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Motivation

Now that the threshold theorem for fault-tolerant quantum com-
putation has been established, we are interested in experimentally
viable methods for fault-tolerance. One requires:

e [ arge threshold value.

e Robustness of threshold against variations of the error
model.

e Moderate overhead.

e Simple architecture (e.g. no long-range interaction).
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Motivation
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e 2D, nearest-neighbor translation-invarant interaction.

Pirsa: 07060064 Page 3/50




Motivation

guantum dots

superconducting optical lattices

qubits \ /

segmented
ion traps

e 2D, nearest-neighbor translation-invarant interaction.
e FT threshold 0.75% each source

(gate, preparation, measurement and storage error.)
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Talk outline

1. The one-way quantum computer (QC¢ ).

2. Making the QC¢ fault-tolerant. Dimensionality 2 — 3.

2b. Reduction to 2D + time.
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Part I:

The one-way quantum computer and cluster states

Pirsa: 07060064 Page 6/50




The one-way quantum computer

el cefesd rebrTE e .

-

measurement of Z (@), X (1), cosaX +sinaYY ()

e Universal computational resource: cluster state.

e Information written onto the cluster, processed and
read out by one-qubit measurements only.
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Cluster states - creation

10)a + |1)a

1. Prepare product state @ > on d-dimensional qubit

acC

lattice C.

2. Apply the Ising interaction for a fixed time T (conditional
phase of = accumulated).

$ /-measurement

Z-Rule: g
0099 @ cmoves qubit

from the cluster
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Cluster states - experiment
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Cold atoms in optical The QCpg with photons [3].

lattices [1,2]

1: Greiner, Mandel, Esslinger, Hansch, and Bloch, Nature 415, 39-44 (2002),
2: Greiner, Mandel, Hansch and Bloch, Nature, 419, 51-54 (2002).
3: P. Walther et al.. Nature 434, 169 (2005).

Pirsa: 07060064 Page 9/50




Part II:

Fault-tolerance
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Questions

After the proof of the threshold theorem for fault-tolerant quan-
tum compuation:

e What is the threshold value?
e What is the overhead?

e What are the requirements on interaction?
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Known threshold

no constraint

[1] me 0.03. est.
[2] =103, est.
[3] 107", est.
[4] =107 bd.

e Error sources:

values

geometric constraint
2D 1D

[6] ===2-10", bd.

[7] ===10". bd.

|+)-Preparation, A(Z)-gates, Hadamard gates, measurement.

[1] Knill, (2005); [2] Zalka (1999); [3] Dawson & Nielsen (2005); [4] Aliferis & Gottesman &

Preskill (2005), [5] Raussendorf & Harrington, quant-ph/0610062; [6] Svore & DiVincenzo
& Terhal, quant-ph /0604090, [7] Aharonov & Ben-Or (1999)
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Fault-tolerant QC,

Main idea: Replace 2D cluster state by 3D cluster state!

1. The 3D cluster state is a fault-tolerant substrate.

2. Topological quantum logic through choice of $
boundary conditions. ;

e Can be mapped to 2D physical setting.

e Threshold value: 7.5 x 103 each source

(preparation, gate, measurement, storage error).
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2.1 Macroscopic view

S
| D (dual defect)

D (primal defect)

[exp(i7/8 X )-gate]

e [ hree cluster regions:
V' (vacuum), D (defect) and S (singular).

Qubits g = V: local X-measurements,
Qubits ¢ £ D: local Z-measurements, e
Qubits g £ S: local measurements of T‘jg :

e Defect region D is string-like. Can understand quantum
circut in terms of the topology of D.
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2.1 Microscopic view

2

Rt

cluster edges

0

elementary cell of L

qubit location: (even, odd, odd) - face of L,
qubit location: (odd, odd, even) - edge of L,
syndrome location: (odd, odd, odd) - cube of L,

syndrome location: (even, even, even) - site of L.

Pirsa: 07060064 Page 15/50




2.1 Key to scheme

code plane for surface code

3D cluster state

simulated time
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2.1 Surface codes

One gubst located on every edge syndrome at endpomt
plaguette : = —  harmiess
stabilizer : — STTOT
site stabihzer — I harmiul
I
X

e Surface codes are special CSS codes associated with planar

graphs/ lattices.
e Harmfull errors stretch across the entire lattice (rare events).

A. Kitaev,quant-ph/9707021 (1997).
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2.1 QCy: topological error correction in VV

- code plane for surface code

3D cluster state

e Fault-tolerant data storage with planar code described by
Random plaquette Z>-gauge model (RPGM) [1].

e Same error-correction applies in 3D cluster states.

[1] Dennis et al., quant-ph/0110143 (2001).
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2.1 Phase diagram of the RPGM

Map error correction to statistical mechanics:

]
»

no EC _-: Nishimori line

Error correction [1]

Minimum weight

l/ chain matching [2]

3% /<

e Have an error budget of 3%.

[1] T. Ohno et al., quant-ph/0401101 (2004). [2] E. Dennis et al., quant-ph /0110143

(2001); J. Edmonds, Canadian J. Math. 17, 449 (1965).
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2.2 Fault-tolerant quantum logic

code piane for surface cooe

30 chuster state
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Plane segment Torus Plane with 2 holes
1 Qubit 2 Qubits 1 Qubit

e Storage capacity of the code depends upon the topology of
the code surface.
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2.2 Surface code on plane with holes

—— site stabilizer not enforced AX—i—X*
primal hole

— plaquette stabilizer not enforced ¥ i
{ dual hole

N

M

e | here are two types of holes: primal and dual.

e A pair of same-type holes constitutes a qubit.
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2.2 Defects for quantum logic

Defects are the extension of holes
in the code plane to the third dimension.
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2.2 Defects for quantum logic

& :"Eﬁ“ e f Etvr
CNOT-gate

Topological guantum gates are encoded in the way
primal and dual defects are wound around another.
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2.2 EXxplanation of the CNOT-gate

Surface code with boundary:

primal qubit dual qubit

rough l'.lmt.md ary smooth bou ndary

e X-chain cannot end in primal hole, can end in dual hole.

e Z-chain can end in primal hole, cannot end in dual hole.
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2.2 Eplanation of the CNOT-gate

':'rﬂ‘Tf'{{" ﬁ,{}w
CNOT-gate

e Propagation relation: X, » Xe® X

e Remaining prop rel Z. — Z., X — X;, Z3y — Z- 2 Zs for
CNOT derived analogously.
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2.2 Quantum gates

control
CNOT

target

t

Ou
Z-prep.( ’ Z-meas.
Out In
xprep @~ (D) x-meas
Out In
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2.2 Quantum gates

e Need one non-Clifford element:
fault-tolerant preparation of [A4) := K—J%[fl}.

r
fra—

Singular Qubit

e FT prep. of |A) provided through realization of magic state
distillation™ on the cluster state.

*:. S. Brawyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
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2.3 Mapping to 2D

_‘_ .

simulated time

e Turn simulated time into real timel

e Require a 2D single-layer structure.
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2.3 Mapping to 2D

. code plane for surface code

30 cluster state

|

o

simulated time

e After mapping back in the circuit model

e Still require only nearest-neighbor translation-invariant
interaction.
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2.4 Fault-tolerance threshold

Error sources (after mapping to 2D):

1. |+)-preparation: Perfect preparation followed by 1-qubit partially
depolarizing noise with probability pp.

2. N(Z)-gates (space-like edges of £): Perfect gates followed by
2-qubit partially depolarizing noise with probability p».

3. Hadamard-gates (time-like edges of £): Perfect gates followed
by 1-qubit partially depolarizing noise with probability p1.

4. Measurement: Perfect measurement preceeded by 1-qubit partially
depolarizing noise with probability par .

e No qubit is ever idle. (Additional memory error - same threshold)

e For threshold set p; = p> = pp = payr =: p.
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2.4 Fault-tolerance threshold

Topological threshold in cluster region V:

pe =7.5x 1073, (1)

Purification threshold for fault-tolerant |A)-preparation:

pe = 3.7 x 1072, (2)

Topological EC sets the overall threshold.
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Overhead and robustness of threshold

e Denote by S (S”) the bare (encoded) size of a quantum cir-
cuit. Then, for the described method:

S’ ~ Slog3s. (3)

e | he threshold is robust against variations in the error model
such as higher weight elemetary errors.
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Summary
Phys. Rev. Lett. 98, 190504

quant-ph /0703143

Scenario:
e Local and next-neighbor gates in 2D single layer struc-

ture.

Numbers:
e Fault-tolerance threshold of 7.5 x 103 for preparation,
gate, memory and measurement error (each source).

Methods:
e 3D cluster states provide intrinsic topological error cor-
rection and topologically protected quantum gates.

Suitable systems for realization:
e Cold atoms in optical lattices, Josephson junction ar-
rays, segmented ion traps, ...
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2.2 Defects for quantum logic

(f:'?’{{' f;fﬁ'{w
CNOT-gate

Topological guantum gates are encoded in the way
primal and dual defects are wound around another.
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