Title: Fault-tolerant quantum computation with high threshold in two dimensions

Date: Jun 16, 2007 03:30 PM

URL: http://pirsa.org/07060064

Abstract:

Pirsa: 07060064 Page 1/50

Motivation

Now that the threshold theorem for fault-tolerant quantum computation has been established, we are interested in experimentally viable methods for fault-tolerance. One requires:

- Large threshold value.
- Robustness of threshold against variations of the error model.
- Moderate overhead.
- Simple architecture (e.g. no long-range interaction).

Pirsa: 07060064 Page 2/50

Motivation

• 2D, nearest-neighbor translation-invarant interaction.

Pirsa: 07060064 Page 3/50

Motivation

- 2D, nearest-neighbor translation-invarant interaction.
- FT threshold 0.75% each source
 (gate, preparation, measurement and storage error.)

Pirsa: 07060064 Page 4/50

Talk outline

1. The one-way quantum computer $(QC_{\mathcal{C}})$.

2. Making the $QC_{\mathcal{C}}$ fault-tolerant. Dimensionality $2 \to 3$.

2b. Reduction to 2D + time.

Pirsa: 07060064 Page 5/50

Part I:

The one-way quantum computer and cluster states

Pirsa: 07060064 Page 6/50

The one-way quantum computer

measurement of Z (\odot) , X (\uparrow) , $\cos \alpha X + \sin \alpha Y$ (\nearrow)

- Universal computational resource: cluster state.
- Information written onto the cluster, processed and read out by one-qubit measurements only.

Pirsa: 07060064 Page 7/50

Cluster states - creation

- 1. Prepare product state $\bigotimes_{a\in\mathcal{C}} \frac{|0\rangle_a + |1\rangle_a}{\sqrt{2}}$ on d-dimensional qubit lattice \mathcal{C} .
- 2. Apply the Ising interaction for a fixed time T (conditional phase of π accumulated).

Pirsa: 07060064

Cluster states - experiment

Cold atoms in optical lattices [1,2]

The $QC_{\mathcal{C}}$ with photons [3].

- 1: Greiner, Mandel, Esslinger, Hänsch, and Bloch, Nature 415, 39-44 (2002),
- 2: Greiner, Mandel, Hänsch and Bloch, Nature, 419, 51-54 (2002).
- 3: P. Walther et al., Nature 434, 169 (2005).

Pirsa: 07060064 Page 9/50

Part II: Fault-tolerance

Pirsa: 07060064 Page 10/50

Questions

After the proof of the threshold theorem for fault-tolerant quantum computation:

- What is the threshold value?
- What is the overhead?
- What are the requirements on interaction?

Pirsa: 07060064 Page 11/50

Known threshold values

no constraint

$$[1]$$
 — 0.03, est.

$$[2] - 10^{-3}$$
, est.

$$[3] - 10^{-4}$$
, est.

geometric constraint

Error sources:

 $|+\rangle$ -Preparation, $\Lambda(Z)$ -gates, Hadamard gates, measurement.

Knill, (2005); [2] Zalka (1999); [3] Dawson & Nielsen (2005); [4] Aliferis & Gottesman & Preskill (2005), [5] Raussendorf & Harrington, quant-ph/0610062; [6] Svore & DiVincenzo & Terhal, quant-ph/0604090, [7] Aharonov & Ben-Or (1999)

Fault-tolerant $QC_{\mathcal{C}}$

Main idea: Replace 2D cluster state by 3D cluster state!

1. The 3D cluster state is a fault-tolerant substrate.

Topological quantum logic through choice of boundary conditions.

- Can be mapped to 2D physical setting.
- Threshold value: 7.5×10^{-3} each source (preparation, gate, measurement, storage error).

Pirsa: 07060064 Page 13/50

2.1 Macroscopic view

• Three cluster regions:

V (vacuum), D (defect) and S (singular).

Qubits $q \in V$: local X-measurements, Qubits $q \in D$: local Z-measurements,

Qubits $q \in S$: local measurements of $\frac{X \pm Y}{\sqrt{2}}$.

 Defect region D is string-like. Can understand quantum circut in terms of the topology of D.

Pirsa: 07060064 Page 14/50

2.1 Microscopic view

elementary cell of $\mathcal L$

qubit location: (even, odd, odd) - face of \mathcal{L} ,

qubit location: (odd, odd, even) - edge of \mathcal{L} ,

syndrome location: (odd, odd, odd) - cube of \mathcal{L} ,

syndrome location: (even, even, even) - site of \mathcal{L} .

Pirsa: 07060064 Page 15/50

2.1 Key to scheme

Pirsa: 07060064 Page 16/50

2.1 Surface codes

- Surface codes are special CSS codes associated with planar graphs/ lattices.
- Harmfull errors stretch across the entire lattice (rare events).

A. Kitaev, quant-ph/9707021 (1997).

Pirsa: 07060064 Page 17/50

2.1 $QC_{\mathcal{C}}$: topological error correction in V

- Fault-tolerant data storage with planar code described by Random plaquette Z_2 -gauge model (RPGM) [1].
- Same error-correction applies in 3D cluster states.

[1] Dennis et al., quant-ph/0110143 (2001).

Pirsa: 07060064 Page 18/50

2.1 Phase diagram of the RPGM

Map error correction to statistical mechanics:

Have an error budget of 3%.

T. Ohno et al., quant-ph/0401101 (2004).
 E. Dennis et al., quant-ph/0110143 (2001);
 J. Edmonds, Canadian J. Math. 17, 449 (1965).

Pirsa: 07060064 Page 19/50

2.2 Fault-tolerant quantum logic

 Storage capacity of the code depends upon the topology of the code surface.

Pirsa: 07060064 Page 20/50

2.2 Surface code on plane with holes

- There are two types of holes: primal and dual.
- A pair of same-type holes constitutes a qubit.

Pirsa: 07060064 Page 21/50

2.2 Defects for quantum logic

Defects are the extension of holes in the code plane to the third dimension.

Pirsa: 07060064 Page 22/50

2.2 Defects for quantum logic

Topological quantum gates are encoded in the way primal and dual defects are wound around another.

Pirsa: 07060064 Page 23/50

2.2 Explanation of the CNOT-gate

Surface code with boundary:

- X-chain cannot end in primal hole, can end in dual hole.
- Z-chain can end in primal hole, cannot end in dual hole.

Pirsa: 07060064 Page 24/50

2.2 Eplanation of the CNOT-gate

- Propagation relation: $X_c \longrightarrow X_c \otimes X_t$.
- Remaining prop rel $Z_c \to Z_c$, $X_t \to X_t$, $Z_t \to Z_c \otimes Z_t$ for CNOT derived analogously.

Pirsa: 07060064

2.2 Quantum gates

Pirsa: 07060064 Page 26/50

2.2 Quantum gates

• Need one non-Clifford element: fault-tolerant preparation of $|A\rangle := \frac{X+Y}{\sqrt{2}}|A\rangle$.

 FT prep. of |A| provided through realization of magic state distillation* on the cluster state.

*: S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).

2.3 Mapping to 2D

- Turn simulated time into real time!
- Require a 2D single-layer structure.

Pirsa: 07060064 Page 28/50

2.3 Mapping to 2D

- After mapping back in the circuit model
- Still require only nearest-neighbor translation-invariant interaction.

Pirsa: 07060064 Page 29/50

2.4 Fault-tolerance threshold

Error sources (after mapping to 2D):

- 1. $|+\rangle$ -preparation: Perfect preparation followed by 1-qubit partially depolarizing noise with probability p_P .
- 2. $\Lambda(Z)$ -gates (space-like edges of \mathcal{L}): Perfect gates followed by 2-qubit partially depolarizing noise with probability p_2 .
- 3. Hadamard-gates (time-like edges of \mathcal{L}): Perfect gates followed by 1-qubit partially depolarizing noise with probability p_1 .
- 4. Measurement: Perfect measurement preceded by 1-qubit partially depolarizing noise with probability p_M .
 - No qubit is ever idle. (Additional memory error same threshold)
 - For threshold set $p_1 = p_2 = p_P = p_M =: p$.

Pirsa: 07060064 Page 30/50

2.4 Fault-tolerance threshold

Topological threshold in cluster region V:

$$p_c = 7.5 \times 10^{-3}. (1)$$

Purification threshold for fault-tolerant $|A\rangle$ -preparation:

$$p_c = 3.7 \times 10^{-2}. (2)$$

Topological EC sets the overall threshold.

Pirsa: 07060064 Page 31/50

Overhead and robustness of threshold

 Denote by S (S') the bare (encoded) size of a quantum circuit. Then, for the described method:

$$S' \sim S \log^3 S. \tag{3}$$

 The threshold is robust against variations in the error model such as higher weight elemetary errors.

Pirsa: 07060064 Page 32/50

Summary

Phys. Rev. Lett. 98, 190504 quant-ph/0703143

Scenario:

 Local and next-neighbor gates in 2D single layer structure.

Numbers:

• Fault-tolerance threshold of 7.5×10^{-3} for preparation, gate, memory and measurement error (each source).

Methods:

 3D cluster states provide intrinsic topological error correction and topologically protected quantum gates.

Suitable systems for realization:

Cold atoms in optical lattices, Josephson junction arrays, segmented ion traps, ...

Pirsa: 07060064 Page 33/50

Summary

Phys. Rev. Lett. 98, 190504 quant-ph/0703143

Scenario:

 Local and next-neighbor gates in 2D single layer structure.

Numbers:

• Fault-tolerance threshold of 7.5×10^{-3} for preparation, gate, memory and measurement error (each source).

Methods:

 3D cluster states provide intrinsic topological error correction and topologically protected quantum gates.

Suitable systems for realization:

Cold atoms in optical lattices, Josephson junction arrays, segmented ion traps, ...

Pirsa: 07060064 Page 45/50

2.2 Defects for quantum logic

Topological quantum gates are encoded in the way primal and dual defects are wound around another.

Pirsa: 07060064 Page 49/50

