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Abstract: An ingredient in recent discussions of curvature singularity avoidance in quantum gravity is the "inverse scale factor" operator and its
generalizations. | describe a general lattice origin of thisidea, and show how it applies to the Coulomb singularity in quantum mechanics, and more
generaly to lattice formulations of quantum gravity. The example also demonstrates that a lattice discretized Schrodinger or Wheeler-DeWitt
equation is computationally equivalent to the so called "polymer”

quantization derived from loop quantum gravity.
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Qutline

What is "singularity avoidance” in quantum theory?
Some developments concerning SA in quantum gravity
Polymer quantization and the Coulomb singularity

Schrédinger and Wheeler-Dewitt equations on lattices
Conclusions and lessons
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Singularity avoidance in quantum theory

For classically singular potentials V(x), singularity avoidance
consists of two components:

» Kinematical SA: In basis states of the Hilbert space

VT)? < X

» Dynamical SA: Time evolution of arbitrary initial states is
well defined: eq. Coulomb scattering cross sections are
not divergent. Unitarity.

PERIMETER
INSTITUTE

Pirsa: 07080001 Page 4/32



Singularity avoidance in QG

Similarly, in quantum gravity we would like

» Kinematical:
C!,II'\'Lil"Ll-l'c’ l}ﬁc‘l’dl’ﬂl’&

» Dynamical: "scattering” from what are classically infinite
curvature regions of spacetime, or "evolution through the
singularity”.
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Singularity avoidance in quantum theory

For classically singular potentials V(x), singularity avoidance
consists of two components:

» Kinematical SA: In basis states of the Hilbert space
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» Dynamical SA: Time evolution of arbitrary initial states is
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Singularity avoidance in quantum theory

For classically singular potentials V(x), singularity avoidance
consists of two components:

» Kinematical SA: In basis states of the Hilbert space
m < O
» Dynamical SA: Time evolution of arbitrary initial states is

well defined: eq. Coulomb scattering cross sections are
not divergent. Unitarity.
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Recent developments in canonical QG |

FRW cosmology with scalar field (has a long history)

ds® = —dt® + a(t)?>(dx?® + y* + dz°)

» In LQC (A.. E¥) (Bojowald; Ashtekar et. al,...) : bounded
inverse scale factor operator

/
\
\'.

f

» Scattering of a wavepacket from the a = 0 region.

» Qualitatively similar results in metric variable ( g.,. 73°)
quantum gravity (VH, O. Winkler, ...) — results
S Gy § independent of loop variables, but due to fundamental
INSTITUTE discreteness.
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|| Effective (QG corrected) dynamics

Define a Hamiltonian constraint operator

Represent factors of inverse powers of ,/q using
"Thiemann” trick

Compute a (kinematical) state |«*(p. q) > dependent
effective constraint

Heir(P. q) =< v|H|v >
Use H.# and classical Hamiltonian equations to get QG
modified FRW dynamics.
An essential input in all this is the inverse scale factor operator.
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Recent developments in canonical QG |

FRW cosmology with scalar field (has a long history)

ds® = —df* + a(t)*(dx® + y* + dz°)

» In LQC (A,. E¥) (Bojowald; Ashtekar et. al....) : bounded
inverse scale factor operator

[ 1\

'\11I a /

» Scattering of a wavepacket from the a = 0 region.

» Qualitatively similar results in metric variable (.. 73°)

quantum gravity (VH, O. Winkler, ...) — results
. independent of loop variables, but due to fundamental

INSTITUTE discreteness.
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» In LQG the basic operators are a shift operator (holonomy)
and a diagonal operator (triad).

» These are just like a field and its translation operators on a
lattice.

» Shift operators are the central ingredient in defining inverse

scale factor and curvature operators.

This is easily illustrated for a particle on a lattice.
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8l Polymer Quantization (or "loop quantum particle”)

The Hilbert space is the vector space of almost periodic
functions

—

K
it are arbitrary real numbers (an irregular lattice). The inner

product is

=

: | O & o | :
bl = N / ap e\ k) — gy

i
T-x:ET_

A representation of the position and translation operators:

U, P -—
PERIMETER :
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An operator corresponding to the momentum p does not exist.
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Polymer Hamiltonian: KE

The momentum and kinetic energy operators have to be
defined using U, . Kinetic energy operator depends on A:

/DZ o % (21 — U - U

\ -l |
p‘: Ik — Eng — k —\ = I_,"f','( - \\_ )
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Polymer Hamiltonian: Potential

The Coulomb potential 1/x is quantized by representing the

r.n.s. of
1 2

1 N
ikl A  FF |
x| (2{.’\:’_} L vl )
as an operator using the definitions of { and % (Thiemann
trick). The resulting operator is bounded.

1

x Hk) = 32 (\ pk + A — |k — Al ) |k

Similar relations have been used to define curvature operators
in quantum gravity. (VH, O. Winkler; A. Dasgupta)
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Eigenvalue of 1/x operator

Figure: The Coulomb potential and the eigenvalue of 1/x operator.
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Polymer Hamiltonian: Potential

The Coulomb potential 1/x is quantized by representing the
r.n.s. of _

L (2luqu 7)
x| ( B Tt
as an operator using the definitions of { and % (Thiemann

trick). The resulting operator is bounded.

1 & \ 2
x Pkl = 2 ( Vi + Al — e — Al ) |1k

Similar relations have been used to define curvature operators

in quantum gravity. (VH, O. Winkler; A. Dasgupta)
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Eigenvalue of 1/x operator

v -5

and the antisymmetry condition ¢, = —C_.
The polymer eigenvalues are to be compared with the
Schradinger spectrum
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Polymer Hamiltonian: Potential

The Coulomb potential 1/x is quantized by representing the

r.n.s. of

1 2

LT | g
= <2HU (U. /|x| )
as an operator using the definitions of U and X (Thiemann

trick). The resulting operator is bounded.

:

2
—I k) =
X

1
—ﬁ(\ pe + A — Ve — Al ) e

Similar relations have been used to define curvature operators
in quantum gravity. (VH, O. Winkler; A. Dasgupta)
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Polymer eigenvalue problem

We look for energy eigenstates in the form

: i | k.

K

where the coefficients ¢, are subject to the normalizability

condition

and the antisymmetry condition ¢, = —c_.
The polymer eigenvalues are to be compared with the
Schrodinger spectrum
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Numerical method

» The eigenvalue problem leads to the recursion relation

Caq(zz = a\fh ——',\EEEE) — c2q+_1 5 c:n__T.

where f, = (\/|n— 1] + /|n+ 1])2.
» For E < 0 and n — ~c this has solution

=i
— 1.2 1 2 Y2

» Use shooting method: Pick an E value for some large ny.
Compute c¢,,. Use recursion relation to find ¢;. Repeat to
get the function ¢ (E).
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Numerical method

» The eigenvalue problem leads to the recursion relation

CﬁT(EE = ,\fh ——',\EEEE) = CZW-%1 = c:n__T.

where f, = (\/|n— 1] +/|n+ 1))
» For E < 0 and n — ~c this has solution

=N
- 1 2 1 2EK\2
Chn=|1— 2,\ E \ (1 2,\ E) —1

» Use shooting method: Pick an E value for some large ny.
Compute c¢,,. Use recursion relation to find ¢;. Repeat to
get the function ¢y (E).
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Figure: The coefficient ¢y as a functionof k =1/ —4E for
098 < k<24 with A\ =0.01. The zeroesareneark =1 and k = 2.

PERIMETER
INSTITUTE

Pirsa: 07080001 Page 23/32



Figure: The coefficient ¢y as a function of k = 1/ —4E for
1.98 < k < 3.4, with A =0.01. The zeroes areneark =2and k = 3
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il

H : The ground state energy as a function of A
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Finite difference approx. for Schrodinger/ WD eqgns.

Kinetic energy:
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Finite difference approx. for Schrodinger/ WD egns.

Kinetic energy:

Taking the square gives the lattice potential

1 } o )
% 3 e e

i

Pl
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ADM constraint

» phase space (a. o; pz. p,)

3
H=——
8 |a

» On a regular (or irregular lattice) the essential contribution
to quantum corrections near the big bang come from
writing 1/ a factors using shift operators.

» The "Wheeler-DeWitt limit” for large a is immediate (which
is the equation discretized) to get the difference equation.
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BB inite difference approx. for Schrédinger/ WD egns.

Kinetic energy:

1

"X.ﬁ] =3 E [r,-,* —2’r"_'_” T]

For the potential 1 /x use the identity

Taking the square gives the lattice potential

1 1

—— — —— (VXnsa] = VIXa1])

| Xn \2

Identical to Polymer quantization
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ADM constraint

» phase space (a. o; ps. p,)

- o _g p‘ +lalPA +87G P alP V(o)

al3 2la

» On a regular (or irregular lattice) the essential contribution
to quantum corrections near the big bang come from
writing 1/ a factors using shift operators.

» The "Wheeler-DeWitt limit” for large a is immediate (which
Is the equation discretized) to get the difference equation.
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Conclusions and lessons

» Spectra for the antisymmetric case converge to standard
gm as A\ — 0. But the spectra for the symmetric case
depend strongly on \ even though the singularity has been
kinematical resolved.

» Mechanism of singularity resolution is ultimately the same
as in standard quantum mechanics: a boundary condition
on the wave function and not a new type of quantization.

» Every finite difference approximation is a polymer
quantization. The converse also holds but may be hard to

compute with for irregular lattices.

But there is a conceptual difference:
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Conclusions and lessons

Spectra for the antisymmetric case converge to standard
gm as A\ — 0. But the spectra for the symmetric case
depend strongly on \ even though the singularity has been
kinematical resolved.

Mechanism of singularity resolution is ultimately the same
as in standard quantum mechanics: a boundary condition
on the wave function and not a new type of quantization.

Every finite difference approximation is a polymer
quantization. The converse also holds but may be hard to

compute with for irregular lattices.

But there is a conceptual difference:

scale, rather than a computational aid.

INSTITUTE —Same for all "polymer” approaches to quantum gravity — eg.
ADM constraints on a regular lattice.

P[ —A\ in polymer gm is viewed as a fundamental discreteness
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