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Outline

e Model-independent evidence for dark matter
e Spiral galaxy rotation curves
e Clusters of galaxies
e Gravitational Lensing
e Peculiar Velocities

e Model-dependent evidence

e Cosmic Microwave background and large-scale
structure
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Clusters of Galaxies

Scale: ~1 Mpc

-

The largest virialized
objects in the Universe

Masses can be obtained
by three methods

e Dynamics of galaxies
(virial theorem)

e X-ray emitting gas
(hydrostatic equilibrium)
e Gravitational Lensing
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Cluster Dynamics

Virial theorem or Jean’s equations applied to

motions of galaxies with respect to cluster
center yield cluster masses.

First noted by Zwicky 1937.
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Cluster Dynamics

e Virial theorem or Jean’s equations applied to
motions of galaxies with respect to cluster
center yield cluster masses.

e Fir:

.....
......




Clusters masses from X-ray data

Ratio of gas
mass to total
(gas plus dark
NEEYRESS

~ (.12

(stars are
negligible)
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Gravitational Lensing




Lensing in Cosmology

e Since the strength of the lensing effect
depends on mass, use it to measure
Mmass

e But the deflection is not directly
observable, so use distortion and
magnification
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Lensing in Cosmology

e Since the strength of the lensing effect
depends on mass, use it to measure
Mass

e But the deflection is not directly
observable, so use distortion and
magnification
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Zwicky, Science, 1937

“The discovery of images of nebulae .... Would be of
considerable interest for three reasons:

1) It would furnish and additional test for the general
theory of relativity.

2) It would enable us to see nebulae at distances
greater than those ordinarily reached by even the
greatest telescopes ....

3) ... Observations on the deflection of light around
nebulae may provide the most direct determination
of nebular masses ...."
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Dark matter mass

Cuserved “polarization” :
recon<tnichion
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Weak lensing

Dark matter mass
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Weak Lensinz vs, X-rav Masses, -
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Weak lensing by galaxies
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Peculiar velocities

e Peculiar velocities are deviations from
the uniform expansion of the Universe

e Caused by extra matter retards the
expansion of the Universe locally

e In principle by measuring the former,
one can deduce the latter.
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Peculiar velocities

e Peculiar velocities are deviations from
the uniform expansion of the Universe

e Caused by extra matter retards the
expansion of the Universe locally

e In principle by measuring the former,
one can deduce the latter.




Mass vs Light

Mass from peculiar velocities Light in Galaxies

(Zaroubi inversion) (Branchini)




e For consistency between peculiar velocties
and light, we require

0Q ~0.3




Large-scale structure

The spectrum of mass fluctuations on
large-scales and the angular spectrum of
CMB fluctuations depends on the
cosmological parameters.
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Gravitational Lensing
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Cluster Dynamics

e Virial theorem or Jean’s equations applied to

motions of galaxies with respect to cluster
center yield cluster masses.

e Fir:



Clusters masses from X-ray data

Ratio of gas
mass to total
(gas plus dark
matter) mass

~ (.12

(stars are
negligible)
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Fritz Zwicky

e Zwicky had a difficult
personality:

He was fond of calling people
"spherical bastards’, because
they were bastards every way
he looked at them.
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e For consistency between peculiar velocties
and light, we require

0Q ~0.3




Large-scale structure

The spectrum of mass fluctuations on
large-scales and the angular spectrum of
CMB fluctuations depends on the
cosmological parameters.




e For consistency between peculiar velocties
and light, we require
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Mass vs Light

Mass from peculiar velocities Light in Galaxies

(Zaroubi inversion) (Branchini)




Cosmic Microwave Background

The primeval
“fog” left over
from when the
Universe became
transparent to
radiation.
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Mass from peculiar velocities Light in Galaxies

(Zaroubi inversion) (Branchini)
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Gradual
transition to
homogeneous
Universe.

The structure
that is visible
on scales of
150 Mpc is the
descendent of
the 1 deg spots
in the CMB!

(from SDSS)
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Very Large-scale Structure

Gradual
transition to
homogeneous
Universe.

The structure
that is visible
on scales of
150 Mpc is the
descendent of
the 1 deg spots
in the CMB!

(from SDSS)
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.... SKip hundreds of man-years of
theoretical and observational work ...
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Consistency

e (Clusters
e Agreement amongst methods

e All require 6-/x more matter than can be
accounted for in gas and stars

e Peculiar velocities
e |arge-scale structure and the CMB

Require dark matter (20-25% ) and dark
enerqgy (70-75%) in addirtion to
baryonic matter (~4%o)
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e All require 6-/x more matter than can be
accounted for in gas and stars

e Peculiar velocities
e |arge-scale structure and the CMB

Require dark matter (20-25% ) and dark
enerqgy (70-75%) in addrtion to
baryonic matter (~4%o)




FAQ




FAQ

e Q: Can't the Dark Matter be made of baryons
e Black Holes
e Jupiters
e Bricks




FAQ

e Q: Can't the Dark Matter be made of baryons
e Black Holes
e Jupiters
e Bricks

e A: NoO
e Omega_m = 0.25

e But big bang nucleosynthesis and CMB data limit
the density of baryonic material to only 0.05
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FAQ

e Q: What's the particle’s mass?

e A: >roughly a keV.

Otherwise it would affect the spectrum of
fluctutations.
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Consistency

e (Clusters
e Agreement amongst methods

e All require 6-/x more matter than can be
accounted for in gas and stars

e Peculiar velocities
e |Large-scale structure and the CMB

Require dark matter (20-25% ) and dark
energy (70-75% ) in addition to
baryonic matter (~4%o)
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FAQ

e Q: What's the particle’s mass?

e A: >roughly a keV.

Otherwise it would affect the spectrum of
fluctutations.




FAQ

e Q: What about modified gravity acting on baryons?

e Al: It is in general possible to modify gravity

e MOND
e [eVeS
e efc

to explain individual spherical systems (e.g. galaxy
rotation curves) by adjusting one or two parameters.

It is difficult to explain systems (clusters, large-scale
structure) with very different masses using the same
parameters.



A2: “"Bullet” Cluster

collisionless
dark matter
(blue) (from 3
weak Be o
gravitational '
lensing)

gas (pink) (from
X-ray
emission)

collisionless
stars (yellow)




e The End




