Title: Symmetrised tomography for efficient characterisation of noisy quantum channels

Date: Jun 16, 2007 12:35 PM

URL: http://pirsa.org/07060063

Abstract:

Pirsa: 07060063

Symmetrised tomography for efficient characterisation of noisy quantum channels

Marcus Silva, with J. Emerson, O. Moussa, C. Ryan, M. Laforest, E. Magesan, J. Baugh, D. Kribs^{@Guelph}, D. Cory^{@MIT}, R. Laflamme

Institute for Quantum Computing, University of Waterloo

June 16, 2007

Pirsa: 07060063 Page 2/18

Motivation

We want to experimentally verify properties of noise in a quantum system – thresholds, as they stand, are dependent on details of the error model.

$$\rho \longrightarrow \Lambda \longrightarrow \sigma = \Lambda(\rho)$$

So far, the approach has been to fully characterise Λ .

$$\Lambda(\rho) = \sum_{k} A_k \rho A_k^{\dagger}$$

$$= \sum_{i,j} \chi_{ij} P_i \rho P_j, \quad P_i \in \mathcal{P}_n$$

But $i, j \in [0, d^2 - 1]$, so χ has $O(d^4)$ parameters.

No hope of characterising noise in a QC moderately larger than today's state of the art.

But without full tomography, one can

- estimate average fidelity
- lacktriangle estimate probability of Pauli errors with weight up to w

observe some types non-Markovian noise behaviour

Page 3/18

Average Gate Fidelity

A usefull figure of merit is the gate fidelity averaged uniformly over all possible pure inputs1

$$\begin{split} F(\Lambda,1) &= \int d \left| \psi \right\rangle \langle \psi \right| \Lambda(\left| \psi \right\rangle \langle \psi \right|) \left| \psi \right\rangle \\ &= \int dU \left\langle 0 \right| U^{\dagger} \Lambda(U|0\rangle \langle 0|U^{\dagger}) \left| 0 \right\rangle \end{split}$$

We can greatly simplify this task by considering 2-designs²

$$\int dU \langle 0| U^{\dagger} \Lambda(U|0) \langle 0| U^{\dagger} \rangle |0\rangle = \frac{1}{|\mathcal{C}_n|} \sum_{i=1}^{|\mathcal{C}_n|} \langle 0| U_i^{\dagger} \Lambda(U_i|0) \langle 0| U_i^{\dagger} \rangle |0\rangle$$

 $U_i \in \mathcal{C}_n$, where \mathcal{C}_n is the set of tensor products of single qubit Clifford operations - Clifford twirling.

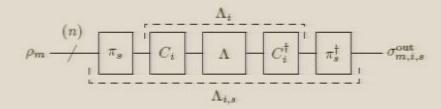
From Chernoff bound, we can estimate $F(\Lambda, 1)$ with precision δ and overhead **independent of** n – number of experiments is $\ln 2/\delta^2$.

Pirsa: 07060063 Emerson, Alicki, Zyczkowski, J. Opt. B, **7** S347–S52 (2005)

Renes et al., J. Math. Phys 45(6):2171–2180 (2004); A. Klappenecker and M. Rötteler, Proc.

Twirled Channels

Consider now, the permutation and Clifford twirled channel $\bar{\Lambda}$



$$\begin{split} \bar{\Lambda}(\rho) &= \frac{1}{|\mathcal{C}_n||s|} \sum_{j,s} \pi_s^\dagger C_j^\dagger \Lambda(C_j \pi_s \rho \pi_s^\dagger C_j^\dagger) C_j \pi_s \\ &= \sum_{w=0}^n p_w \sum_{\operatorname{wt}(P_i) = w} \frac{1}{3^w \binom{n}{w}} P_i \rho P_i \\ &\equiv \sum_{w=0}^n p_w M_w^p(\rho) \end{split}$$

where $p_w = \sum_{\text{wt}(P_i)=w} \chi_{ii}$.

Note that $\bar{\Lambda}$ only has n+1 parameters — the probabilities p_w .

$$\bar{\Lambda}(P_k) = c_w P_k, \quad P_k \in \mathcal{P}_n \quad \text{wt}(P_k) = w$$

Thus,

$$\bar{\Lambda}(\rho) = \sum c_w M_w^c(\rho)$$

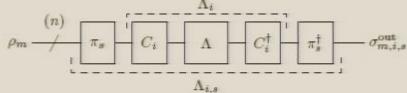
So that,

$$c_w = \sum_{w'} \Omega_{w,w'} p_{w'}, \qquad \Omega_{w,w'} \equiv \frac{\langle M_w^c, M_{w'}^p \rangle}{\langle M_w^c, M_w^c \rangle}$$

 $\Omega_{w,w'}$ and $\Omega_{w,w'}^{-1}$ both known, consisting of simple combinatorial expressions.

Just measure parity of random sets of \boldsymbol{w} qubits – no need for explicit permutations

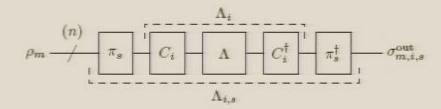
$$c_w = \frac{\left\langle \pi_s Z^{\otimes w} \pi_s^{\dagger} \right\rangle_{\sigma}}{\left\langle \pi_s Z^{\otimes w} \pi_s^{\dagger} \right\rangle_{\rho}}$$



Pirsa: 07060063 Page 6/18

Twirled Channels

Consider now, the permutation and Clifford twirled channel $\bar{\Lambda}$



$$\begin{split} \bar{\Lambda}(\rho) &= \frac{1}{|\mathcal{C}_n||s|} \sum_{j,s} \pi_s^\dagger C_j^\dagger \Lambda(C_j \pi_s \rho \pi_s^\dagger C_j^\dagger) C_j \pi_s \\ &= \sum_{w=0}^n p_w \sum_{\operatorname{wt}(P_i) = w} \frac{1}{3^w \binom{n}{w}} P_i \rho P_i \\ &\equiv \sum_{w=0}^n p_w M_w^p(\rho) \end{split}$$

where $p_w = \sum_{\text{wt}(P_i)=w} \chi_{ii}$.

Note that $\bar{\Lambda}$ only has n+1 parameters — the probabilities p_w .

$$\bar{\Lambda}(P_k) = c_w P_k, \quad P_k \in \mathcal{P}_n \quad \text{wt}(P_k) = w$$

Thus,

$$\bar{\Lambda}(\rho) = \sum c_w M_w^c(\rho)$$

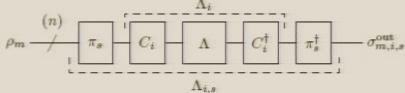
So that,

$$c_w = \sum_{w'} \Omega_{w,w'} p_{w'}, \qquad \Omega_{w,w'} \equiv \frac{\langle M_w^c, M_{w'}^p \rangle}{\langle M_w^c, M_w^c \rangle}$$

 $\Omega_{w,w'}$ and $\Omega_{w,w'}^{-1}$ both known, consisting of simple combinatorial expressions.

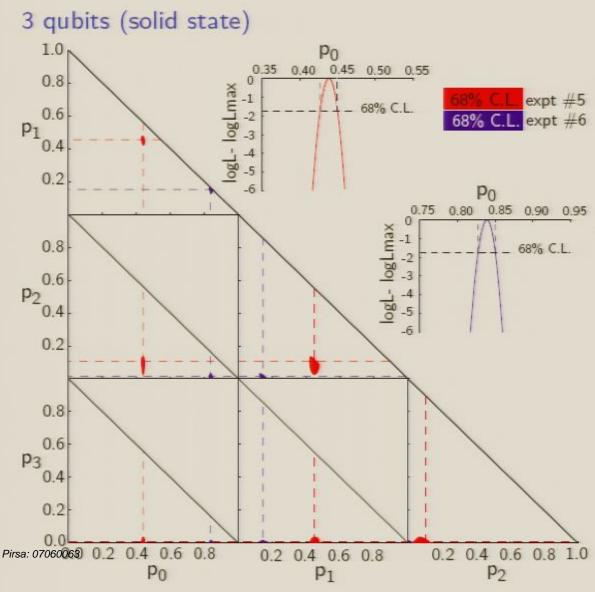
Just measure parity of random sets of w qubits — no need for explicit permutations

$$c_w = \frac{\left\langle \pi_s Z^{\otimes w} \pi_s^{\dagger} \right\rangle_{\sigma}}{\left\langle \pi_s Z^{\otimes w} \pi_s^{\dagger} \right\rangle_{\rho}}$$



Pirsa: 07060063 Page 8/18

Experimental results in NMR



Twirled channel parameters for two time-suspension sequences which differ only in the pulse spacing (10 μ s vs. 5 μ s).

Performance improvement evident in significantly larger p_0 .

 2×432 experiments needed to characterize each sequence.

Scalable even with current NMR technology – does not need pseudo-pure preparation.

$$\bar{\Lambda}(P_k) = c_w P_k, \quad P_k \in \mathcal{P}_n \quad \text{wt}(P_k) = w$$

Thus,

$$\bar{\Lambda}(\rho) = \sum c_w M_w^c(\rho)$$

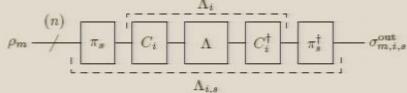
So that,

$$c_w = \sum_{w'} \Omega_{w,w'} p_{w'}, \qquad \Omega_{w,w'} \equiv \frac{\langle M_w^c, M_{w'}^p \rangle}{\langle M_w^c, M_w^c \rangle}$$

 $\Omega_{w,w'}$ and $\Omega_{w,w'}^{-1}$ both known, consisting of simple combinatorial expressions.

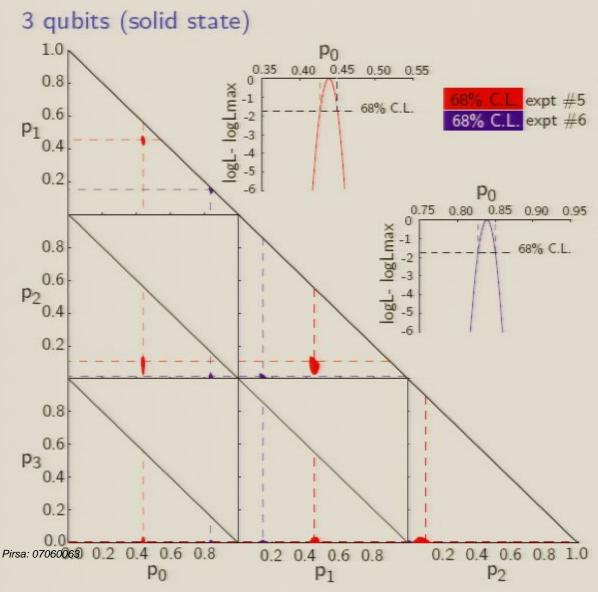
Just measure parity of random sets of w qubits — no need for explicit permutations

$$c_w = \frac{\left\langle \pi_s Z^{\otimes w} \pi_s^{\dagger} \right\rangle_{\sigma}}{\left\langle \pi_s Z^{\otimes w} \pi_s^{\dagger} \right\rangle_{\rho}}$$



Pirsa: 07060063 Page 10/18

Experimental results in NMR



Twirled channel parameters for two time-suspension sequences which differ only in the pulse spacing (10 μ s vs. 5 μ s).

Performance improvement evident in significantly larger p_0 .

 2×432 experiments needed to characterize each sequence.

Scalable even with current NMR technology – does not need pseudo-pure preparation.

$$\bar{\Lambda}(P_k) = c_w P_k, \quad P_k \in \mathcal{P}_n \quad \text{wt}(P_k) = w$$

Thus,

$$\bar{\Lambda}(\rho) = \sum c_w M_w^c(\rho)$$

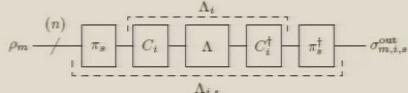
So that,

$$c_w = \sum_{w'} \Omega_{w,w'} p_{w'}, \qquad \Omega_{w,w'} \equiv \frac{\langle M_w^c, M_{w'}^p \rangle}{\langle M_w^c, M_w^c \rangle}$$

 $\Omega_{w,w'}$ and $\Omega_{w,w'}^{-1}$ both known, consisting of simple combinatorial expressions.

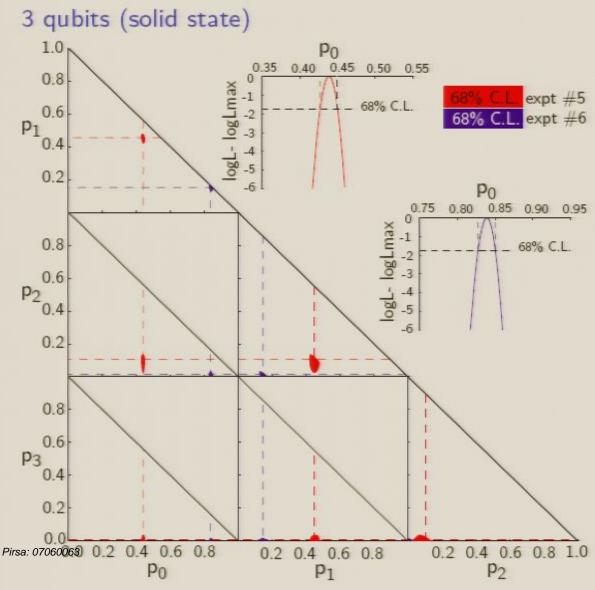
Just measure parity of random sets of w qubits — no need for explicit permutations

$$c_w = \frac{\left\langle \pi_s Z^{\otimes w} \pi_s^{\dagger} \right\rangle_{\sigma}}{\left\langle \pi_s Z^{\otimes w} \pi_s^{\dagger} \right\rangle_{\rho}}$$



Pirsa: 07060063 Page 12/18

Experimental results in NMR



Twirled channel parameters for two time-suspension sequences which differ only in the pulse spacing (10 μ s vs. 5 μ s).

Performance improvement evident in significantly larger p_0 .

 2×432 experiments needed to characterize each sequence.

Scalable even with current NMR technology – does not need pseudo-pure preparation.

Scaling

The variance σ_w in the estimate of p_w is given by

$$\sigma_w^2 = \left\langle (p_w - \langle p_w \rangle)^2 \right\rangle$$
$$= \sum_{i=0}^n \sum_{j=0}^n \Omega_{w,i}^{-1} \Omega_{w,j}^{-1} \mathsf{Cov}(c_i, c_j)$$

We can place upper bounds on the variance

$$\sigma_w^2 \le \sigma^2 \sum_{i=0}^n \sum_{j=0}^n |\Omega_{w,i}^{-1} \Omega_{w,j}^{-1}|$$
$$\le \sigma^2 3^{2w} \binom{n}{w}^2$$

In other words

$$\sigma_w \le \sigma 3^w \binom{n}{w} \le 3^w e^w n^w$$

Correlations in distribution of error locations

We can also think of $\bar{\Lambda}$ as the result of throwing away information about where errors occurred, and details about the type of errors that occurred.

If error locations are independent, $\bar{\Lambda} = \mathcal{D}^{\otimes n}$.

Thus, the eigenvalues are

$$c_w = c_1^w$$

Statistically significant deviation from a exponential distribution of eigenvalues implies correlations in the distribution of error locations.

Can we translate other conditions for threshold theorems in terms of efficiently accessible p_w/c_w ?

Pirsa: 07060063 Page 15/18

Observation of non-Markovian noise

All Pauli channels share same eigenvectors - channel composition is easy.

The Markovian condition

$$\bar{\Lambda}_{t_a+t_b} = \bar{\Lambda}_{t_a} \circ \bar{\Lambda}_{t_b}$$

translates to

$$c_w^{(t_a + t_b)} = c_w^{(t_a)} c_w^{(t_b)}$$

Statistically significant deviations indicate non-Markovian behaviour in both $\bar{\Lambda}$ and Λ .

Smaller symmetry groups may allow for more non-Markovian behaviour to be visible.

Pirsa: 07060063 Page 16/18

Finding Noiseless Encodings

Symmetry group can be arbitrary.

Choose, e.g. group generated by \mathfrak{P}_n and all qubit permutations.

In that case the parameterisation of the resulting channel is³

$$\bar{\Lambda}(\rho) = \sum_{\mathbf{w} = (x, y, z)} p_{\mathbf{w}} \sum_{P_{\mathbf{w}}} \frac{1}{\binom{n}{x + y + z} \binom{x + y + z}{x} \binom{y + z}{z}} P_{\mathbf{w}} \rho P_{\mathbf{w}}$$

so we have $\frac{1}{6}n^3 + n^2 + \frac{11}{6}n + 1$ parameters – still manageble.

 $\bar{\Lambda}$ is still a Pauli channel, but now it is possible the $c_{\mathbf{w}}=\pm 1$ for non-trivial \mathbf{w} . The isomorphism $\Omega_{\mathbf{w},\mathbf{w}'}$ is also similarly simple.

Because of the well known commutation relations between different Pauli operators, we can look for observable in the fixed-point set above with the right commutation relations.

Theorem⁴: Any noiseless encoding we find for \mathfrak{P}_n twirles $\bar{\Lambda}$ is also a noiseless encoding for Λ .

Dankert, Cleve, Emerson and Livine, quant-ph/0606161.

Summary

- Symmetrisation of channels via twirling provides general, efficient way to obtain valuable partial information about noisy quantum channels
- We can detect deviations from independent error location model.
- We can detect some deviations from Markovian behaviour.
- We can find noiseless subsystems, and test how noiseless they are.

Questions:

- Using just a constant number of p_w , can we confirm proximity to models used in threshold theorem?
- Are there more general conditions in terms of the c_w ?
- What other symmetry groups yield interesting information?

Funding: NSERC, MITACS, ORDCF, ARO and DTO.

Pirsa: 07060063 Page 18/18