextual hidden variable model of quantum

theory for Hilbert spaces of dimensionality 3 or greater is
Impossible. That is, quantum theory is contextual

This is the Bell-Kochen-Specker theorem
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Example (Cabello’s algebraic 18 ray proof in 4d):

Each of the 18 rays appears twice in the following list

0,0.0.1 0,001 1
00,10 0,100 1
1106 101G 1
1-1.00 1010 O

1-1.1-1 0010 1111 1111 1111 1111
11 1111 €106 1117 1117 -L111) 3110
0o 1010 1001 1001 1-100 1010 1,001
1.1 010-1 100-1 0110 0011 010-1 01-10
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Example (Cabello’s algebraic 18 ray proof in 4d):

Each of the 18 rays appears twice in the following list

Q001 0001 1-11-1 1111 0010 1111 1111 1111 111-1
g1 1060 1111 1111 €160 11117 1111 1111 1111
1,100 1010 1100 10-10 1001 1001 1-100 1010 1,001
1-1,00 1010 0011 010-1 100-1 0110 0011 010-1 01-10

In each of the 9 columns, one ray is assigned 1, the other three O
Therefore, 9 rays must be assigned 1

But each ray appears twice and so there must be an even number
of rays assigned 1

CONTRADICTION!
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Example (Clifton’'s statistical 8 ray proof in 3d):

|’l£}’} £y -—= X{L:}(A‘) =1

|w:} . — X}L>()\) =0

12) —13) 12) +13)

11) +12) + |3} A 1) +1]2) —|3)

1) —13) 1) +[3)
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Example (Clifton’s statistical 8 ray proof in 3d):

|T£-’} £y -— X{L}(}‘) =1

12) —I3) 12) +13)

11) +12) + |3} Ny 1) +[2) —|3)

1) —13) 11) +3)

CONTRADICTION!
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Problems with the traditional definition of noncontextuality:
- applies only to deterministic hidden variable models
- applies only to quantum theory

Can we define it in such a way that we can judge
- whether any given theory is contextual or not
- whether any given data requires contextuality for its

explanation

Yes, by being operational.
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A purely operational
formulation of quantum
theory
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Operational Quantum Mechanics

2 -8 B

Preparation Transformation Measurement
P T M
Projector-valued
Vector Unitary map measure (PVM)
|¥) - {P:}

Pr(k|P, T,M) = (4|UTPU|¥)
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More general preparations

Probability p, prepare |y
Probability ¢, prepare |z,
Measure {P,}
Prob(k)= p(¥|P|¥) + a{x|Pk|x)
= pTr(|¥)(¥|P) + aTr(|x) (x| FP)
= Tr(pF)
p = plY)(¥| +alx) (x|
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More general preparations

Probability p, prepare |y
Probability ¢, prepare |7
Measure {P,}
Prob(k)= p(¥|Prl¥) + a(x|Plx)
=pTr(|v)(¥|P) + aTr(|x) (x| Px)
= Tr(pF;)

p = plv)(¥| + glx) (x|

A density operator
pe€ L(Cy)

(Ylplv) 2 0, VY
T¥(p) =1

p = |v){(¥| <+ Pure preparation
p # |[Y){¢| ¢ Mixed preparation



More general measurements

Prepare p
Probability p, measure the PVM [P}
Probability ¢, measure the PVM /O,

Prob(k)=pTr(pPg) + qTr(pQ})
= Tr(pEL)

Ep = pP + qQg
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More general measurements

Prepare p
Probability p, measure the PVM /P, }
Probability ¢, measure the PVM /O,

Prob(k)=pTr(pPg) + qTr(pQy)
= Tr(pEL)

Ey = pPi + qQk

A Positive operator valued measure (POVM)
Ek‘ = C((Cd)

(Y| Egly) = 0,V
Zdzl Ep=1

{Er} = {P.} < Sharp measurement
{EL} #{P.} < Unsharp measurement



More general transformations

Prepare p

Probability p, transform with 7
Probability ¢, transform with 1~
measure {E_ }

Prob(k)=pTr(UpUTEL) + qTr(VpVTE})
=Tr(7(p)EL)
T(-) =pU()UT +qV (VT
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More general transformations

Prepare p

Probability p, transform with 7
Probability ¢, transform with 1~
measure {E_ }

Prob(k)=pTr(UpUTEL) + qTr(VpVTE})
= Tr(7 (p)Eg)
T(:) =pUQUT +qv (VT
A completely positive map (CP map)
T : L(Cg) — L(Cy)
T(p) =X, AupAj,
S AA )

T(p) = UpU' <+ Reversible transformation
T(p) & UpU'" < Irreversible transformation
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Operational Quantum Mechanics

2 B B

Preparation Transformation Measurement
E T M

Trace-preserving
_ completely positive  Positive operator-valued
Density operator  |inear map (CP map) measure (POVM)

P T {Ek}

Pr(k|P, T,M) = Tr[E,T (p)]
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More general preparations

Probability p, prepare |y,
Probability ¢, prepare |z,
Measure {P,}
Prob(k)= p(¢|Pelv) + ¢{x| Plx)
= pTr(|¥) (¥|Pg) + aTr(x) (x| Px)
= Tr(pFy)

p = plY) (Y| + alx) (x|
A density operator
p € L(Cy)
(¥lpl¥) 2 0,V
Tr(p) =1

p = |v){¢¥| <+ Pure preparation
p # |[Yv){(y| <+ Mixed preparation
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More general preparations

Probability p, prepare |y,
Probability ¢, prepare |7
Measure {P,}
Prob(k)= p(¥|FPrl¥) + a(x|Pelx)
= pTr(|v)(¥|P) + aTr(|x) (x| Px)
= Tr(pFy)
p = plY){(¥| +alx) (x|
A density operator
p € L(Cy)
(¢lpl) = 0, VY
Tl p) —)}

p = |v){(¥y| <+ Pure preparation
p # |[Y){¢| 4 Mixed preparation



More general measurements

Prepare p
Probability p, measure the PVM /P, }
Probability ¢, measure the PVM /O,

Prob(k)=pTr(pPg) + qTr(pQ})
= Tr(pEL)

Ey = pP + qQ
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Operational Quantum Mechanics

2 B 8

Preparation Transformation Measurement
P T M

Trace-preserving
_ completely positive  Positive operator-valued
Density operator  |inear map (CP map) measure (POVM)

P T {Ek}

Pr(k|P, T,M) = Tr[E,7 (p)]
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Operational postulates of quantum theory

Every preparation P is associated with a density operator p

Every measurement M is associated with a positive operator-valued
measure {E,}. The probability of M yielding outcome k given a
preparation P is p,= Tr(E.p).

Every transformation is associated with a trace-preserving
completely-positive linear map p — p' = T(p).

Every measurement outcome k is associated with a trace-
nonincreasing completely-positive linear map p — p' = T, (p).
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The formalism of density operators, POVMs, and CP maps is
critical in quantum information theory and arguably quantum
foundations as well.
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Operational alternatives
to quantum theory
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Axiomatization

L. Hardy, "Quantum theory from five reasonable axioms™, quant-
ph/0101012

Foil theories

J. Barrett, "Information Processing in Generalized Probabilistic
Theories”, quant-ph/0508211

RS, “In defense of the epistemic view of quantum states: a toy
theory” quant-ph/0401052

For more references, see:
http://qubit.damtp.cam.ac.uk/users/rob/foilswebpage.htm
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Operationalism as a tool

for the realist:

Devising a theory-independent
definition of contextuality
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A hidden variable model of an operational theory
assumes primitives of systems and properties

Preparation |
= Jep(A)dA =1

TN - o)~

) — / N L
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A hidden variable model of an operational theory
assumes primitives of systems and properties

Preparation

[ rp(\)dx =1

<:> #P(/\)/\ -

0<&uir=<1
> eémir(X) =1 for all X
Em.1 (M) o .

<::> §m.2(A) il S
Em 3(A) L ’_L p
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A hidden variable model of an operational theory
assumes primitives of systems and properties

Preparation |
Jpp(A)dr =1

<:> .-U'F’(A) /r\

£ % -
O0<&umr <1
Measurement -

M Y& r(A) =1 for all X

ﬁ &m.1(A) N .
i 0:] 6M2()‘) 4 = p===

©) <::> A
. Em.3(A) = =

p(E|P,M) = [dX &g (X)) pp(X)




Proposed new definition of noncontextuality:

A HV model of an operational theory is noncontextual if

Operational equivalence Equivalent
of two experimental ——>  representations

procedures in the HV model
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Operational Equivalence
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Operational Equivalence

P p
= p(k|P, M) = p(k|P’, M)
for all M.
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Operational Equivalence

P~P
= p(k|P, M) = p(k|P’, M)
for all M.

Page 55/73



Operational Equivalence

P~P
= p(k|P, M) = p(k|P’, M)
for all M.
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Operational Equivalence

= p(k|P, M) = p(k|P, M)
for all P.
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Operational Equivalence

= p(k|P,M) = p(k|P, M)
for all P.
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Operational Equivalence

P~P
= p(k|P, M) = p(k|P’, M)
for all M.

= p(k|P,M) = p(k|P, M)
for all P.
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Difference of
Equivalence class

Difference of
Equivalence class
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Difference of context

Difference of context
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Preparation
Noncontextuality

if P~P’ then
(V) = ppr(\)

Measurement
Noncontextuality

if M~M’ then
EMmE(A) = Emr klA)



Preparation
Noncontextuality

pp(A) /\

=i
v =E
Measurement
Noncontextuality™




Contextuality in
quantum theory
revisited
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Different density
operators

Different observables
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Ex: different convex decompositions of p
Many {pj;,|¥;)} such that
p = 2. pj|¥;) (¥l

Il

S = 210yl + 1)@
Difference of context _ %I-l-) (+ + % 3] |+) = |0) + |1)
1

S ) (il 5 =iy (-l 1) =10) =1
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Ex: different convex decompositions of p
Many {p;,|¥;)} such that
p = 22 pj|¥;) (¥l

Il

T = 100+l
Difference of context _ %I+> (+ + % 3] |+) = |0) + |1)
1

5 1) (il + % i) (=i  |EB) =1[0) £4[1)

Ex: Different purifications of p
Many |W) 4p such that

p=Trp(|W)ap(V¥])
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Ex: different convex decompositions of p
Many {p;,|¥;)} such that
p = X pjlv;)(¥;l

S = 210y (0l + 1)
Difference of context _ %H—) R % Y] |+) = |0) + [1)

%H—:‘) (+4] +%|—i} (—il |£2) = |0) +1[1)

Il

Ex: Different purifications of p
Many |W) 4 such that

p = Trp(|W)ap(V¥])

Preparation
Noncontextuality

pp(A) = pp(A

Page 68/73



Different fine-grainings of {Ex}
Many {Ej .} such that

Er =3 sEg
I — |¥1) (]

= |¥2) (¥a2| + |¢¥3)(¢¥3]
= |h) (W5 + |5) (]

Difference of context
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Different fine-grainings of {Ex}
Many {Ej .} such that

Er =3 s E

I — |¥1)(¥1]
= |[v2) (¥2| + |¥3){(¥3|
= |[5) (V5| + |¥5) (5]

Ex: different convex decoms of { E
Many {p;,{EL}} such that

B, =X, ;B
Difference of context

irsa: 07080040 Page 70/73



Different fine-grainings of {Ex}
Many {Ej .} such that

Er=>sEL;

I — |¥1)(v¥1]
= |2) (¥2| + |¥3)(¥3|
= |wh) (W] + ) (v

Ex: different convex decoms of { Ex
Many {p;,{E.}} such that

Ep=2; PjEi
Different Neumark extensions of {Ex}

Difference of context
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Different fine-grainings of {Ex}
Many {Ej .} such that

Er=>sE;

I — |v1) (1]
= |¥2) (¥2| + |¢¥3){¥3|
= |[wh) (Wh| + ) (¢

Ex: different convex decoms of { E
Many {p;, {E.}} such that

By =Y :p; 5
Different Neumark extensions of {Ex}

Difference of context
Measurement

Noncontextuality
Em,;(A) = &gy ;(N)
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Proof of preparation contextuality

(a preparation noncontextual hidden variable
model is impossible)
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